
ORIGINAL ARTICLE

A novel online ensemble approach to handle concept drifting data
streams: diversified dynamic weighted majority

Parneeta Sidhu • M. P. S. Bhatia

Received: 15 July 2014 / Accepted: 16 January 2015 / Published online: 31 January 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract We present an online ensemble approach,

diversified dynamic weighted majority (DDWM) to clas-

sify new data instances which have varying conceptual

distributions. Our approach maintains two sets of weighted

ensembles that differentiate in their level of diversity. An

expert in either of the ensembles is updated or removed as

per its classification accuracy and a new expert is added

based on the final global prediction of the algorithm and the

global prediction of the ensemble for any data instance.

Experimental evaluation using various artificial and real-

world datasets proves that DDWM provides very high

accuracy in classifying new data instances, irrespective of

size of dataset, type of drift or presence of noise. We

compare DDWM with the other learners in terms of new

performance metrics such as kappa statistic, model cost,

and the evaluation time and memory requirements. Our

approach proved to be highly resource effective achieving

very high accuracies even in a resource constrained

environment.

Keywords Concept drift � Ensemble � Diversity � Data
stream � Online learning

1 Introduction

Data stream mining is a very important research area in

machine learning community. It is the process of studying

the concept underlying the data and the variations in that

concept to classify new data instances with higher accu-

racy. Data streams differ from the static databases as they

may have varying concepts underlying the data, unlimited

size, high speed and high dimensionality [52]. We can

access a data instance in a data stream only ‘‘once’’ when it

arrives, after that the given instance is replaced by a new

instance which may have a different conceptual

distribution.

‘Concept’ for a data instance refers to the underlying

data distribution, illustrated by the joint distribution [1],

p(x, y) where x represents the n-dimensional feature vector

and y represents its class label. The term ‘concept drift’

refers to change in the underlying conceptual distribution

[6, 7, 15] as new instances arrive for example in various

applications like Market-Basket analysis [10], computer

security, internet data, credit fraud detection, bioinformat-

ics etc. In Market-Basket analysis, similar concept is seen

in the customer buying behavior each year during Christ-

mas festivity. This pattern re-occurs every year (i.e.

recurrent drift), resulting in a drift from the customer’s last

month buying pattern. A drift present in a dataset is mea-

sured by its severity and speed. Severity represents the

amount of changes caused by a new concept. Speed is the

inverse of the time taken for a new concept to completely

replace the old concept.

The approaches to handle drifts could be classified as

either incremental approaches [7, 22, 25, 40–45] or online

approaches [1, 4, 6, 7, 10, 11, 18, 19, 24, 54]. An incre-

mental algorithm [46] processes data several times in bat-

ches of considerably large size. Whereas, the online

approach process each training example only once when it

arrives, without any need for storage or reprocessing. A

current hypothesis is maintained that reflects all the train-

ing instances so far. The online approaches can further be

P. Sidhu (&) � M. P. S. Bhatia

Division of CoE, Netaji Subhas Institute of Technology,

Sec-3 Dwarka, New Delhi 110078, India

e-mail: parneeta07@gmail.com

M. P. S. Bhatia

e-mail: bhatia.mps@gmail.com

123

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

https://doi.org/10.1007/s13042-015-0333-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0333-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-015-0333-x&domain=pdf
https://doi.org/10.1007/s13042-015-0333-x

categorized as: approaches that use a mechanism to handle

concept drift [1, 6, 7, 18, 19] and those that do not

explicitly use a mechanism to detect drifts [4, 10, 11, 24].

The former approaches use some measure related to the

classification accuracy in handling drifts. They rebuild the

system once a drift is detected. The latter type of online

approaches assigns weights to each base learner as per their

accuracy in classifying the new data instances. These

approaches update the experts, adding newly learnt experts

upon detection of a drift.

There are two main models for handling classification in

data streams: single classifier incremental model and the

ensemble model. In single classifier model, the classifier is

incrementally updated to cope with drifting data distribu-

tions requiring complex operations. The ensemble model

uses a set of classifiers and trains each classifier with the

intention to create an improved model. The result of pre-

diction is the combined result achieved in a way (weighted

or un-weighted voting or by maximum value) in classifying

the new instances. However, for better performance the

ensembles need to be pruned such that they maintain a set

of diverse and accurate classifiers [56]. Analysis of the

experimental results done in the past, prove that an

ensemble model has higher generalization accuracy [58,

59] and the success of an ensemble is based on the level of

diversity between the classifiers. Diversity [29] in an

ensemble of experts (classifiers) is the measure of variation

in the classification accuracy of ensemble members for a

given training example. Diversity [57] can be created

among the ensemble members by one of the following

ways: data manipulation method, homogeneous method or

heterogeneous (hybrid) method. However, the diversity in

the ensemble cannot be treated as a replacement for the

accuracy of the system.

This paper provides an empirical evaluation of our

approach diversified dynamic weighted majority (DDWM)

that maintains two ensembles with different levels of

diversity, so as to accurately handle various types of con-

cept drifts. In all the experimental comparisons, our

approach performed better or at least similar to the other

approaches under variations in speed of drift, severity of

drift, presence of noise and varying size of datasets. Sec-

tion 2 explains the various research questions that have

been answered by our research paper.

2 Research questions and paper organization

Our work aims at answering the following research ques-

tions related to the work on concept drift:

1. How can the concept of diversity be applied on an

online approach that does not explicitly use a

mechanism to detect drifts [10, 12]? Earlier work on

concept drift [16] used the concept of diversity with

the online approaches that use a mechanism to handle

drifts.

2. Does the high diversity ensemble always provide better

classification accuracy than the low diversity ensemble

when handling drifting concepts? The study proves

that the classification accuracy of each ensemble in

handling any drifting dataset depends on the speed and

severity of drift present in the dataset.

3. How the level of diversity among the experts in an

ensemble impacts its performance in terms of various

performance metrics: prequential accuracy, kappa

statistic, model cost, time and memory?

4. How does diversity helps in improving the perfor-

mance of an ensemble system in handling various

types of drifting concepts? The work presented in [3,

10, 12, 13] shows the performance of a system

maintaining an ensemble of experts without using the

concept of diversity.

5. What is the impact of presence of noise in the dataset,

on the performance of a concept drifting system in

terms of various performance metrics? The work

presented in [10, 12] showed the impact of noise on

the system performance in terms of accuracy and

expert count only.

In order to answer the first research question, we pro-

pose a new online ensemble learning approach to handle

drifting concepts called diversified dynamic weighted

majority (DDWM). It is an online ensemble approach that

does not explicitly use a mechanism to detect drifts. It

maintains weighted ensembles with different diversity

levels among its experts. The experts would be updated as

per their classification accuracy in handling new data

instances, as in dynamic weighted majority (DWM) [10,

12] approach. The two ensembles with different levels of

diversity are: an ensemble with low diversity and an

ensemble with high diversity. The final prediction is the

class having the maximum support, involving the weigh-

ted majority vote of the experts’ predictions from each of

the ensembles. We use two different ensembles varying in

their diversity levels as the two ensembles would perform

with different classification accuracies, depending upon

the severity and speed of drift present in the dataset.

Empirical analysis would prove that our diversified

approach provides very good accuracy in handling drifts

in data streams, using various artificial and real-world

datasets with different types of drifts, irrespective of noise

present in the dataset.

In order to answer the second and the third research

questions, we perform a study of the various perfor-

mance metrics using high diversity ensemble and low

38 Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

123

diversity ensemble and analyze their comparative per-

formance while handling datasets containing abrupt

concept drifts. The analysis identifies that for high speed

drifts, the low diversity ensemble provides better pre-

quential accuracy than the high diversity ensemble. The

low diversity ensemble helps DDWM achieve better

accuracy than early drift detection method (EDDM) [1]

and DWM. However, with the progress in learning the

experts in the high diversity ensemble also achieve an

improved adaptation rate to the new concepts. The

average evaluation time and the memory requirements of

both the ensembles are almost the same, independent of

the level of diversity among its experts. Hence, the

model cost is also the same for both the ensembles. The

low diversity ensemble in DDWM has very high

homogeneity/low diversity (i.e. high value of kappa

statistic) among its experts (as its name suggests)

whereas the high diversity ensemble has very high level

of diversity (i.e. low value of kappa statistic) among its

experts. Hence, the value of kappa statistic is dependent

on the k value used in modified version [15] of online

bagging [21] to explicitly encourage more or less

diversity in an ensemble.

In order to perfectly answer the fourth research question,

empirical evaluation of our approach was done using var-

ious artificial and real-time datasets containing different

levels of severity and speed of drift and random noise in

some cases. The analysis identifies that while handling

abrupt concept drifts irrespective of presence of noise our

approach converged very quickly to the target concepts

achieving accuracies better than dynamic weighted

majority (DWM) and Blum’s weighted majority (WM) [3],

independent of any base classifier. When datasets contain

gradual drifts and noise, our approach responds quickly to

changes in concepts, achieving very high accuracies same

as WM and better than DWM approach. Evaluation of

DDWM using real time datasets identifies that our

approach provided a highly stable system, achieving almost

similar or better accuracy than DWM.

In order to answer the last question, we compared the

performance of our approach in a noisy and a non-noisy

domain. For datasets containing abrupt drifts and noise,

DDWM shows high sensitivity to noise even when the

base algorithm does not support noise. The results led us

to state that the presence of noise creates a negative

impact on the performance of the system. The system

suffers from an increase in the average evaluation time

and increase in the model cost, with decrease in pre-

quential accuracy and decrease in kappa statistic value

when in a noisy domain, as compared to its performance

in a non-noisy domain. However, there is no change in

the average memory requirements of our concept drifting

system. The comparative evaluation of DDWM to the

other approaches in a noisy domain states that our

approach performs better/similar as the other approaches

in terms of average prequential accuracy. For datasets

containing gradual drifts and noise, our approach pro-

vides a highly stable system with very good average

prequential accuracy irrespective of presence of noise in

the dataset.

This paper is further organized as follows. Section 3

presents the related work on online concept drifting

approaches and provides us with the background knowl-

edge of the concept of diversity. In this section, we also

describe the various performance metrics used to evaluate

the approaches. In Sect. 4, we will give a brief description

of the various artificial and real-world datasets used for

empirical evaluation of our approach. Section 5, presents

the DDWM algorithm and its detailed description. In

Sect. 6, we present the analysis, evaluation and a detailed

comparison of our approach with the existing approaches.

In the end, we summarize our paper and discuss directions

for future research.

3 Related work

3.1 Online concept drifting approaches to handle

drifting concepts

The first drift handling ensemble learning system was

STAGGER [26] that applies a set of heuristics guided by

the Bayesian evaluation measures to prune an established

characterization that proves in-effective and/or add a new

generated characterization element whose weight surpasses

the threshold. The FLORA [28] system induces current

target concept from a single window of recent examples by

incrementally learning a new instance and forgetting the

least recent one within its window [27]. Weighted majority

(WM) [3, 13] is an online ensemble approach that main-

tains set of weighted experts. It believes in the principle

that all not features of a given data instance are necessary

to make a prediction. Drift detection method (DDM) [6],

controls the online error-rate (number of errors) produced

during prediction whereas Early Drift detection method

(EDDM) [1] was based on the estimated distribution of the

distances between classification errors.

Adaptive classifier ensemble (ACE) [20] is an adaptive

classifier ensemble approach that uses an online classifier,

a set of batch classifiers, and a drift detection mechanism

to handle mainly recurrent drifts. To improve the classi-

fication accuracy further, an enhanced version of ACE

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61 39

123

[18] that used a pruning strategy for classifiers. Detection

with statistical test of equal proportions (STEPD) [19]

uses a single online classifier that compares the classifi-

cation accuracies: the overall accuracy from the beginning

of the learning, and the accuracy of recent examples after

concept drift, by using statistical test of equal proportions.

Addictive Expert Ensembles (AddExp) [11] adds a new

classifier whenever the system output is incorrect, and

used two pruning methods: the oldest first and the weakest

first. Two online classifiers for learning and detecting

concept drift (Todi) [17] reduced the impact of false

alarms on the accuracy of the system in classifying the

new instances. Dynamic weighted majority (DWM) [10,

12] is a modified version of WM [13]. DWM creates new

experts dynamically in response to changes in its perfor-

mance, and removes an expert if its weight reaches a

threshold value.

CDR-Tree [37] mined concept drifting rules in data

streams by integrating new and old instances from different

time scales into pairs. It extracted a classification model of

each data block for decision making. STREAM-DETECT

[38] detected changes in data streams by measuring on-line

clustering result deviation over time. RePro [39] was

another concept drifting approach that incorporated reactive

and pro-active predictions. AC–DC algorithm [34] was

based on association rules to find relationships between

item-sets and extract the set of frequently occurring patterns

from the input dataset. Learn ??. NSE [55] is an incre-

mental ensemble approach for incremental learning of

concept drift, where the classifiers were combined using a

dynamically weighted majority voting technique based on

each classifier’s time-adjusted accuracy rate on current and

past instances. Diversity for dealing with drifts (DDD) [16]

used the concept of varying diversity levels between

ensembles. After the detection of drift, new high diversity

and low diversity ensembles were created in addition to

already existing high diversity and low diversity ensembles.

3.2 Concept of diversity in an ensemble of experts

The literature [15, 29, 30, 53] study on diversity states that

diversity in an ensemble reduces the initial increase in error

caused by a drift. Secondly an ensemble delivers more

reliable results if it includes diversity between its experts.

Based on an analysis of various diversity measures, Yule’s

Q statistic [29, 31] was recommended to be the best

measure for diversity. It minimizes the error of ensembles

and is very easy to interpret. Different levels of diversity in

an ensemble was explicitly introduced by varying the k
value in a modified version of online bagging [15, 21],

where Poisson (1) distribution was replaced by Poisson (k)

distribution. Higher/lower values of k are associated with

lower/higher diversity (higher/lower Q-average) in an

ensemble of experts.

The performance of an ensemble with high diversity

differs from the performance of the low diversity ensemble

in classifying drifting data instances. The accuracy with

which each ensemble classifies the instances depends on

the level of severity and speed of drift present in the

dataset. From earlier research work on concept drift in

DDD [16], it has been found that for drifts with low

severity and high speed, the old high diversity ensemble

provides the best generalization accuracy. For high severity

and high speed drifts, it is a good strategy to use the new

low diversity ensemble. For low speed drifts (independent

of severity), old high diversity ensemble provides the best

accuracy during the whole period since the beginning of

the drift.

If the dataset contains drifts with low severity and

high speed, even though the new concept after the drift

would not be same but it would be similar to the old

concept. In this case the high diversity ensemble learns

the old concept only partly, and is able to converge to

the new concept by learning it with low diversity. A low

diversity ensemble would provide information from the

old concept but would have problems to converge to the

new concept [15].

If the dataset contains drift with high severity and high

speed [16], it causes big changes very suddenly. The new

concept is completely different from the old concept. The

new ensemble learning from scratch is thus the best option.

For low speed drifts (independent of severity), the new

concept gradually replaces the old concept. So only shortly

after the beginning of the drift, the best strategy is to use

the low diversity ensemble as the conceptual distribution

underlying the data instances is almost the same; but longer

after the drift independent of severity, the high diversity

ensemble learning the new concept with low diversity

provides better classification accuracy.

3.3 Performance evaluation metrics for various concept

drifting approaches

– Prequential Accuracy (%): prequential accuracy [1, 4,

32] is the average online accuracy obtained by pre-

diction of each example to be learned, prior to its

learning.

– Kappa Statistic (%): the Kappa statistic value is a

performance measure that gives a score of homogeneity

among the experts.

– Model cost (RAM-Hours): the resource efficiency of

any stream mining algorithm is judged by another

40 Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

123

measure i.e. model-cost (RAM-Hours). One RAM-

Hour is equivalent to one GB of RAM being deployed

for one hour.

– Time (CPU-seconds): it is the total CPU runtime

involved when testing of new instances and further

training of experts.

– Memory (bytes): it is the total amount of memory used

by any online algorithm. It consists of memory used to

store the running statistics, and that used to store the

online model.

4 Concept drifting data streams

4.1 Artificial datasets

4.1.1 Stagger concepts: Abrupt concept drift,

without noise

A concept in a Stagger [26, 54] dataset consists of three

attribute values: shape [{circle, triangle, rectangle}, color

[{green, blue, red}, and size [{small, medium, large}.

The dataset contains 240 training examples, with one

example at each time step. Here, we are evaluating a

classifier based on maximum of a pair of features (i.e. two

features) and in each context at least one of the features is

irrelevant.

4.1.2 SEA Concepts: Very large dataset, abrupt concept

drift with noise

The SEA [25] dataset provides a very large sized dataset

with each training example consisting of three real-valued

attributes, xi [R such that 0.0 B xi B 10.0.The target

concept is as in Eq. (1).

Y ¼ x0 þ x1 � h½ � ð1Þ

where h [{7, 8, 9, 9.5} for the four data blocks. A data

instance belongs to class 1 if condition in Eq. (1) is correct

and class 0 otherwise. We can observe that only the first

two attributes (x0, x1) are relevant. There are 50,000

training examples with one example at each time step.

Noise was introduced to evaluate our approach in a noisy

domain.

4.1.3 Moving hyperplane: gradual drift with noise

The training examples in this dataset [9] are uniformly

distributed in multidimensional space [0, 1]10 and the

examples are labeled as positive if they satisfy the condi-

tion as in Eq. (2)

a0 �R10
i¼1aixi ð2Þ

The weights of the hyperplane, {ai}, are initialized to

[-1, 1] randomly, and are updated as ai / ai ? 0.001si at

each time step, where si [{-1, 1} represents direction of

change for each weight. The threshold a0 is calculated as in

Eq. (3), at each time step.

a0 ¼ 1=2R10
i¼1ai ð3Þ

{si} is reset randomly after every 1000 training examples.

Random noise was introduced to evaluate our approach in

noisy domain. The total number of examples was 3,000.

4.2 Real-world datasets

4.2.1 Electricity pricing domain

To evaluate our approach on a real-world problem we

selected, ‘‘the electricity pricing domain [8]’’. This dataset

was obtained from TransGrid, the electricity supplier in

New South Wales, Australia. The dataset has a total of

45,312 instances collected at 30-min intervals between 7

May 1996 and 5 December, 1998. Each instance has a

feature vector consisting of five features and a class label of

either up or down. The prediction task is to predict whether

the price of electricity will go up or down and is affected

by demand and supply.

4.2.2 Breast cancer dataset

‘‘The Breast cancer dataset [36] ‘‘classifies an instance as

recurrence-events or no-recurrence-events based on the

various attribute values. This dataset was provided by the

Oncology Institute, and has repeatedly appeared in the

machine learning literature. The data set includes total of

286 instances out of which 201 instances belong to one

class and the rest 85 instances belong to another class. Each

data instance consists of 9 attributes, having either linear or

nominal values.

5 Diversified dynamic weighted majority (DDWM)

This section presents the algorithm for our approach,

diversified dynamic weighted majority (DDWM) followed

by its detailed discussion. Our approach develops two

ensembles: one with low diversity and the other ensemble

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61 41

123

having high diversity between the experts. These ensem-

bles of weighted experts are updated based on their clas-

sification accuracy for new instances as in DWM [10, 12].

Our approach allows creation of new experts and deletion

of poor performing experts based on its generalization

accuracy.

We use the two ensembles that vary in their levels of

diversity so that DDWM always provides good classifica-

tion accuracy in handling any type of drift present in the

dataset, ranging from high speed to low speed drifts; or

from high severity to medium severity or low severity of

drift. If the low diversity ensemble does not provide good

classification accuracy in handling any type of drift, the

high diversity ensemble is likely to provide good accuracy

while handling that drift and vice versa.

As shown in Algorithm 1, the learning system contains

two ensembles: an ensemble with low diversity (EL) and

an ensemble with high diversity (EH). Different levels of

diversity in each of these ensembles are introduced by

replacing Poisson (1) with Poisson (k) distribution in

online bagging [21], using kl and kh to generate low and

high diversity ensembles, respectively. Each of these

ensembles contains weighted pool of experts (each with an

initial weight of one (lines 3-8). An expert is added to the

ensemble based on the final global performance (G) of the

algorithm and the global performance of the ensemble (GL

for low and GH for high) in classifying the new instances

(lines 36, 37 and 46). The global performance of an

ensemble (GL or GH) is the weighted majority vote of its

experts’ predictions (line 24–25). The final global perfor-

mance of the algorithm (G) is the class with the maximum

support considering both the ensembles (EL or EH) (lines

26–30). If the overall global prediction is incorrect, each of

the ensembles is checked for their individual global per-

formance. If the global prediction (GL or GH) is incorrect,

a new expert with an initial weight of one is introduced in

the corresponding ensemble (lines 43 and 52).

If an expert in any ensemble classifies the given instance

incorrectly, then the experts’ weight is reduced by a mul-

tiplicative factor (b) (lines 14–15, 20–21) and if after fur-

ther training also it still performs poorly, then that expert is

removed from the ensemble, provided its weight reaches a

given threshold value (h) (lines 34–35). However, a

parameter p controls the weight update, creation and

removal of experts. For training of the experts in an

ensemble at each time step, one could use any base learner

considering the various parameters of the base learner and

the diversity level of the concerned ensemble (lines 58

and 61).

Algorithm 1. Diversified Dynamic Weighted
Majority ({ , }1 , β, p, θ, λl , λh)

{X, Y}: a training data instance, with a feature vector (X)
and class label (Y)

β: multiplicative factor for reducing weight of experts, 0≤ β
<1

C ∈ ℕ: number of classes
{el, wl }1

m : a low diversity ensemble EL of m experts and
their weights

{eh, wh }1
m : a high diversity ensemble EH of m experts

and their weights
GL, GH, LH, LL ∈ {1,…, C}: global and local predictions

corresponding to low and diversity ensemble
G ∈ {1,…, C}: final global prediction for any instance

considering both the ensembles
WL, WH ∈ ℝC: sum of weighted predictions for each class

corresponding to low diversity and high diversity
ensemble, respectively

θ: threshold for removing experts
p:period between expert creation, removal or weight update
n: total number of instances
λl, λh: λ parameter for generating low and high diversity

ensemble

1: EL ←new ensemble; // new low diversity ensemble
using λl

2: EH ←new ensemble; // new high diversity ensemble
using λh

3: for jl =1, …., m
4: wl jl←1;
5: end
6: for jh=1, …., m
7: wh jh←1;
8: end
9: for i =1,… n
10: WL ← 0;
11: WH ← 0;
12: for kl = 1,… m
13: LL= classify (ELkl , Xi);
14: if (LL ≠ Yi and i mod p = 0)
15: wlkl = β wlkl ;
16: WLLL ← WLLL + wlkl;`
17: end
18: for kh = 1,… m
19: LH= classify (EHkh , Xi);
20: if (LH ≠ Yi and i mod p = 0)
21: whkh = β whkh ;
22: WHLH ← WHLH + whkh ;
23: end
24: GL ← argmax kl WLkl ;
25: GH ← argmax kh WHkh ;
26: if (WL GL > WHGH)
27: G ← GL;
28: else
29: G ← GH;
30: end

42 Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

123

The formal step by step algorithm is presented in

Algorithm 1. The algorithm maintains two ensembles EL

and EH, each containing m experts each with a weight of

one, wl jl, and wh jh for jl, jh = 1,… m (lines 1–8). These

two ensembles, EL and EH maintain a set of experts

having low and high diversity between the experts,

respectively. Input to the system is n training instances,

each consisting of a feature vector and its corresponding

class label (line 9).

Every expert in an ensemble (high diversity ensemble

and simultaneously low diversity ensemble) is used for

classification of training instances, one instance at each

time step (lines 13 and 19). This gives us their local pre-

diction results. If the result of local prediction by an expert

does not match the exact label of the training instance, the

weight of the corresponding expert is reduced by a multi-

plicative factor b (lines 15 and 21). Regardless of the

experts’ prediction correctness, DDWM uses its weight to

calculate the weighted sum for each class corresponding to

each ensemble (lines 16 and 22), at each time step. The

global prediction results for low diversity ensemble (GL)

and high diversity ensemble (GH), is the class with the

maximum support (weight) as per the prediction results

from each of the ensembles (lines 24 and 25). However, the

final global prediction result G, is the class with the max-

imum weight considering both the ensembles (line 26–30).

We consider both the ensembles because it is not necessary

that the high diversity ensemble would always provide

better classification accuracy than the low diversity

ensemble, rather the classification accuracy of each

ensemble in handling any drifting dataset depends on the

speed and severity of drift present in the dataset, as

explained in Sect. 3. After each weight update, the weights

of all the experts are normalized so that after transforma-

tion, the maximum value of weight is one (lines 32 and 33).

The normalization also prevents the newly added experts

having initial weight of one to dominate the classification

results.

The approach also removes the poorly performing

experts from both the ensembles having weight less than a

predefined threshold value h (lines 34 and 35). However,

this does not remove the last expert in each of the

ensembles. The weight reduction and deletion of poorly

performing experts is controlled by a parameter period p,

which helps the learning system to handle large datasets

(lines 14, 20 and 31).

If the final global prediction (G) result for any training

instance is incorrect, we will check the global prediction by

each of the low and high diversity ensembles, GL and GH

respectively. If GL is incorrect, and the number of experts

existing in the low diversity ensemble reaches the maxi-

mum limit of permitted ensemble size (m), the weakest

expert with the minimum weight is removed from the

ensemble (lines 38–40) and a new expert (with an initial

weight of one) in GL is created maintaining low diversity

among the experts (lines 42-44). Similarly, if GH is

incorrect, a new expert in GH is created maintaining high

diversity among the experts (lines 46–54).

The creation of new experts is also controlled by the

parameter p (lines 31–56). Finally, after using the new

training instance to train every single expert in each of the

ensembles, at each time step (lines 57–62), DDWM outputs

the final global prediction G, which gives us the final

classification result for any instance (line 63). DDWM is an

online algorithm for handling concept drift. The parameter

p, defines the period over which DDWM does not update

the experts’ weight and will not create new experts’ or

delete the poorly performing experts. However, learning of

the experts continues during this period p, to make the

ensembles adapt better to the new target concepts.

31: if (i mod p = 0)
32: wl ← normalize_ weights (wl);
33: wh ← normalize_ weights (wh);
34: {el, wl} ← delete ({el, wl}, θ);
35: {eh, wh}← delete ({eh, wh}, θ);
36: if (G ≠ Yi)
37: if (GL ≠ Yi)
38: if (num _experts(EL) = m)
39: {el, wl} ←rem_weak ({el, wl})
40: m ← m-1;
41: end
42: m ← m+1;
43: elm ← new_expert_creation ();
44: wlm ← 1;
45: end
46: if (GH ≠ Yi)
47: if (num_experts(EH) = m)
48: {eh,wh}←rem_weak({eh, wh});
49: m ← m-1;
50: end
51: m ← m+1;
52: ehm ← new_expert_creation ();
53: whm ← 1;
54: end
55: end
56: end
57: for (kl =1, …… , m)
58: elkl ← learn_experts (elkl, Xi, Yi);
59: end
60: for (kh=1, …… , m)
61: ehkh ← learn_experts (ehkh, Xi, Yi);
62: end
63: output G;
64: end

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61 43

123

6 Experimental evaluation and results

6.1 Experimental objectives, design and measures

analyzed

The objective of the various experiments with DDWM is to

analyze the behavior of our approach in different situations

and to validate it, showing that it provides an answer to our

first and fourth research questions presented in Sect. 2. The

empirical analysis also identifies for which types of drift

our approach works better and the reason for its behavior.

Empirical analysis of our approach was done using

massive online analysis (MOA) [2], a tool developed for

analyzing online data streams. In our experiments, the

various performance measures that have been analyzed are

prequential accuracy, memory usage and evaluation time.

In some cases, the model-cost and kappa statistic values

have also been compared. Our paper also compares the two

ensembles existing in DDWM: the low diversity ensemble

and the high diversity ensemble at each time step, while

handling abrupt drifts in dataset. The paper presents a

detailed comparative analysis of the behavior of our

approach in noisy and non-noisy domains. The impact of

variations in the number of experts, the period value (that

controls the update, deletion and creation of new experts),

variation in multiplicative factor for weight reduction and

the threshold value on the performance of DDWM, has also

been analyzed in detail. DDWM has been empirically

compared with EDDM [1] (an approach that explicitly uses

a mechanism to deal with drifts), DWM [10, 12] (an

approach that does not explicitly use a mechanism to

handle drifts), with Blum’s implementation of Weighted

Majority [3, 13], the worst-case learner i.e. standard

implementation of naı̈ve bayes (NB) with no drift handling

capabilities and with Hoeffding Tree (HT) that used

methods that were based on VFDT [49] enriched with

change detection mechanism.

The standard implementation of naı̈ve bayes in MOA

provided the worst-case learning system as the system was

not designed to handle any drifting concepts and learns

from all the examples in the dataset. Hoeffding Tree is a

decision tree learner that requires each example to be

learned at most once and requires a small constant time to

process it. The resulting tree is nearly identical with the

tree built by conventional batch learner, given enough

examples to train and build the Hoeffding tree. It uses

Hoeffding bound that gives certain level of confidence on

the best attribute to split the tree, hence we can build the

model based on certain number of instances that we have

seen. It does not assume feature independence for a dataset

as was the requirement for the naı̈ve bayes classifier.

The prequential accuracy is calculated based on the

classification given to the current training instance before

the instance is used for updating the system. The term

update here refers to the learning of the experts as per the

current training example; change the weights of the

experts in each ensemble, deletion of poor performing

experts from each ensemble and creation of new experts

in each ensemble. Our approach has been compared with

the other approaches in terms of the various performance

metrics as discussed in Sect. 3.3, numerically as well as

empirically. The numerical results provide us the average

values corresponding to the various performance metrics

whereas the graphs give us the actual information at each

time step of learning and predictions. The illustrations

provide us information about the behavior of our

approach: at the time of drift, soon after the drift, fairly

longer after the drift and in the presence of noise. It also

helps us to identify for which types of drifts, our system is

highly stable or highly sensitive. The slope of the graphs

gives us information about the rate at which our concept

drifting system converges to new concepts, achieving

higher accuracy levels.

The method to update, create or remove the experts in

DDWM is similar to the one used to maintain the experts in

DWM. This is so as to provide a fair comparison between a

concept drifting ensemble system with weighted experts

and an ensemble system with weighted experts using the

concept of diversity, thus answering the first and fourth

research questions as validated by the experimental results.

Comparisons were also done with EDDM, a concept

drifting approach that uses a mechanism to handle concept

drift. The results were completely in favor of our approach.

Better performance of our approach as compared to Blum’s

implementation of weighted majority helps us to state that

for handling drifting concepts, a pair of features is not

sufficient for getting a good ensemble learning system, as

was the belief of WM algorithm.

The ensembles were created using (modified) online

bagging [21]. Further, diversity in the ensembles was

introduced using the Poisson (k) distribution in Online

Bagging [21], and the parameter kl for getting the low

diversity ensembles was set to 1, for all the experimental

evaluations. The kh value for the high diversity ensembles

were chosen after performing 10 preliminary executions

using kh = 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1

and 0.5, giving a total of 80 executions for each data set.

The values of kh which gives the best average results are:

0.1 for Stagger dataset, 0.0005 for SEA dataset and 0.0005

for hyperplane. Further for real world datasets, the value of

kh was 0.5 for electricity pricing domain and 0.05 for

Breast cancer dataset. For the various experiments, the base

learner mainly used by DDWM was naı̈ve bayes [20] and

to analyze the behavior of DDWM when there was feature

dependence, Hoeffding tree (HT) was used in some cases.

In our experiments, we repeated this procedure 50 times for

44 Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

123

each dataset and the results were the average results over

these 50 runs of each dataset.

For all the experimental evaluations, the value of the

multiplicative factor b for DDWM and DWM was set to

0.5. However, in case of WM the value of b (multiplicative

factor) was taken to be 0.9. The value of the threshold for

removing the experts in DDWM, WM and DWM, was set

to 0.01 (i.e. h = 0.01 for DDWM and DWM; c = 0.01 for

WM). For WM approach each expert maintained a history

of only its last prediction. The parameters warning level

and drift level, for EDDM have been set to 0.95 and 0.90

respectively.

To perform empirical analysis of DDWM on Stagger

concepts with 240 instances (i.e. n = 240), the maximum

size of the ensembles was set to 10 experts (i.e. m = 10).

We set to update the weights, create or remove experts

every 10 time steps (i.e. p = 10). In the first context of 80

time steps, the examples are treated as positive if they have

the following concept description, i.e. size = medium or

size = large. In the next (80 time steps), the concept

description is defined by two relevant attributes, col-

or = green or shape = circle. In the third context, the

training examples are classified as positive if the concept is

size = small and color = red. To evaluate our algorithm,

we randomly generate 80 training examples of the current

target concept, and calculate the prequential accuracy with

one example at each time step.

We perform empirical analysis on SEA concepts using

50,000 instances (i.e. n = 50,000), and setting themaximum

size of the ensembles to 5. For DDWM and DWM we set to

update the weights, create or remove experts every 50 time

steps (i.e. p = 50). For the first 12, 500 time steps, the target

concept is with h = 7. For the second data block, h = 8; the

third data block has h = 9; and the last concept has h = 9.5.

To evaluate our drift detection algorithm DDWM on SEA

concepts, we randomly generate 12,500 examples of the

current target concept, and compute the prequential accuracy

with a new example at each time step. In one experimental

evaluation, we added 10 % class noise.

To perform empirical analysis of DDWM on hyperplane

concepts with 3,000 instances (i.e. n = 3,000), the size of

the ensembles was set to 4 experts (i.e. m = 4). For

DDWM and DWM, we set the value of period to be 50

time steps (i.e. p = 50). Random noise was introduced by

switching the labels of 5 % of the training examples. We

computed the prequential accuracy of the various approa-

ches with a new example at each time step. Here we have

also evaluated DDWM with another base learner, Hoeff-

ding Tree (HT) that does not assume any feature inde-

pendence as was the assumption in case of standard naı̈ve

bayes classifier.

To perform empirical analysis of DDWM on electricity

pricing dataset, the maximum size of the ensembles was set

to 15 experts (i.e. m = 15). For DDWM and DWM, we set

the value of period to be 10 time steps (i.e. p = 10). Here

we have evaluated, DDWM using two different base

learners, one was naı̈ve bayes (DDWM-NB) and another

was HT (DDWM-HT). All the values for the various

parameters of DWM and DDWM were the same so the

comparison could be based solely on the approach used in

each of the cases and not because of variation in any other

feature. Since this is an online task, we first obtained pre-

dictions from the various learners and then trained each

learner with one example at each time step, in the temporal

order as each example appears in the dataset.

For empirical analysis of DDWM on a real time static

dataset, we used the Breast cancer dataset from the UCI

repository [48] containing 286 instances (i.e. n = 286).

The maximum size of the ensembles was set to 5 and the

value of period in DDWM and DWM, was set to 10 time

steps. Here we have evaluated DDWM, EDDM and DWM,

by using naı̈ve bayes as the base classifier and the exper-

imental results were the average results over 50 runs of the

dataset. We processed the examples in the same order as

they appear in the dataset with one example at each time

step.

The empirical analysis of DDWM and the final con-

clusions are based on the following facts:

1. EDDM approach always uses new classifiers created

from scratch which is not always the best choice to

handle drifting concepts. DWM uses old experts

updated as per their accuracy in classifying the new

instances, create newly learnt experts and removes the

experts which perform very poorly on the present

concepts. Blum’s implementation of WM changes the

weights of the experts as per their accuracy on the

training instances and trains these experts as per the

new instances but does not have the provision to create

new experts. Hence, EDDM, DWM and WM do not

appear to be good systems in handling all types of

drifts. However, our approach maintains two ensem-

bles: a high diversity ensemble (experts classify the

training instances very differently from each other) and

a low diversity ensemble (experts classify the training

instances almost similar to each other). In situations

where low diversity ensemble does not provide good

accuracy, the high diversity ensemble has a very high

probability of achieving good accuracy levels and vice

versa also holds.

Secondly, DDWM maintains almost double the number

of experts as compared to DWM, hence giving DDWM an

opportunity to maintain better learnt and better varied

experts. Hence, DDWM appears to be the best system for

handling any type of drifts, irrespective of the presence of

noise in the dataset. The performance of our approach in

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61 45

123

terms of the various performance metrics is dependent on

the selection of the base learner used in the various

experimental evaluations. Our approach provided very

good accuracy levels without any fear of non-accurate drift

detections.

Another observation from the comparative analysis of

the low diversity ensemble and the high diversity ensemble

in DDWM helps us to state that for high speed drifts, the

low diversity ensemble provides better prequential accu-

racy than the high diversity ensemble. However, with the

progress in learning the experts in high diversity ensemble

have an improved adaptation rate to the new concepts.

2. The memory requirements of DDWM are the highest

among all the approaches. This is because DDWM

maintains two sets of experts as compared to a single

expert in DWM and WM, and a single classifier in

EDDM and naı̈ve bayes. Empirical analysis shows that

WM requires consistent memory storage whereas

DDWM storage varies with the progress in learning.

This is because Blum’s implementation of WM does

not have the provision to delete the poor performing

experts or create newly learnt experts. DWM also

requires almost consistent storage as the rate of update

to experts, creation or removal of experts in its single

ensemble is very low as compared to DDWM which

has a higher rate of update to experts, creation or

removal of experts in its two ensembles in response to

the drifts present in the dataset and maintains only

good experts in the system. For similar reasons, the

average evaluation time and the model-cost of DDWM

is the maximum among all the approaches. However

the exponentially low cost and higher accuracy levels

of our system, makes it highly beneficial even in a

resource constrained environment.

Another observation from the comparative analysis of

the low diversity ensemble and the high diversity ensemble

in DDWM helps us to state that the average evaluation time

and the memory requirements of both the low diversity

ensemble and the high diversity ensemble are almost the

same and are independent of the level of diversity among

the experts.

3. The kappa statistic value in DDWM varies as per the

type of drift present in the dataset. DWM maintains

lower value of homogeneity (lower kappa statistic

value) as compared to DDWM irrespective of noise or

type of drift present in the dataset. When a drift is

detected, DWM maintains its ensemble the same way

as DDWM but DDWM includes a low diversity

ensemble which makes the system highly homoge-

neous (higher kappa statistic value) as compared to

DWM. EDDM resets the system when the drift level is

triggered hence maintaining a lower kappa statistic

value (i.e. higher diversity) as compared to DDWM

that only updates the system. However, in the presence

of noise their kappa statistic values are almost similar

because of large number of misclassifications and

extensive updates to ensembles in DDWM. The kappa

statistic value is dependent on the base learner used by

DDWM.

In Sect. 6.2 to 6.6, using various artificial and real time

datasets we have proved that the concept of diversity in

DDWM has given us an ensemble system that performs

with very good prequential accuracy, while handling any

type of drift varying from gradual to abrupt drifts, irre-

spective of the presence of noise in the dataset. In Sect. 6.2,

we have also empirically compared the two ensembles: the

low diversity ensemble and the high diversity ensemble

existing in DDWM, in terms of the various performance

metrics.

The analysis has helped us to identify the performance

metrics for which DDWM works better than the other

approaches, on the various datasets and explained the

reason for its performance. We have also analyzed the

influence of the various parameters: m (size of each

ensemble) (in Sect. 6.3) and p (value of period) (in

Sect. 6.3 and 6.4), h (value of threshold) (in Sect. 6.5) and

b (the value of the multiplicative factor) (in Sect. 6.5) on

the various performance metrics used to evaluate DDWM.

The results have illustrated the impact of using naı̈ve bayes

(NB) and using Hoeffding tree (HT) as base classifiers, on

the performance of DDWM while handling different types

of drifts.

6.2 Experimental evaluation on stagger concepts

The results of analysis of DDWM-NB (DDWM with naı̈ve

bayes as base learner) on the Stagger concepts in terms of

prequential accuracy have been illustrated as in Fig. 1a.

The graphs show that DDWM performs similarly as

DWM-NB (DWM with naı̈ve bayes as base learner) and

EDDM-NB (EDDM with naı̈ve bayes as base learner) on

the first target concept, and illustrates better accuracy on

the second and third target concepts. However, EDDM

detects false alarms between time steps 60 and 70. DDWM

reached second and third target concepts earlier than

EDDM with higher prequential accuracy. DDWM illus-

trates similar behavior as DWM on the second and third

target concepts as their graphs have similar slope and

asymptote and shows better accuracy than DWM. The

better accuracy of DDWM is because of the diversified

ensemble of experts present in DDWM and not only

because of the basic ensemble of experts that also exists in

DWM.

46 Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

123

As expected the memory requirements of DDWM is

more than double the requirements for DWM as DDWM

maintains two ensembles (one low diversity and one high

diversity) at any given time step in contrast to DWM which

maintains only a single ensemble. The graphs for DDWM

and DWM show almost consistent memory need apart from

time steps, 80 and 160 where a sudden drift is observed,

resulting in incorrect local predictions and large number of

experts are removed from the ensembles as their weights

reach the given threshold value, leading to a sudden fall in

memory requirements. However, when the final prediction

by DDWM was incorrect there was a sudden drop in pre-

quential accuracy as illustrated in Fig. 1a, new experts

were created in each of the ensembles resulting in gradual

increase in storage requirements, and these experts after

effective training result in an increase in accuracy as

illustrated in Fig. 1a, b, respectively.

It can be seen from the graphs in Fig. 1b, the memory

requirements dropped by almost 0.007 bytes in DDWM at

times of drift as compared to a drop of only 0.001 bytes by

DWM. This means that DDWM is more sensitive to errors,

detecting changes and improving its performance giving

higher accuracies than DWM on the new concepts. EDDM

requires hardly any storage for its model as it is a single

classifier approach. DDWM takes more average evaluation

time than that needed by EDDM and DWM as illustrated in

Fig. 1c. This is because DDWM needs to update two sets

of ensembles in contrast to DWM which updates a single

ensemble when there is a drift. Further, the rate of removal,

creation and update to experts in DDWM is quite higher

than the updates in case of DWM as seen in Fig. 1c with

DDWM showing the maximum slope and DWM illustrat-

ing the minimum slope.

When DDWM is evaluated using Stagger concepts (i.e.

high speed drifts), we observe that the ensemble with low

diversity gives better prequential accuracy than the high

diversity ensemble on all the three target concepts as

illustrated in Fig. 2a. The low diversity ensemble helps

DDWM achieve better accuracy than EDDM and DWM.

The slope of high diversity ensemble is higher than the low

Fig. 1 Average results of evaluation of DDWM on Stagger concepts based on a Prequential accuracy b Memory c Evaluation Time

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61 47

123

diversity ensemble as seen in the Fig. 2a, around time steps

130 and 180, which means that with the progress in

learning the experts in high diversity ensemble have a

higher adaptation rate to the new concepts. This is because

when a drift has high severity and high speed, it causes big

changes very suddenly. The new concept has almost no

similarities to the old concept. So in our approach of the

two ensembles with high or low diversity levels, the

ensemble learning with low diversity provides better

accuracy on the new concept, after the drift.

The average evaluation time taken by both the ensem-

bles is almost the same at each time step as seen in Fig. 2b.

The low diversity and the high diversity ensemble of

DDWM maintain same number of experts at each step as

illustrated by overlapping of their graphs in Fig. 2c. Hence,

we can state that the time and the memory requirements of

any ensemble approach are independent of the level of

diversity among its experts. It has been illustrated in

Fig. 2d, that the low diversity ensemble in DDWM has

almost 80 % homogeneity (or 20 % diversity) among its

experts as its name suggests whereas the high diversity

ensemble with kh value of 0.1 illustrates almost 30 %

homogeneity (or 70 % diversity).

In the time period after 80 time steps, when the

system tries to adapt to drift, the slope for the kappa

statistic graph is higher for low diversity ensemble than

that for high diversity ensemble. This means new experts

created in low diversity ensemble increase the homoge-

neity level of the experts within a very short time span,

maintaining the low diversity characteristic of the

ensemble. Further with the progress in learning, the

experts in both the ensembles regain their desired

homogeneity levels for effective accuracy in classifying

the new training instances. Hence, it is a good strategy

to use a low diversity ensemble for handling abrupt

drifts present in a dataset as it gives better accuracy than

the high diversity ensemble within same time and

memory requirements.

DDWM—NB performed similarly as naı̈ve bayes and

WM on the first target concept as can be seen in Fig. 3a.

Fig. 2 Comparison of the high diversity and the low diversity ensemble in DDWM using Stagger concepts a Prequential Accuracy (%)

b Evaluation Time (CPU seconds) c Memory (bytes) d kappa statistic (%)

48 Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

123

However, it showed better prequential accuracy than the

other two learners on the second and third target concepts.

Both the naı̈ve bayes and WM gave similar accuracy on all

the three target concepts, as seen by overlapping of their

graphs. Our approach outperforms WM and naı̈ve bayes in

terms of slope and asymptote. WM detects false alarms

drop at time steps 70 and 140, so we can say only a pair of

features is not sufficient for getting a good predictor for this

problem, as was believed by WM algorithm.

As expected, the memory utilization of DDWM is far

more than naı̈ve bayes and WM as illustrated in Fig. 3b, as

explained earlier. However, it can be observed that WM

requires consistent storage in contrast to DDWM whose

storage varies as per detection of drifts in the dataset. This

is because WM does not have the provision to create new

experts when the predictions are incorrect and receives

predictions from all the existing (nu 2) experts (nu corre-

sponds to number of features for any instance). On the

other hand, DDWM dynamically updates, create or remove

the experts in response to the drifts present in the dataset

and maintains only good experts in its ensembles.

The model cost for DDWM is the maximum as it

maintains its two ensembles as seen in Fig. 3c. On the

other hand, WM is less costly than DDWM as it maintains

only a single ensemble of experts. Naı̈ve bayes is the least

costly of all the three approaches since the model is not

updated to handle drifts in concept. Further, the graph for

DDWM has the highest slope indicating the highest rate of

increase of model-cost as compared to that for WM and

naı̈ve bayes.

The average results of our experimental evaluation using

the Stagger concepts over fifty runs of the dataset have

been summarized as in Table 1. From the empirical ana-

lysis of the results, DDWM is highly sensitive to change

and updates very frequently, resulting in best prequential

accuracy among all the approaches. We have evaluated our

Fig. 3 Performance of DDWM -NB on the Stagger Concepts in comparison with Naı̈ve Bayes and weighted majority. a Prequential accuracy

(%). b Memory (bytes). c Model cost (RAM-Hours)

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61 49

123

approach using naı̈ve bayes as the base classifier that

assumes independence of the features of the dataset.

However, to prove that the high performance of our

approach is not dependent on any such requirement, we

evaluate our approach using Hoeffding tree as base clas-

sifier that does not have any such requirement of feature

independence.

The graph of Fig. 4 illustrates the results for DDWM-

HT (DDWM with Hoeffding Tree as base learner) on the

Stagger concepts in terms of prequential accuracy. DDWM

performs with better accuracy than EDDM-HT (EDDM

with Hoeffding tree as base learner) andWM-HT (WM

with Hoeffding tree as base learner) on the all the three

target concepts. It has also been observed that Hoeffding

tree performs similarly as WM on all the target concepts as

illustrated by overlapping of their graphs. DDWM-HT

illustrates better performance than DWM-HT (DWM with

Hoeffding tree as base classifier) on the first and third

target concepts and almost similar performance on the

second target concept. DDWM performs with the highest

average accuracy of 85.02 %, whereas DWM-HT performs

with 82.19 % accuracy, EDDM performs with 77.69 %

average accuracy, Hoeffding tree and WM-HT performs

with similar accuracy of 74.35 %, average over 50 runs of

the dataset. Hence, from analysis of the graphs in Fig. 1a

and Fig. 4, we can easily state that our approach performs

the best while handling abrupt drifts in dataset, independent

of any base classifier. These results prove that the high

performance of DDWM is applicable for any dataset,

having a variation in its feature set from being independent

such as using naı̈ve bayes classifier to dependent features

such as time stamped variables.

6.3 Experimental evaluation on a very large dataset

with concept drift: SEA Concepts

DDWM shows high sensitivity to noise even when the base

algorithm does not support noise and improves its perfor-

mance very quickly ultimately resulting in very good

average prequential accuracy on the fourth target concept

as illustrated in Fig. 5a. The high sensitivity to noise could

be observed as we see large number of fluctuations in graph

for DDWM as compared to EDDM. On the second target

concept, DDWM converged more quickly to the target

concept that too with higher accuracy better than EDDM

and DWM approach. With the progress in learning,

DDWM reached high accuracy levels almost similar to

EDDM as seen in the Fig. 5(a) on the second, third and

fourth target concepts.

EDDM detected false alarms as can be seen in the

period surrounding 37,500 time steps by a drop in accuracy

of EDDM before actual drift occurs at 37,500 time steps.

On the third and fourth target concepts, DDWM and DWM

learned the new concepts at almost the same time step but

EDDM took more time to adjust to drifts, to achieve its

best accuracy levels. On the fourth target concept after

43,000 time steps, DDWM achieved accuracy similar to

EDDM approach while DWM gave the worst accuracy.

Our approach was better than EDDM in terms of slope on

all the four target concepts and provided very good accu-

racy levels without any fear of non-accurate drift

detections.

Comparative analysis of DDWM-NB and DWM-NB on

Stagger and SEA concepts led to the conclusions that in

case of dataset with abrupt concept drift both DDWM and

DWM showed similar accuracy on the first target concept

as in Fig. 1a, however when noise was present our

approach gave better accuracy than DWM as illustrated in

Fig. 5a. This is because of extensive updates to the

ensembles in DDWM as a result of noise and large number

of misclassifications. Hence, DDWM handles drifts in a

noisy domain better than the DWM approach and this is

only because of the underlying mechanism in DDWM and

not because of the base learner as both DDWM and DWM

used the naı̈ve bayes as the base learner.

As expected the evaluation time taken by DDWM is

always higher than the time taken by EDDM and DWM as

Table 1 Experimental results for DDWM-NB on the stagger con-

cepts average over 50 runs

EDDM DWM DDWM NB WM

Accuracy 79.16 83.31 88.43 76.00 76.00

kappa statistic 59.54 67.88 70.87 53.38 53.38

model cost (*exp. -9) 0.32 0.25 2.11 0.00 1.25

Time 0.11 0.09 0.29 0.03 0.21

Memory 0.00 0.01 0.03 0.00 0.02

Fig. 4 Average prequential accuracy of DDWM on the stagger

concepts using Hoeffding tree as base classifier

50 Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

123

illustrated in Fig. 5b. All the learning systems have expo-

nential time graphs in contrast to linear time graphs in-case

of Stagger concepts (abrupt drift without noise). This

means in noisy condition, the approaches made more

misclassifications and therefore the rate of creation of

experts and updates was higher, involving more CPU time

than the condition without noise.

WM and naı̈ve bayes achieve better prequential accu-

racy than DDWM on the first target concept as shown in

Fig. 6. However, with the progress in learning on the

second, third and the fourth target concept, DDWM

achieved very high accuracies outperforming naı̈ve bayes

and WM approach. DDWM is highly sensitive to noise

than WM and naı̈ve bayes, detecting changes and

improving its performance as seen by 5–7 % accuracy

variation by DDWM as compared to only 2–3 % in case of

WM and naı̈ve bayes approach. The standard implemen-

tation of naı̈ve bayes provided the worst case learner as it

has no direct method of removing the outdated concept

descriptions. When DDWM detects the presence of noise,

because of incorrect local predictions the experts weights

are updated and they are removed when their weights reach

the defined threshold value. If during further learning, the

global prediction by an ensemble is incorrect, a new better

learned expert is created in the concerned ensemble. Hence

for very large datasets containing noise, DDWM provides

the best learnt system among all the approaches, achieving

very high average accuracies.

DDWM illustrates better accuracy on SEA concepts

without noise than it observed in a noisy domain as seen in

Fig. 7a. In the noisy condition, since 10 % of the examples

are relabeled, DDWM-NB made more mistakes and cre-

ated more experts than in the condition without noise.

DDWM also shows large variations in accuracy (almost

5 % to 7 %) in the noisy domain as the accuracy drops

because of large number of incorrect global predictions and

needed extensive training of its ensembles, whereas in the

condition without noise, the graph illustrates an almost

consistent and stable behavior (with maximum of 1 %

variation in accuracy).

As expected, the memory graph for DDWM-NB in

noisy condition shows large number of misclassifications,

resulting in increased frequency of removal and creation of

experts, as illustrated in Fig. 7b by large fluctuations in

memory requirements in a noisy domain as compared to a

condition without noise as seen in the period between time

steps 16,000 and 25,000. However, after 28,000 time steps

Fig. 5 Performance evaluation of DDWM-NB as compared to EDDM and DWM, using SEA concepts with 10 % class noise. a Prequential

accuracy (%). b Evaluation time (CPU- seconds)

Fig. 6 Performance evaluation of DDWM-NB as compared to WM

and naı̈ve bayes on SEA concepts with 10 % class noise. The graphs

for NB and WM overlap showing similar accuracy on all the four

target concepts

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61 51

123

the two graphs show a similar trend but the memory needs

of DDWM-NB in a non-noisy domain is far lower than its

requirements in a noisy condition.

In order to control the large number of experts existing

in a noisy domain we can use the parameter p effectively.

Increasing the value of period p from 50 to 100 reduced the

memory needs of DDWM-NB considerably as illustrated in

Fig. 8b. This is because as we increased the value of per-

iod, the rate of updates to experts and rate of removal of

experts is reduced, the system got more time to train these

existing experts making them highly adaptable to the new

concepts. This reduced the number of incorrect final pre-

dictions, reducing the need for creation of new experts in

each of the ensembles and still achieving almost similar

accuracy levels as the system with earlier period value of

50 as illustrated in Fig. 8a.

The average results of our experimental evaluations on

the SEA concepts for all the concept drifting systems over

the 50 runs of the dataset have been summarized as in

Table 2. Analysis of the results, led to the conclusion that

DDWM gave very high accuracies on dataset containing

abrupt drift and noise. DDWM gave almost similar accu-

racy as EDDM maintaining a low diversity and a high

diversity ensemble based on earlier concept descriptions

and that are trained to adapt themselves on the new concept

distributions. The extensive updates of experts’ weights

and creation of new better learnt experts, makes it highly

accurate than the DWM approach, WM and the naı̈ve ba-

yes classifier, in terms of prequential accuracy adapting

quickly to the new concepts. Our approach proves to be

very resource effective as depicted by an exponentially low

value of RAM-Hours.

Fig. 7 Performance of DDWM-NB using the SEA concepts with 10 % class noise compared to SEA concepts with no noise. a Prequential

accuracy (%). b Memory (bytes)

Fig. 8 Performance evaluation of DDWM-NB on SEA concepts with 10 % class noise. The value of period was increased from 50 to 100 with

number of experts capped at five. a Prequential Accuracy (%). b Memory (bytes)

52 Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

123

The average results of DDWM-NB on the SEA concepts

with 10 % class noise with variations in the parameters:

period p and number of experts m averaged over the 50

runs have been summarized as in Table 3. The change in

the value of period from 50 to 100 did not considerably

affect accuracy. However, it increased the homogeneity

among the experts as depicted by the value of kappa sta-

tistic. This is because if the period value is 100, it will

update the experts’ weights or will remove or create new

experts only after 100 time steps have passed since the last

update. When the period value is increased, it will take

longer to update the ensembles and the old experts would

be maintained for a longer time increasing the homogeneity

level of the ensemble. The system achieved reduced model

cost and slight reduction in the average evaluation time.

The increase in the value of parameter m (i.e. number of

experts) from 5 to 10 experts increased the average eval-

uation time and the memory requirements of a system

without showing any improvement in accuracy, in handling

drifts. The cost of the system was almost doubled with

m set to 10 experts. This is because our system required

more time to update, store and train the 10 experts than it

needed for a 5 expert system with no change in accuracy of

the system. Empirical analysis of DDWM on SEA concepts

with 10 % class noise led to the conclusion that the

appropriate values of parameters: period p and number of

experts m can make our system more real time and very

effective in handling drifts in a resource constrained

environment with little effect on accuracy.

6.4 Experimental evaluation on moving hyperplane

dataset

From earlier research work on concept drift, EDDM has

been found to be the best approach for handling gradual

and very slow gradual changes. As illustrated in Fig. 9a,

DDWM provides better accuracy than EDDM in the first

1,200 examples and almost similar performance as DWM.

However, in the next set of 1,200 examples, EDDM

achieves very high accuracy as compared to DDWM and

DWM. DDWM responds quickly to changes than EDDM,

updating its ensembles and improving its performance

achieving very high accuracy levels same as EDDM after

2,400 time steps. On the other hand, DWM shows reduc-

tion in prequential accuracy while handling gradual drifts

and noise. The better performance of DDWM as compared

to DWM is because of concept of diversity introduced in its

two ensemble approach and not only because of the

methodology of weight updates, creation or removal of

experts that is also inherent in DWM.

EDDM however detects non- accurate drifts as seen in

Fig. 9(a) between time steps 300 and 400, where DDWM

and DWM shows gradual increase in accuracy whereas

EDDM’s accuracy drops.

As illustrated in Fig. 9 (b), WM and naı̈ve bayes per-

form similarly in terms of prequential accuracy as seen by

overlapping of their graphs. DDWM also performed almost

as well as naı̈ve bayes and WM achieving very high

accuracy on the first set of 1,200 examples. However, on

the next set of examples its performance dropped consid-

erably and the differential between the performance of

DDWM and naı̈ve bayes was very large. As seen in

Fig. 9(b) around 1,200 time steps DDWM responds

quickly to changes than WM approach. It updates its

ensembles in response to gradual changes and noise,

improving its performance thus achieving very high accu-

racy levels as similar as WM after 2,400 time steps. Hence

our approach, DDWM provides a very good concept

drifting system good enough to handle noisy gradual drifts.

In the case of gradual drifts, variation in value of period

p, drastically affects the performance of DDWM as illus-

trated in Fig. 10a. When the period value was reduced to

Table 2 Average experimental results for evaluation of DDWM-NB on the SEA concepts, over 50 runs of the dataset with number of experts

capped at 5 and the period value set to 50

EDDM DWM DDWM (10 % class noise) DDWM (no noise) WM NB

Accuracy 86.30 84.45 85.81 94.83 83.7 83.7

Kappa statistic 69.86 65.67 68.99 87.81 64.7 64.7

Model cost(*exp.-6) 0.14 0.12 0.66 0.56 0.43 0.02

Time 64.06 65.99 129.01 120.01 96.50 31.38

Memory 0.00 0.00 0.02 0.02 0.02 0.00

Table 3 Experimental results for DDWM-NB on the SEA concepts,

average over 50 runs varying the parameters: number of experts

m and period p

m = 5,

p = 50

m = 5,

p = 100

m = 10,

p = 50

Accuracy 85.81 86.36 85.54

Kappa statistic 68.99 70.29 68.38

Model cost

(*exp. -6)

0.66 0.53 1.33

Time 129.01 127.62 204.43

Memory 0.02 0.02 0.03

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61 53

123

10 time steps, i.e. updates, creation and removal of experts

could happen only after 10 time steps since the last update,

the prequential accuracy dropped considerably. These

accuracy levels dropped further when the updates were

allowed after each time step (i.e. p = 1). Hence, we can

easily conclude that increase in the rate of updates to

experts (with p = 1), resulted in increased rate of removal

and creation of experts effecting the accuracy levels as

experts did not get enough time to adapt to gradual drifts.

As expected the increase in updates, creation or removal of

experts increased the CPU involvement time as illustrated

in Fig. 10b. All the time graphs show linear rise despite the

presence of noise in dataset. So, the best value of period p

for hyperplane problem was 50 time steps resulting in the

best accuracy levels with the least CPU involvement.

As expected when DDWM is implemented on hyper-

plane dataset without noise, it achieves better accuracy as

illustrated in Fig. 11a. However, at around 2,300 time

steps DDWM when implemented on hyperplane dataset

with noise illustrates a considerable improvement in

accuracy reaching levels, higher than that achieved in the

condition without noise. This means incase of datasets

with gradual drifts our approach gives a more stable

system and provides very good prequential accuracy

irrespective of noise present in the dataset. DDWM pro-

vides a very good ensemble learning system that detects

gradual changes very quickly and improves its perfor-

mance achieving very high accuracies even in a noisy

domain. On the contrary, in datasets with sudden drift

DDWM gives better accuracy results in the condition

Fig. 9 Prequential accuracy (%) of DDWM-NB on moving hyperplane dataset with 5 % noise. a DDWM-NB as compared to EDDM and

DWM. b DDWM-NB as compared to Naı̈ve bayes and weighted majority

Fig. 10 Performance evaluation of DDWM on moving hyperplane dataset containing gradual drifts and noise, varying the value of period

p based on following performance metrics. a Prequential accuracy (%). b Evaluation Time (CPU seconds)

54 Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

123

without noise than in the noisy domain as discussed earlier

in SEA concepts.

To compare our approach using another base learning

algorithm which does not have any assumption of feature

independence, we have used Hoeffding Tree (HT) as the

base classifier. DWM-HT and the standard implementation

of HT illustrate very good prequential accuracy in the first

1,200 time steps as illustrated in Fig. 11b. DDWM-HT

performed almost as well as DWM-HT and HT on the first

1,200 time steps. All the three systems have curves which

are similar in terms of slope and asymptote. However, after

1,200 time steps DDWM-HT achieves higher accuracy

than DWM but considerably lower accuracy than HT.

Around 2,400 time steps, with the progress in learning our

approach DDWM-HT illustrates very good performance as

similar as HT and far better than DWM-HT which shows

decrease in accuracy levels. Also, we can state that change

in the base classifier does not affect the accuracy of

DDWM as can be seen from graphs in Figs. 9a and 11b.

This is because both naı̈ve bayes and HT perform similarly

while handling gradual drifts and noise. The average results

of DDWM-NB on the hyperplane concepts averaged over

50 runs have been summarized as in Table 4. DDWM-NB

provided very high accuracies while handling datasets

containing gradual drifts irrespective of noise present in the

dataset. It responds very quickly to change in concepts and

updates its ensembles to achieve the best accuracy levels.

6.5 Experimental evaluation on electricity pricing

domain

Overall, hoeffding tree averaged 79.23 % and DWM-HT

averaged 87.43 % prequential accuracy whereas DDWM-

HT depicted the best accuracy of 88.69 % as illustrated in

Fig. 12a. DDWM converged more quickly to the target

concepts than DWM and Hoeffding Tree learner as can be

seen in the graphs, surrounding time step 21,000.

As seen in Fig. 12a, DDWM-HT showed the maximum

accuracy whereas HT showed the minimum accuracy while

handling drifts in the real-world electricity pricing dataset.

The curves for DDWM and DWM were similar in terms of

slope however DDWM provided a more stable system than

DWM and HT. For reference, we can see the work by

Harries [8] who used an online version of C4.5 [50] and

builds a decision tree from examples in a sliding window

reporting accuracy between 66 and 67.7 %. Hence the

concept of diversity which is exclusive to our approach

helps DDWM-HT achieve the best accuracy among all the

approaches.

As a dataset derived from a real-world phenomenon, we

cannot predict when and how many times concept drifts

has occurred. Nonetheless, DDWM-HT has appeared to be

more robust to change present in the samples than DWM-

HT and Hoeffding tree. One example is the period around

20,000 time step, where prequential accuracy of DDWM

remains nearly constant (maximum 3 % variation) whereas

Hoeffding tree shows a large drop in their accuracies

Fig. 11 Accuracy of DDWM on hyperplane dataset. a Dataset with noise as compared to the condition without noise. b DDWM with Hoeffding

Tree (HT) as the base classifier as compared to DWM-HT and simply Hoeffding Tree as the concept drifting system

Table 4 Experimental results for DDWM on the hyperplane dataset

with 5 % noise, average over 50 runs of the dataset using naı̈ve bayes

as the base learner

DDWM EDDM DWM WM NB

Accuracy 85.51 85.30 83.44 86.08 86.08

kappa statistic 70.90 70.47 66.76 73.26 73.26

Model cost (*exp. -9) 2.76 0.71 0.72 1.53 0.12

Time 0.55 0.23 0.17 0.33 0.10

Memory 0.03 0.00 0.01 0.03 0.01

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61 55

123

around 15 % drop. In case of DDWM if one ensemble

performs poorly another ensemble provides good classifi-

cation results so that the system provides good overall

accuracy. This is clearly illustrative in the graphs around

time step 20,000, as the accuracies of DWM and Hoeffding

tree drop, whereas DDWM shows an improvement in its

accuracy levels. DDWM-NB achieves accuracies higher

than naı̈ve bayes and almost similar accuracy as DWM-NB

as seen in Fig. 12b.

DDWM-HT achieved higher accuracies than DDWM-

NB as can be seen from the graphs of Fig. 12. If we

compare the plots of Hoeffding tree and naı̈ve bayes, we

see that hoeffding tree achieved higher accuracies as

compared to naı̈ve bayes. Thus, the higher accuracy of

DDWM-HT is due to differences in the base learners rather

than to something inherent in DDWM.

As illustrated in Fig. 13a, variation in the value of b in

DDWM does not affect accuracy of our approach. How-

ever, it does impact the memory requirements and the cost

of the system. DDWM with b value of 0.7 requires the

maximum average memory to store its experts whereas

the systems with b value of 0.3 and 0.5 require lower and

the same amount of memory for its effective evaluation as

seen in Fig. 13b. This is because higher the value of b
would reduce the experts’ weight earlier to the threshold

value and result in increased frequency of removal and

creation of new experts in the ensembles, resulting in

increased model cost of the system as illustrated in

Fig. 13c.

The model cost of DDWM was maximum when the b
value was 0.7 whereas DDWM with b value of 0.5 and 0.3,

involved similar cost as illustrated in Fig. 13c. This means

the best value for b was 0.5 to effectively update weight of

poor performing experts, without any increase in memory

requirements and cost (as further lower values of b did not

reduce the memory requirements or cost) of the system.

The variation in the value of threshold h did not influence

the performance of DDWM in terms of any of the metrics,

apart from evaluation time which varies very little as

observed from Table 5.

The average results of DDWM on electricity pricing

dataset have been summarized as in Table 6. So we can

easily conclude from the results, that DDWM gives the best

prequential accuracy among various approaches on a real

time electricity pricing domain when HT was used as the

base classifier. When DDWM and DWM used HT as base

classifier, they required almost double the CPU evaluation

time than when naı̈ve bayes was used as their base clas-

sifier. So the increase in the time is because of change in

base classifier and not because of something inherent in

DDWM. The use of HT as base classifier increased the

homogeneity among the experts of DDWM as compared to

that using NB as base learner, as validated by the value of

kappa statistic in Table 6. All the systems proved to be

very resource effective as validated by almost exponen-

tially low value of RAM-Hours.

6.6 Experimental evaluation on breast cancer dataset

DDWM-NB achieved better prequential accuracy than

DWM at every single time step as illustrated in Fig. 14a.

The graph for DDWM is better than DWM in terms of

slope as seen around 40 time steps. DDWM achieves

higher accuracies as compared to DWM that too at a very

fast rate as seen in the period between time steps 150 and

160. DDWM-NB provides a more stable system than

DWM-NB. This can be clearly seen from the examples in

the period between time steps 175 and 200, where the

prequential accuracy of DDWM remains nearly constant

while DWM illustrates a drop during this period. Overall,

Fig. 12 Accuracy of DDWM on electricity pricing domain. a Using Hoeffding Tree as the base classifier. b Using naı̈ve bayes as the base

classifier

56 Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

123

DDWM averaged 68.66 % accuracy and DWM-NB aver-

aged 65.06 % accuracy over 50 runs of the dataset.

The memory needs for DDWM is almost double the

needs for DWM as it maintains two ensembles rather than

one in-case of DWM as illustrated in Fig. 14b. However,

DDWM provides better learnt ensembles as it maintains

only the minimum required number of experts and removes

the poor performing experts. This was shown in the graph

by gradual drop of 0.01 bytes in memory needs of the two

ensembles of DDWM whereas DWM shows a drop of

almost 0.001 bytes for a single ensemble as seen in

Fig. 14b around 70 time steps. This means there is an

average drop of 0.005 bytes in memory requirements per

ensemble in DDWM which is huge as compared to DWM.

Reduction in memory needs means, large number of poor

performing experts were removed in DDWM as compared

to DWM. The average results of DDWM on breast cancer

dataset have been summarized as in Table 7.

After analysis of the results as summarized in Table 7,

we can conclude that DDWM performs better than DWM

and EDDM in terms of prequential accuracy. However,

DDWM’s performance is almost similar as the perfor-

mance of standard implementation of naı̈ve bayes classifier

that has not been designed to handle any drifts and learns

from all the examples in the stream. The approach provides

us highly homogeneous experts as observed from its kappa

statistic value, which is highly beneficial for classification

in static datasets. DDWM proves to be highly resource

efficient achieving high accuracy even in static concepts.

Fig. 13 Performance evaluation of DDWM on electricity pricing domain, varying the value of multiplicative factor b keeping threshold value at

0.01. a Prequential accuracy (%). b Memory (bytes). c Model cost (RAM-Hours)

Table 5 Experimental results for DDWM –NB on electricity pricing

domain, varying the value of threshold h, all the other parameters are

same (i.e. b = 0.5, m = 15, p = 10)

H = 0.005 H = 0.01 H = 0.03

Accuracy 85.37 85.37 85.37

kappa statistic 69.72 69.72 69.72

Model cost (*exp. -6) 1.23 1.22 1.22

Time 77.77 77.67 77.64

Memory 0.08 0.08 0.08

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61 57

123

Hence DDWM could be used for classification of any

dataset varying from static to highly dynamic datasets.

7 Conclusions

In this paper, we presented an online ensemble method,

Diversified dynamic weighted majority which maintains

two sets of weighted ensembles: one with high diversity

and the other one with low diversity. We described two

implementations of DDWM, one with naı̈ve bayes as the

base learner and the other using hoeffding tree as the base

classifier. On the problem domains we considered, the

diversity concept in the two sets of weighted ensembles

helped DDWM provide a better response to concept drift

than the other learners such as those that considered only

single ensemble of weighted experts (i.e. DWM and WM),

and approaches based on the distance between classifica-

tion errors (i.e. EDDM).

Analysis of the experimental results of DDWM using

Stagger concepts state that DDWM shows the best average

prequential accuracy among DWM and EDDM. Our

approach is highly sensitive to errors, detects changes and

improves its performance delivering the best accuracy in

handling sudden drifts in dataset. However the average

evaluation time was the maximum for DDWM as it

maintains two sets of experts and involves highest rate of

updates, creation and deletion of experts. Comparison

between the high diversity and low diversity ensemble of

DDWM clearly proves that for sudden drifting datasets, the

low diversity ensemble provides us better accuracy than the

high diversity ensemble. Secondly, the evaluation time

taken by any ensemble is independent of the level of

diversity among its experts. Empirical evaluation of our

approach using Stagger concepts states that DDWM also

provides better prequential accuracy than the Blum’s

implementation of weighted majority and the standard

implementation of naı̈ve bayes. We also evaluated our

approach using Hoeffding tree as base classifier, achieving

very high average prequential accuracy. The results led us

to state that our approach performs with high accuracy for

Table 6 Average experimental

results for DDWM on electricity

pricing domain, with naı̈ve

bayes and hoeffding tree as the

base learners

DDWM-HT DWM-HT HT NB DDWM-NB DWM-NB

Accuracy (%) 88.69 87.43 79.23 73.40 85.87 85.86

Kappa statistic(%) 76.52 73.98 56.27 39.95 69.72 70.69

Model cost (*exp.-6) 12.8 0.03 0.03 0.002 1.22 0.002

Time (CPU-seconds) 160.66 7.96 12.04 1.66 77.67 4.03

Memory (bytes) 0.39 0.02 0.07 0.01 0.08 0.01

Fig. 14 Performance of DDWM on Breast Cancer dataset containing 286 instances, averaged over 50 runs of the dataset based on following

metrics. a Prequential accuracy (%). b Memory (bytes)

Table 7 Average experimental results for DDWM using breast

cancer dataset, with naı̈ve bayes as base classifier

DDWM DWM NB EDDM

Accuracy (%) 68.61 65.06 68.62 66.18

Kappa statistic (%) 24.97 20.75 26.11 20.67

Time(CPU-seconds) 0.07 0.02 0.01 0.02

Memory(bytes) 0.04 0.02 0.01 0.00

58 Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

123

any dataset, varying from dependent feature set to an

independent feature set as in naı̈ve bayes classifier.

Our approach proves itself to be the best approach in

handling abrupt drifts in very large datasets as seen by

analysis of evaluation results using SEA concepts. It pro-

vided very high accuracies and converged very quickly to

the target concepts as compared to the other approaches.

DDWM shows very high sensitivity to noise but detects

changes and improves its performance achieving the best

accuracy levels as similar as EDDM. On the other hand,

EDDM suffered from false alarms and large number of

non-accurate drift detections. Results on SEA concepts

without noise prove that DDWM provided very high

accuracies on very large dataset without noise, with highly

reduced memory requirements and lower evaluation time

than in a noisy domain.

The change in the value of period did not significantly

affect accuracy but considerably reduced the memory

requirements of DDWM as seen in the experimental results

using SEA concepts. The increase in the period value led to

reduction in model cost and decreased the overall CPU

involvement. Empirical analysis of DDWM using SEA

concepts clearly led to the conclusion that the increase in

the value of parameter m (i.e. number of experts), increased

the average evaluation time, model cost and the memory

requirements of a system without showing any improve-

ment in accuracy, in handling sudden noisy drifts. Hence

we can easily state that the value of period and the maxi-

mum number of experts existing in any given system for

handling abrupt drifts should be chosen carefully so as to

get the best results within least possible memory and time

requirements.

Our approach responds quickly to gradual changes,

updating its ensembles and improves its performance

achieving very high accuracy levels as seen in experiments

using moving hyperplane problem. It was observed that the

change in the value of period greatly affects the perfor-

mance of our system while handling gradual drifts in

dataset. The accuracy of the system was directly propor-

tional to the value of period and the evaluation time was

inversely proportional to the period value while handling

gradual drifts containing noise.

To evaluate our approach on a real-world problem we

used Electricity pricing domain. The results show that the

use of a better base learning algorithm such as HT

improved the accuracy of DDWM as compared to its

accuracy when NB was used as the base learning algo-

rithm. Secondly, our approach provided a very stable sys-

tem with almost consistent accuracy levels. It was

empirically proved that the variation in the multiplicative

factor in DDWM does not affect accuracy of DDWM but it

does impact the memory requirements and the cost of the

system. However, the variation in the threshold value does

not affect the performance of DDWM in terms of any of

the performance metrics. We also evaluated DDWM on

another real-world static dataset, breast cancer dataset. Our

approach converged quickly to target concepts with higher

accuracy levels, giving a better learnt system than DWM.

For future work, we plan to improvise our approach to

handle datasets with weighted instances, in which based on

the weights some training instances will be explicitly dis-

carded from the training dataset. We would also like to

investigate mechanisms for handling novel class detection

such as those present in an adaptive ensemble classifier

approach [51]. We would also try to enhance our approach

to handle recurrent drifts, investigating mechanisms as

those present in ACE [18, 20]. We also aim to handle

concept drifting under dynamic feature sets where the

distinctive features used for describing the instances,

change over time. New better mechanisms can be intro-

duced to handle weights of experts, to make our approach

more resource effective by reducing its overall time and

memory usage and maintaining only the best experts in

each of the ensembles that are sufficient enough to provide

good accuracy in a resource constrained environment.

References

1. Baena-Garcıa M, Del Campo-Avila J, Fidalgo R, Bifet A (2006)

Early drift detection method. In: Proceedings Fourth ECML

PKDD Int’l Workshop Knowledge Discovery from Data Streams

(IWKDDS’06), pp 77–86

2. Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: mas-

sive online analysis, a framework for stream classification and

clustering. In: workshop on applications of pattern analysis,

JMLR: Workshop and Conference Proceedings, vol 11. p 44

3. Blum A (1997) Empirical support for winnow and weighted

majority algorithms: results on a calendar scheduling domain,

machine learning. Kluwer Academic Publisher, Boston

4. Dawid A, Vovk V (1999) Prequential probability : principles and

proper ties. Bernoulli 5(1):125–162

5. Dietterich TG (1997) Machine learning research: four current

directions. Artif Intell 18(4):97–136

6. Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with

drift detection, In: Proceeding Seventh Brazilian Symp. Artificial

Intelligence (SBIA’04), pp. 286–295

7. Gao J, Fan W, Han J (2007) On appropriate assumptions to mine

data streams: analysis and practice. In: Proceedings IEEE Int’l

Conf. Data Mining (ICDM,’07), pp 143–152

8. Harries M (1999) Splice-2 comparative evaluation: electricity

pricing, Technical report. University of New South Wales,

Australia

9. Hulten G, Spencer L, Domingos P (2001) Mining time-changing

data streams, In: Proceedings KDD’01, ACM Press. San Fran-

cisco, 2001, pp 97–106

10. Kolter JZ, Maloof MA (2003) Dynamic weighted majority: a new

ensemble method for tracking concept drift. In: Proceedings of

the 3rd ICDM, USA, pp 123–130

11. Kolter JZ, Maloof MA (2005) Using additive expert ensembles to

cope with concept drift. In: Proceedings Int’l Conf. Machine

Learning (ICML’05), pp 449–456

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61 59

123

12. Kolter JZ, Maloof MA (2007) Dynamic weighted majority: an

ensemble method for drifting concepts. J Mach Learn Res

8:2755–2790

13. Littlestone N, Warmuth M (1994) The weighted majority algo-

rithm. Inf Comput 108:212–261

14. Mansoori M, Zakaria O, Gani A (2012) Improving exposure of

intrusion deception system through implementation of hybrid

honeypot. IAJIT 9 (5): 436–444

15. Minku FL, White A, Yao X (2010) The Impact of Diversity on

On-Line Ensemble Learning in the Presence of Concept Drift.

IEEE Trans Knowl Data Eng 22(5):730–742

16. Minku LL, Yao X (2012) DDD: a new ensemble approach for

dealing with concept drift. IEEE Trans Knowl Data Eng

24(4):619

17. Nishida K (2008) Learning and Detecting Concept Drift, PhD

dissertation, Hokkaido Univ. [Online]. http://lis2.huie.hokudai.ac.

jp/%20%20knishida/paper/nishida2008-dissertation%20.pdf

18. Nishida K, Yamauchi K (2007) Adaptive classifiers-ensemble

system for tracking concept drift. In: Proceedings Sixth Int’l

Conf. Machine Learning and Cybernetics (ICMLC’07),

pp 3607–3612

19. Nishida K, Yamauchi K (2007) Detecting concept drift using

statistical testing. In: Proceedings 10th Int’l Conf. Discovery

Science (DS’07), pp 264–269

20. Nishida K, Yamauchi K, Omori T (2005) ACE: adaptive classi-

fiers-ensemble system for concept-drifting environments. In:

Proceedings of the 6th International Workshop on Multiple

Classifier Systems, ser. Lect Notes Comput Sci 3541:176–185

21. Oza NC, Russell S (2001) Experimental comparisons of online

and batch versions of bagging and boosting. In: Proceedings of

the Seventh ACM International Conference on Knowledge Dis-

covery and Data Mining (SIGKDD’01), ACM Press, New York,

pp 359–364

22. Scholz M, Klinkenberg R (2005) An ensemble classifier for

drifting concepts. In: Proceedings of the Second International

Workshop on Knowledge Discovery from Data Streams

(IWKDDS’05), Porto, pp 53–64

23. Sidhu P, Bhatia MPS (2014) Extended dynamic weighted

majority using diversity to handle drifts. New Trends Databases

Inf Sys Adv Intell Sys Comput 241:389–395

24. Stanley KO (2003) Learning concept drift with a Commitee of

decision trees, Technical Report AI-TR-03-302, Dept. of Com-

puter Sciences, Univ. of Texas, Austin

25. Street W, Kim Y (2001) A streaming ensemble algorithm (SEA)

for large-scale classification, In: Proceedings of the 7th ACM

International Conference on Knowledge Discovery and Data

Mining, ACM Press, New York, pp 377–382

26. Schlimmer JC, Granger RH (1986) Incremental learning from

noisy data. Mach Learn 1(3):317–354

27. Tsymbal A (2004) The problem of concept drift: definitions and

related work, Technical Report TCD-CS-2004-15. Department of

Computer Science, Trinity College Dublin, Ireland

28. Kubat M, Widmer G (1996) Learning in the presence of concept

drift and hidden contexts, Machine Learning, 23 (1):

69–101.16.Klinkenberg R., Learning drifting

29. Kuncheva LI, Whitaker CJ (2003) Measures of diversity in

classifier ensembles and their relationship with the ensemble

accuracy. Mach Learn 51:181–207

30. Tang EK, Sunganthan PN, Yao X (2006) An analysis of diversity

measures. Mach Learn 65:247–271

31. Yule G (1900) On the association of attributes in statistics,

Philosophical Trans. Royal Soc. of London, Series A, vol 194,

pp 257–319

32. Gama J, Sebastião R, Rodrigues PP (2009) Issues in evaluation of

stream learning algorithms, In KDD’09, pp 329–338

33. Minku FL, Yao X (2009) Using diversity to handle concept drift

in on-line learning, In: Proceedings Int’l Joint Conf. Neural

Networks (IJCNN, 2009b), pp 2125–2132

34. Su L, Liu HY, Song ZH (2011) A new classification algorithm for

data stream. International Journal of Modern Education and

Computer Science 4:32–39

35. Murphy PM (1998) UCI Repository of machine learning dat-

abases. Department of Information and Computer Sciences,

University of California, Irvine, available at http://www.ics.uci.

edu/*mlearn/

36. Blake C, Merz C (1998) UCI repository of machine learning

databases. Department of Information and Computer Sciences,

University of California, Irvine, Web site (Online). http://www.

ics.uci.edu/*mlearn/MLRepository.html.

37. Tsai CJ, Lee CI, Yang WP (2009) Mining decision rules on data

streams in the presence of concept drifts. Expert Syst Appl

36:1164–1178

38. Gaber MM, Yu PS (2006) Detection and classification of changes

in evolving data streams. Int J Inf Technol Decis Mak 5:659–670

39. Yang Y, Wu X, Zhu X (2005) Combining proactive and reactive

predictions for data streams, In Proceedings of ACM SIGKDD,

pp 710–715

40. Wang H, Fan W, Yu PS, Han J (2001) Mining concept-drifting

data streams using ensemble classifiers. In: Proceedings ACM

SIGKDD Int’l Conf. Knowledge Discovery and Data Mining,

pp 226–235

41. Chu F, Zaniolo C (2004) Fast and light boosting for adaptive

mining of data streams. In: Proceedings Pacific-Asia Conf.

Knowledge Discovery and Data Mining (PAKDD’04),

pp 282–292

42. Scholz M, Klinkenberg R (2007) Boosting classifiers for drifting

concepts. Intell Data Anal Spec Issue Knowl Discov Data

Streams 11(1):3–28

43. S. Ramamurthy, R. Bhatnagar, Tracking Recurrent Concept Drift

in Streaming Data Using Ensemble Classifiers, In Proc. Int’l

Conf. Machine Learning and Applications (ICMLA’07), pp. 404-

409, 2007

44. Gao J, Fan W, Han J, Yu P (2007) A general framework for
mining concept-drifting data streams with skewed distributions.

In: Proceedings SIAM Int’l Conf. Data Mining (ICDM)

45. He H, Chen S (2008) IMORL: incremental Multiple-Object

Recognition and Localization. IEEE Trans Neural Networks

19(10):1727–1738

46. Polikar R, Udpa L, Udpa SS, Honavar V (2001) Learn ??: an

incremental learning algorithm for supervised neural networks.

IEEE Trans Sys Man Cybernet Part C 31(4):497–508

47. Kasabov N (2003) Evolving connectionist systems. Springer,

London

48. Asuncion A, Newman DJ (2007) UCI machine learning reposi-

tory. Web site, Department of Information and Computer Sci-

ences, University of California, Irvine, http://www.ics.uci.edu/

*mlearn/MLRepository.html

49. Domingos P, Hulten G (2000) Mining high-speed data streams.

In: Proceedings of the Sixth ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, ACM Press,

New York pp 71–80

50. Quinlan JR (1993) C4.5: Programs for machine learning. Morgan

Kaufmann, San Francisco

51. Dewan MF, Zhang L, Hossain A, Chowdhury MR, Rebecca S,

Graham S, Keshav D (2013) An adaptive ensemble classifier for

mining concept drifting data streams. Expert Sys Appl

40(15):5895–5906. doi:10.1016/j.eswa.05.001

52. Zliobaite I (2009) Learning under concept drift: an overview,

Technical report faculty of mathematics and informatics. Vilnius

UniversityLithuania, Vilnius

60 Int. J. Mach. Learn. & Cyber. (2018) 9:37–61

123

http://lis2.huie.hokudai.ac.jp/%20%20knishida/paper/nishida2008-dissertation%20.pdf
http://lis2.huie.hokudai.ac.jp/%20%20knishida/paper/nishida2008-dissertation%20.pdf
http://www.ics.uci.edu/~mlearn/
http://www.ics.uci.edu/~mlearn/
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://dx.doi.org/10.1016/j.eswa.05.001

53. Tumer K, Ghosh J (1996) Error correlation and error reduction in

ensemble classifiers. Connect Sci 8(3):385–404

54. Schlimmer J, Granger R (1986) Beyond incremental processing:

tracking concept drift. In: Proceedings of the 5th National Con-

ference on Artificial Intelligence, AAAI Press, Menlo Park, CA,

pp 502–507

55. Elwell R, Polikar R (2011) Incremental learning of concept drift

in nonstationary environments. IEEE Trans Neural Netw

22:1517–1531

56. Bhardwaj M, Bhatnagar V (2014) Towards an optimally pruned

classifier ensemble. Int J Mach Learn Cybernet. doi:10.1007/

s13042-014-0303-8

57. Baumgartner D, Serpen G (2013) Performance of global–local

hybrid ensemble versus boosting and bagging ensembles. Int J

Mach Learn Cybernet 4(4):301–317

58. Christou IT, Gekas G, Kyrikou A (2012) A classifier ensemble

approach to the TV-viewer profile adaptation problem. Int J Mach

Learn Cybernet 3(4):313–326

59. Wang XZ, Wang R, Feng HM, Wang H (2014) A new approach

to classifier fusion based on upper integral. IEEE Transactions on

Cybernetics 44(5):620–635

Int. J. Mach. Learn. & Cyber. (2018) 9:37–61 61

123

http://dx.doi.org/10.1007/s13042-014-0303-8
http://dx.doi.org/10.1007/s13042-014-0303-8

	A novel online ensemble approach to handle concept drifting data streams: diversified dynamic weighted majority
	Abstract
	Introduction
	Research questions and paper organization
	Related work
	Online concept drifting approaches to handle drifting concepts
	Concept of diversity in an ensemble of experts
	Performance evaluation metrics for various concept drifting approaches

	Concept drifting data streams
	Artificial datasets
	Stagger concepts: Abrupt concept drift, without noise
	SEA Concepts: Very large dataset, abrupt concept drift with noise
	Moving hyperplane: gradual drift with noise

	Real-world datasets
	Electricity pricing domain
	Breast cancer dataset

	Diversified dynamic weighted majority (DDWM)
	Experimental evaluation and results
	Experimental objectives, design and measures analyzed
	Experimental evaluation on stagger concepts
	Experimental evaluation on a very large dataset with concept drift: SEA Concepts
	Experimental evaluation on moving hyperplane dataset
	Experimental evaluation on electricity pricing domain
	Experimental evaluation on breast cancer dataset

	Conclusions
	References

