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Abstract Recently, there seems to be increased interest

in time series forecasting using soft computing (SC) tech-

niques, such as fuzzy sets, artificial neural networks

(ANNs), rough set (RS) and evolutionary computing (EC).

Among them, fuzzy set is widely used technique in this

domain, which is referred to as ‘‘Fuzzy Time Series

(FTS)’’. In this survey, extensive information and knowl-

edge are provided for the FTS concepts and their applica-

tions in time series forecasting. This article reviews and

summarizes previous research works in the FTS modeling

approach from the period 1993–2013 (June). Here, we also

provide a brief introduction to SC techniques, because in

many cases problems can be solved most effectively by

integrating these techniques into different phases of the

FTS modeling approach. Hence, several techniques that are

hybridized with the FTS modeling approach are discussed

briefly. We also identified various domains specific prob-

lems and research trends, and try to categorize them. The

article ends with the implication for future works. This

review may serve as a stepping stone for the amateurs and

advanced researchers in this domain.

Keywords Fuzzy time series (FTS) � Artificial neural
networks (ANNs) � Rough set (RS) � Evolutionary
computing (EC).

1 Introduction

As the application of information technology is growing

very rapidly, data in various formats have also proliferated

over the time. However, these data are useless unless they

are analyzed and utilized. It is worthless of gathering the

information of floods due to heavy rainfall, heart attack due

to high blood pressure or the stock market crash down due

to bad economic policy, if they are not distinguished

(identified) and predicted in advance. This is where the

concept of ‘‘Advance Prediction/Forecast’’ arises into the

knowledge of human beings.

An expert system associated with the prediction should

have the ability to discover patterns or rules, capability to

learn from the patterns, and produce the desired outputs.

For all these purposes, a huge amount of data is required as

an input. Sometimes, the input data requires to be prepro-

cessed as per the requirement of expert systems. The expert

prediction system can be designed from data mining

(machine learning, statistics) and soft computing (SC). The

designed system must be assessed very carefully on the

basis of accuracy, cost, complexity, importance and utility.

That is, prediction is not an informal process. It involves

lots of well-planned steps and domains knowledge, which

directly impact on the skill of the system as well as the final

outputs.

Thus, it has been concluded that the prediction made by

the expert system seems to be very much automatic, which

is far from the real story. To reach the performance at the

level of the best, it requires lots of experimentation,

intelligence and artful investigation of input data. The poor

performance of existing systems, thus, always leads to the

development of a new expert system. This new system

must contain better algorithm or technique from the

existing ones.
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Time series are evolved by day to day activities of

human and machine. Running speed of athletes per second,

velocities of cars per minute, the amount of rainfall in per

hour, maximum temperature from 12 noon to evening 5

p.m., all represent a wide range of time series, which can be

analyzed and employed for prediction. However, time

series analysis and its prediction itself is a very tedious,

such as their preprocessing, their transformation, to iden-

tify the suitable input predictor that can enhance the pre-

diction, and adjustment of various parameters associated

with the models [12, 104].

1.1 Issues in time series forecasting

Some major issues in time series forecasting are discussed

as follows.

• Models: Is it possible to predict the time series values

in advance? If it is so, then which models are best fitted

for the data that are characterized by different

variables?

• Quantity of data: What amount of data (i.e., small or

massive) needed for the prediction that fit the model

well?

• Improvement in Models: Is there any possibility to

improve the efficiency of the models? If yes, then how

could it be possible?

• Factors: What are the factors that influence the time

series prediction? Is there any possibility to deal with

these factors together? Can integration of these factors

affect the prediction capability of the models?

• Analysis of results: Are results given by the models

statistically acceptable? If it is not, then which param-

eters are needed to be adjusted which can influence the

performance of the models?

• Model constraints: Can linear statistical or mathemat-

ical models successfully deal with the non-linear nature

of time series data? If it is not possible, then what are

the models and how are they advantageous?

• Data preprocessing: Do data need to be transformed

from one form to another? In general, what type of

transformation is suitable for data that can directly be

employed as input in the models?

• Consequences of prediction: What are the possible

consequences of time series prediction? Are there

advance predictions advantageous for the society,

politics and economics?

All these issues indicate the need for intelligent forecasting

technique, which can discover useful information from

data. The term ‘‘soft computing (SC)’’ refers to the overall

technique for designing intelligent or expert system. It has

been widely used in machine learning, artificial intelli-

gence, pattern recognition, uncertainties and reasoning.

More detail discussion on the SC techniques is provided

next.

1.2 Soft computing

The term ‘‘soft computing (SC)’’ is a multidisciplinary

field which pervades from a mathematical science to

computer science, information technology, engineering

applications, etc. The conventional computing or hard-

computing generally deals with precision, certainty and

rigor [182]. However, the main desiderata of SC is to

tolerate with imprecision, uncertainty, partial truth, and

approximation [168]. SC is influenced by many

researchers. Among them, Zadeh’s contribution is

invaluable. Zadeh published his most influential work in

SC in 1965 [176]. Later, he contributed in this area by

publishing numerous research articles on the analysis of

complex systems and decision processes [177], approxi-

mate reasoning [178–180], knowledge representation

[181], design and deployment of intelligent systems [183],

etc. According to Jiang et al. [76], ‘‘SC is not a single

methodology. Rather, it is a partnership in which each of

the partners contributes a distinct methodology for

addressing problems in its domain.’’ Therefore, SC has

been evolving as an amalgamated field of different

methodologies such as fuzzy sets, neural computing,

evolutionary computing and probabilistic computing [47,

83, 87]. Later, rough sets, chaos computing and immune

network theory have been included into the SC [13, 119,

174]. The main objective of hybridizing these methodol-

ogies is to design an intelligent machine and find solution

to nonlinear problems which can not be modeled mathe-

matically [184].

1.3 Time series events and uncertainty

Since the advance prediction of events like temperature,

rainfall, stock price, population growth, economic growth,

etc., are major scientific issues in the domain of time series

forecasting, imprecise knowledge or information cannot be

overlooked in this domain. Because of the nature of the

time series data, which is highly non-stationary and

uncertain, the decision-making process becomes very

tedious. For example, sudden rise and fall of daily tem-

perature, sudden increase and decrease of daily stock index

price, sudden increase and decrease of rainfall amount

indicate that these events are very uncertain. The charac-

teristics of all these events cannot be described accurately;

therefore, it is referred to as ‘‘imprecise knowledge’’ or

‘‘incomplete knowledge’’. Due to these problems, mathe-

matical or statistical models can not deal with this impre-

cision knowledge, thereby diluting the accuracy very

significantly.
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Since forecasting of time series events with 100%

accuracy may not be possible, their forecasting accuracy

and the speed of forecasting process can be improved. To

resolve this problem, Song and Chissom [144] developed a

model in 1993 based on uncertainty and imprecise

knowledge contained in time series data. They initially

used the fuzzy sets concept to represent or manage all these

uncertainties, and referred this concept as ‘‘Fuzzy Time

Series (FTS)’’.

From 1994 onwards, researchers have developed

numerous models based on the FTS concept to improve the

forecasting accuracy of time series. This study focuses on

the application and use of fuzzy sets concept in time series

forecasting. The basic knowledge of artificial neural net-

works (ANNs), rough set (RS) and evolutionary computing

(EC) are provided complimentary with the sound back-

ground of fuzzy sets, because in many cases a problem can

be solved most effectively by hybridizing these techniques

together rather independently. Hence, one of the objectives

of this article is also to introduce the SC methodologies

(such as ANNs, RS and EC) that are employed with FTS to

represent and manage the imprecise knowledge in time

series forecasting.

1.4 Structure of this work

We begin with some essential definitions associated with

fuzzy sets and its extended application in time series

forecasting, referred as ‘‘Fuzzy time series (FTS)’’, in

Sect. 2. Next, preamble for the FTS modeling approach

is discussed in Sect. 3. Articles that provide numerous

contributions in the FTS modeling approach are also

discussed in this section. In Sect. 4, hybridized tech-

niques associated with the FTS modeling approach are

discussed. Type-2 FTS models are reviewed in Sect. 5.

Classification of various FTS models based on input

variables are presented in Sect. 7. List of performance

measure parameters employed in the FTS modeling

approach are presented in Sect. 6. Various unsolved

problems and research trends associated with the FTS

modeling approach are discussed in Sect. 8. Future

directions and conclusions are discussed in Sects. 9 and

10, respectively. The list of abbreviations used in the

article is provided in Appendix.

2 Definitions

In this section, we provide various definitions for the ter-

minologies used throughout this article.

In 1965, Zadeh [176] introduced fuzzy sets theory

involving continuous set membership for processing data in

presence of uncertainty. He also presented fuzzy arithmetic

theory and its application [175, 177, 178].

Definition 1 (Fuzzy Set) [176]. A fuzzy set is a class with

varying degrees of membership in the set. Let U be the

universe of discourse, which is discrete and finite, then

fuzzy set ~A can be defined as follows:

~A ¼ l ~Aðx1Þ
�
x1 þ l ~Aðx2Þ

�
x2 þ . . .

n o
¼ Ril ~AðxiÞ

�
xi ð1Þ

where l ~A is the membership function of ~A, l ~A: U ! 0; 1½ �,
and l ~AðxiÞ is the degree of membership of the element xi in

the fuzzy set ~A. Here, the symbol ‘‘?’’ indicates the

operation of union and the symbol ‘‘/’’ indicates the sepa-

rator rather than the commonly used summation and divi-

sion in algebra, respectively.

When U is continuous and infinite, then the fuzzy set ~A

of U can be defined as:

~A ¼
Z

l ~AðxiÞ
�
xi

� �
; 8xi 2 U ð2Þ

where the integral sign stands for the union of the fuzzy

singletons, l ~AðxiÞ=xi.

Definition 2 (Fuzzy Time Series) [144–146]. Let

YðtÞðt ¼ 0; 1; 2; . . .Þ be a subset of Z and the universe of

discourse on which fuzzy sets liðtÞði ¼ 1; 2; . . .Þ are

defined and let FðtÞ be a collection of liðtÞði ¼ 1; 2; . . .Þ.
Then, FðtÞ is called a fuzzy time series on

YðtÞðt ¼ 0; 1; 2; . . .Þ.

With the help of following two examples, the concept of

FTS can be explained:

[Example 1] The common observations of daily

weather condition for certain region can be described using

the daily common words ‘‘hot’’, ‘‘very hot’’, ‘‘cold’’, ‘‘very

cold’’, ‘‘good’’, ‘‘very good’’, etc. All these words can be

represented by fuzzy sets.

[Example 2] The common observations of the perfor-

mance of a student during the final year of degree exami-

nation can be represented using the fuzzy sets ‘‘good’’,

‘‘very good’’, ‘‘poor’’, ‘‘bad’’, ‘‘very bad’’, etc.

Above two examples are dynamic processes, and con-

ventional time series models are not applicable to describe

these processes [145]. Therefore, Song and Chissom [145]

first time uses the fuzzy sets concept in time series fore-

casting. Later, their proposed method have gained in pop-

ularity in scientific community as a ‘‘FTS forecasting

model’’.

Definition 3 (Universe of discourse) [144]. Let Lbd and

Ubd be the lower-bound and upper-bound of the time series

data, respectively. Based on Lbd and Ubd, we can define the

universe of discourse U as:
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U ¼ Lbd;Ubd½ � ð3Þ

Definition 4 (Fuzzy logical relationship) [18, 144, 146].

Assume that Fðt � 1Þ ¼ ~Ai and FðtÞ ¼ ~Aj. The relationship

between FðtÞ and Fðt � 1Þ is referred as a fuzzy logical

relationship (FLR), which can be represented as:

~Ai ! ~Aj; ð4Þ

where ~Ai and ~Aj refer to the left-hand side and right-hand

side of the FLR, respectively.

Definition 5 (Fuzzy logical relationship group) [18, 144,

146]. Assume the following FLRs:

~Ai ! ~Ak1;

~Ai ! ~Ak2;

� � �
~Ai ! ~Akm

Chen [18] suggested that FLRs having same fuzzy sets on

left-hand side can be grouped into a fuzzy logical rela-

tionship group (FLRG). So, based on Chen’s model [18],

these FLRs can be grouped into the FLRG as:

~Ai ! ~Ak1; ~Ak2; . . .; ~Akm:

Definition 6 (High-order FLR) [22]. Assume that FðtÞ is
caused by Fðt � 1Þ;Fðt � 2Þ; . . .; and Fðt � nÞ ðn[ 0Þ,
then high-order FLR can be expressed as:

Fðt � nÞ; . . .;Fðt � 2Þ;Fðt � 1Þ ! FðtÞ ð5Þ

Definition 7 (M-factors FTS). Let FTS AðtÞ;BðtÞ;
CðtÞ; . . .; MðtÞ be the factors/observations of the forecast-

ing problems. If we only use AðtÞ to solve the forecasting

problems, then it is called a one-factor FTS. If we use

remaining secondary-factors/secondary-observations

BðtÞ;CðtÞ; . . .;MðtÞ with AðtÞ to solve the forecasting

problems, then it is called M-factors FTS.

One-factor FTS models (referred to as Type-1 FTS

models) employ only one variable for forecasting [64, 70].

For example, researchers in articles [32, 64] consider only

closing price in forecasting of the stock index. However,

the stock index price consists of many different observa-

tions, such as opening, high, low, etc. If these additional

observations are used with one-factor variable, then it is

referred to as M-factors FTS model. The model proposed

by Huarng and Yu [71] is based on the M-factors, because

they use high and low as the secondary-observations to

forecast the closing price of TAIEX.

Definition 8 (Type-2 fuzzy set) [61]. Let ~AðUÞ be the set
of fuzzy sets in U. A Type-2 fuzzy set ~A in X is fuzzy set

whose membership grades are themselves fuzzy. This

implies that l ~AðxÞ is a fuzzy set in U for all x, i.e., l ~A :

X ! ~AðUÞ and
~A ¼ ðx; l ~AðxÞÞjl ~AðxÞ 2 ~AðUÞ8x 2 X

� �
ð6Þ

The concept of Type-2 fuzzy set and its application in the

FTS modeling approach can be found in recent article

published by Singh and Borah [1].

Definition 9 (Type-2 FTS model) [71]. A Type-2 FTS

model can be defined as an extension of a Type-1 FTS

model. The Type-2 FTS model employs the FLRs estab-

lished by a Type-1 model based on Type-1 observations.

Fuzzy operators such as union and intersection are used to

establish the new FLRs obtained from both the Type-1 and

Type-2 observations. Then, Type-2 forecasts are obtained

from these FLRs.

In many cases, rough set (RS) concept [37] is hybridized

with the FTS modeling approach. To understand the RS

theory in-depth, we need to review some of the basic

definitions as follows[126]:

U is a finite set of objects, i.e. U ¼ fx1; x2; x3; . . .; xng.
Here, each x1; x2; x3; . . .; xn represents the object.

Definition 10 (Equivalence relation) Let R be an equiv-

alence relation over U, then the family of all equivalence

classes of R is represented by U=R.

Definition 11 (Lower approximation and upper

approximation) X is a subset of U, R is an equivalence

relation, the lower approximation of X [i.e., RðXÞ] and the

upper approximation of X [i.e. RðXÞ] is defined as follows:

RðXÞ ¼ [ x 2 U j ½x�R � X
� �

ð7Þ

RðXÞ ¼ [ x 2 U j ½x�R \ X 6¼ ;
� �

ð8Þ

The lower approximation comprises of all objects that

completely belong to the set, and the upper approximation

comprises all objects that possibly belong to the set.

Definition 12 (Boundary region) The set of all objects

which can be decisively classified neither as members of X

nor as members of non-X with respect to R is called the

boundary region of a set X with respect to R, and denoted

by RSB.

RSB ¼ RðXÞ � RðXÞ ð9Þ

Based on the notions shown in Fig. 1, we can formulate the

definitions of crisp set and rough set as follows:

Definition 13 (Crisp set) A set X is called crisp (exact)

with respect to R if and only if the boundary region of X is

empty.
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Definition 14 (Rough set) A set X is called rough

(inexact) with respect to R if and only if the boundary

region of X is nonempty.

3 FTS modeling approach

Chen [18] proposed a simple calculation method to get a

higher forecasting accuracy in the FTS modeling approach.

Still this model is used as the basis of FTS modeling. The

basic architecture of this model is depicted in Fig. 2. This

model employs the following five common steps to deal

with the forecasting problems of time series, which are

explained below. Contributions of various research articles

in different phases of this model are also categorized in this

section.

Step 1. Partition the universe of discourse into

intervals. The universe of discourse can be defined

based on Eq. 3. After determination of length of

intervals, U can be partitioned into several equal

lengths of intervals. To determine the universe of

discourse and partition them into effective lengths of

intervals, many researchers provide various solutions

in these articles1.

Step 2. Define linguistic terms for each of the

interval. After generating the intervals, linguistic

terms are defined for each of the interval. In this step,

we assume that the historical time series data set is

distributed among n intervals (i.e., a1; a2; . . .; and an).

Then, define n linguistic variables ~A1; ~A2; . . .; ~An,

which can be represented by fuzzy sets, as shown

below:

~A1¼1=a1þ0:5=a2þ0=a3þ . . .þ0=an�2þ0=an�1þ0=an;

~A2¼0:5=a1þ1=a2þ0:5=a3þ . . .þ0=an�2þ0=an�1þ0=an;

~A3¼0=a1þ0:5=a2þ1=a3þ . . .þ0=an�2þ0=an�1þ0=an;

..

.

~An¼0=anþ0=a2þ0=a3þ . . .þ0=an�2þ0:5=an�1þ1=an:

ð10Þ

Then, we obtain the degree of membership of each time

series value belonging to each ~Ai. Here, maximum

degree of membership of fuzzy set ~Ai occurs at interval

ai, and 1� i� n. Then, each historical time series value

is fuzzified. For example, if any time series value

belongs to the interval ai, then it is fuzzified into ~Ai,

where 1� i� n.

For ease of computation, the degree of membership

values of fuzzy set ~Ajðj ¼ 1; 2; . . .; nÞ are considered as

either 0, 0:5 or 1, and 1� j� n. In Eq.10, for example,
~A1 represents a linguistic value, which denotes a fuzzy

set ¼ fa1; a2; . . .; ang. This fuzzy set consists of n

members with different degree of membership values

¼ f1; 0:5; 0; . . .; 0g. Similarly, the linguistic value ~A2

denotes the fuzzy set ¼ fa1; a2; . . .; ang, which also

consists of n members with different degree of mem-

bership values ¼ f0:5; 1; 0:5; . . .; 0g. The descriptions of
remaining linguistic variables, viz., ~A3; ~A4; . . .; ~An, can

be provided in a similar manner. Since each fuzzy set

contains n intervals, and each interval corresponds to all

fuzzy sets with different degree of membership values.

For example, interval a1 corresponds to linguistic

variables ~A1 and ~A2 with degree of membership values

1 and 0:5, respectively, and remaining fuzzy sets with

degree of membership value 0. Similarly, interval a2

corresponds to linguistic variables ~A1, ~A2 and ~A3 with

degree of membership values 0:5, 1, and 0:5, respec-

tively, and remaining fuzzy sets with degree of mem-

bership value 0. The descriptions of remaining intervals,

viz., a3; a4; . . .; an, can be provided in a similar manner.

Liu [115] introduced an improved FTS forecasting

method in which the forecasted value is regarded as a

trapezoidal fuzzy number instead of a single-point

value. They replace the above discrete fuzzy sets (as

discussed in Eq. 10) with trapezoidal fuzzy numbers.

The main advantage of the proposed method is that the

decision analyst can accumulate information about the

possible forecasted ranges under different degrees of

confidence.

Step 3. Fuzzify the historical time series data set. In

order to fuzzify the historical time series data, it is

essential to obtain the degree of membership value of

each observation belonging to each ~Aj ðj ¼ 1; 2; . . .; nÞ

Fig. 1 Basic notations of the rough set

1 References are: [10, 29, 30, 39, 40, 50, 51, 54, 57, 73, 84, 95, 105,

106, 110, 111, 116, 117, 132, 165, 170].
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for each day/year. If the maximum membership value of

one day’s/year’s observation occurs at interval ai and

1� i� n, then the fuzzified value for that particular day/

year is considered as ~Ai.

In FTS model, each fuzzy set carries the information of

occurrence of the historic event in the past. So, if these

fuzzy sets would not be handled efficiently, then

important information may be lost. Therefore, for

fuzzification purpose, many researchers provided differ-

ent techniques in these articles [34, 74, 130].

Step 4. Establish the FLRs between the fuzzified time

series values, and create the FLRGs. After time series

data is completely fuzzified, then FLRs have been

established based on Definition 4. The first-order FLR is

established based on two consecutive linguistic values.

For example, if the fuzzified values of time t � 1 and t

are ~Ai and ~Aj, respectively, then establish the first-order

FLR as ‘‘~Ai ! ~Aj’’, where ‘‘~Ai’’ and ‘‘~Aj’’ are called the

previous state and current state of the FLR, respectively.

Similarly, the nth-order FLR is established based on nþ
1 consecutive linguistic values. For example, if the

fuzzified values of time t � 4, t � 3, t � 2, t � 1 and t are
~Aai, ~Abi, ~Aci, ~Adi and ~Aej, respectively, then establish the

fourth-order FLR as ‘‘~Aai; ~Abi; ~Aci; ~Adi ! ~Aej’’, where

‘‘~Aai; ~Abi; ~Aci; ~Adi’’ and ‘‘~Aej’’ are called the previous state

and current state of the FLR, respectively.

Most of the existing FTS models2 use the first-order

FLRs to get the forecasting results. In these articles3,

researchers show that the high-order FLRs (see Defini-

tion 6) can improve the forecasting accuracy. The main

reason of obtaining high accuracy from these high-order

FTS models is that it can consider more linguistic values

that represent the high uncertainty involved in various

dynamic processes. On the other hand, to extract rule

from the fuzzified time series data set, Qiu et al. [129]

utilized C-fuzzy decision trees [127] in FTS model. They

introduced two major improvements in C-fuzzy decision

trees, viz., first a new stop condition is introduced to

reduce the computational cost, and second weighted

C-fuzzy decision tree (WCDT) is introduced where

weight distance is computed with information gain. In

this approach, the forecast rule are expressed as ‘‘if input

value is . . . then it can be label as . . .’’. Based on the

same previous state of the FLRs, the FLRs can be

grouped into a FLRG (see Definition 5). For example,

the FLRG ‘‘~Ai ! ~Am; ~An’’ indicates that there are

following FLRs:

~Ai ! ~Am;

~Ai ! ~An:

Step 5. Defuzzify and compute the forecasted values. In

articles [144, 155], researchers adopted the following

method to forecast enrollments of the University of

Alabama:

YðtÞ ¼ Yðt � 1Þ � R; ð11Þ

where Yðt � 1Þ is the fuzzified enrollment of year

ðt � 1Þ, YðtÞ is the forecasted enrollment of year t rep-

resented by fuzzy set, ‘‘�’’ is the max-min composition

operator, and ‘‘R’’ is the union of fuzzy relations. This

method takes much time to compute the union of fuzzy

relations R, especially when the number of fuzzy rela-

tions is more in Eq. 11 [27, 68]. Therefore, some

researchers in these articles4 introduced various solu-

tions for the defuzzification operation. One of the solu-

tion introduced by Chen [18] is presented below.

This includes the following two principles, viz., Prin-

ciple 1 and Principle 2. The procedure for Principle 1 is

given as follows:

• Principle 1: For forecasting FðtÞ, the fuzzified value

for Fðt � 1Þ is required, where ‘‘t’’ is the current time

which we want to forecast. The Principle 1 is

applicable only if there are more than one fuzzified

values available in the current state. The steps under

Principle 1 are explained next.

Fig. 2 Architecture of Chen’s Model

2 References are: [14, 18, 34, 35, 70, 74, 144–146, 159].
3 References are: [2, 3, 6, 7, 19, 22, 23, 26, 32, 57, 80, 122, 138–141,

153].

4 References are: [18, 19, 31, 36, 41, 68, 70, 74, 79, 80, 93, 98, 109,

128, 133, 135, 137, 140, 141, 171].
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Step 1. Obtain the fuzzified value for Fðt � 1Þ as
~Ai ði ¼ 1; 2; 3. . .; nÞ.
Step 2. Obtain the FLR whose previous state is ~Ai,

and the current state is ~Aj1; ~Aj2; . . .; ~Ajp, i.e., the

FLR is in the form of ‘‘~Ai ! ~Aj1; ~Aj2; . . .; ~Ajp’’.

Step 3. Find the interval where the maximum

membership value of the fuzzy sets
~Aj1; ~Aj2; . . .; ~Ajp (current state) occur, and let these

intervals be aj1; aj2; . . .; ajp. All these intervals

have the corresponding mid-values

Cj1;Cj2; . . .;Cjp.

Step 4. Compute the forecasted value as:

Forecastedvalue ¼
Cj1 þ Cj2 þ . . .þ Cjp

p

� �
ð12Þ

Here, p represents the total number of fuzzy sets

associated with the current state of the FLR.

• Principle 2: This principle is applicable only if there

is only one fuzzified value in the current state. The

steps under Principle 2 are given as follows:

Step 1. Obtain the fuzzified value for Fðt � 1Þ as
~Ai ði ¼ 1; 2; . . .; nÞ.
Step 2. Find the FLR whose previous state is ~Ai

and the current state is ~Aj, i.e., the FLR is in the

form of ‘‘~Ai ! ~Aj’’.

Step 3. Find the interval where the maximum

membership value of the fuzzy set ~Aj occurs. Let

these interval be aj ðj ¼ 1; 2; 3; . . .; nÞ, and its

corresponding mid-value be Cj. This Cj is the

forecasted value for FðtÞ.

4 Hybridize modeling approach for FTS

Recently, numerous SC techniques have been employed to

deal with the different challenges imposed by the FTS

modeling approach. The main SC techniques for this pur-

pose include ANN, RS, and EC. Each of them provides

significant solution for addressing domain specific prob-

lems. The combination of these techniques leads to the

development of new architecture, which is more advanta-

geous and the expert, providing robust, cost effective and

approximate solution, in comparison to conventional

techniques. However, this hybridization should be carried

out in a reasonable, rather than an expensive or a compli-

cated, manner.

In the following, we describe the basics of individual SC

techniques and their hybridization techniques, along with

the several hybridized models developed for handling

forecasting problems of the FTS modeling approach. It

should be noted that still there is no any universally rec-

ognized method to select particular SC technique(s), which

is suitable for resolving the problems. The selection of

technique(s) is completely dependent on the problem and

its application, and requires human interpretation for

determining the suitability of a particular technique.

4.1 Artificial neural network (ANN)

ANNs are massively parallel adaptive networks of simple

nonlinear computing elements called neurons which are

intended to abstract and model some of the functionality of

the human nervous system in an attempt to partially capture

some of its computational strengths [91]. The neurons in an

ANN are organized into different layers. Inputs to the

network are existed in the input layer; whereas outputs are

produced as signals in the output layer. These signals may

pass through one or more intermediate or hidden layers

which transform the signals depending upon the neuron

signal functions.

The neural networks are classified into either single-

layer or multi-layer neural networks. This layer exists

between input layer and output layer. A single-layer feed

forward (SLFF) neural network is formed when the nodes

of input layer are connected with processing nodes with

various weights, resulting to form a series of output nodes.

A multi-layer feed forward (MLFF) neural network archi-

tecture can be developed by increasing the number of

layers in SLFF neural network.

Researchers employ ANN in various forecasting prob-

lems such as electric load forecasting [149], short-term

precipitation forecasting [89], credit ratings forecasting

[90], tourism demand forecasting [94], etc., due to its

capability to discover complex nonlinear relationships [45,

46, 75] in the observations. In literature, several types of

neural networks could be found, but usually feed-forward

neural network (FFNN) and back-propagation neural net-

work (BPNN) are used in time series forecasting (espe-

cially seasonal forecasting).

In Fig. 3, an architecture of BPNN is shown, which

consists of only one hidden layer. In this figure, each In
represents the input to the input node Zn, each Yn represents

the node in the hidden layer, and each On represents the

node in the output layer. The main objective of using

BPNN with MLFF neural network is to minimize the

output error obtained from the difference between the

calculated output (o1; o2; . . .; on) and target output

(n1; n2; . . .; nn) of the neural network by adjusting the

weights. So, in the BPNN, each information is sent back

again in the reverse direction until the output error is very

small or zero. The BPNN is trained under the process of

three phases: (a) Using FFNN for training process of input

information. Adjustment of weights and nodes are made in
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this phase, (b) to calculate the error, and (c) update the

weights. More detail description on applications of ANN

(especially BPNN) can be found in these articles [136,

162].

Hybridization of ANN with FTS is a significant devel-

opment in the domain of forecasting. It is an ensemble of

the merits of ANN and FTS, by substituting the demerits of

one technique by the merits of another technique. This

includes various advantages of ANN, such as parallel

processing, handling of large data set, fast learning capa-

bility, etc. Handling of imprecise/ uncertainty and lin-

guistic variables are done through the utilization of fuzzy

sets. Besides these advantages, the FTS-ANN hybridization

helps in designing complex decision-making systems.

ANN can be used in different steps of the FTS modeling

approach. These steps are discussed in Sect. 3. Now in Fig.

4, three different hybridized based architectures are pre-

sented, where applications of ANN are demonstrated in

different steps of the FTS modeling approach. In the first

architecture (i.e., Fig. 4a), ANN is responsible for deter-

mination of FLRs; in the second architecture (i.e., Fig. 4b),

ANN is responsible for partitioning the Universe of dis-

course; and in the third architecture (i.e., Fig. 4c), ANN is

responsible for defuzzification operation. The roles of

ANN in these architectures are explained in detailed below.

(a) For defining FLRs: In this case, primary inputs for

connection-oriented neural network are fuzzified

time series values. The neural network is trained in

terms of the number of input nodes, hidden nodes

and desired outputs. One or more hidden layers are

employed to automatically generate the FLRs, which

may later be clustered into similar FLRGs. In articles

[2, 3], researchers employ FFNN to define high-

order FLRs in FTS model. Both these models are

applied in forecasting the enrollments of the Uni-

versity of Alabama. Similar to these two approaches,

many researchers [52, 67, 72, 169, 173] use the ANN

in FTS model to capture the FLRs for improving the

forecasted accuracy.

For defining high-order FLRs, a neural network

architecture for the nth-order FLRs is shown in Fig. 5.

Here, each input node takes the previous days

Fðt � nÞ, . . ., Fðt � 2Þ, Fðt � 1Þ fuzzified time series

values, e.g., ~Al; . . .; ~Am; ~An respectively to predict

current day FðtÞ fuzzified time series value, e.g., ~Aj.

Here, each ‘‘t’’ represents the day for corresponding

fuzzified time series values. Based on the input and

output fuzzified values, the nth-order FLRs are

established as: ~Al; . . .; ~Am; ~An ! ~Aj. During simula-

tion, the indices of previous state fuzzy sets (e.g.,

l; . . .;m; n) are used as inputs, whereas index of

current state fuzzy set (e.g., j) is used as target output.

(b) For partitioning the Universe of discourse: Data

clustering is a popular approach for automatically

finding classes, concepts, or groups of patterns

[60]. Time series data are pervasive across all

human endeavors, and their clustering is one of the

most fundamental applications of data mining

[86]. In literature, many data clustering algorithms

[56, 121, 166] have been proposed, but their

applications are limited to the extraction of

patterns that represent points in multidimensional

spaces of fixed dimensionality [167]. In recent two

articles [7, 133], a distance-based clustering algo-

rithm, i.e., the Self-organizing feature maps

(SOFM) is employed for determining the intervals

of the historical time series data sets by clustering

them into different groups. The SOFM is devel-

oped by Kohonen [88], which is a class of neural

networks with neurons arranged in a low dimen-

sional (often two-dimensional) structure, and

trained by an iterative unsupervised or self-orga-

nizing procedure [112]. The SOFM converts the

patterns of arbitrary dimensionality into response

of one-dimensional or two-dimensional arrays of

neurons, i.e., it converts a wide pattern space into a

feature space. The neural network performing such

a mapping is called feature map [142].

(c) For defuzzification operation: Based on the BPNN

architecture as shown in Fig. 3, Singh and Borah

[135] design an ANN architecture, and hybridize it

with the FTS model to defuzzify the fuzzified time

series values. This neural network architecture is

shown in Fig. 5. In this figure, the arrangement of

nodes in input layer can be done in the following

sequence:

Fig. 3 A BPNN architecture with one hidden layer
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Fðt � nÞ; . . .;Fðt � 2Þ;Fðt � 1Þ ! FðtÞ ð13Þ

Here, each input node takes the previous days ðt �
nÞ; . . .; ðt � 2Þ; ðt � 1Þ fuzzified time series values

(e.g., ~Al; . . .; ~Am; ~An) to predict one day ðtÞ advance

time series value ‘‘~Aj’’. In Eq. 13, each ‘‘t’’ represent

the day for considered fuzzified time series values.

4.2 Rough set (RS)

RS is a new mathematical tool proposed by Pawlak [125].

The RS concept [37] is based on the assumption that with

every associated object of the universe of discourse, some

information objects characterized by the same information

are indiscernible in the view of the available information

about them. Any set of all indiscernible objects is called an

elementary set and forms a basic granule of knowledge

about the universe. Any union of elementary sets is referred

to as a precise set; otherwise the set is rough. A funda-

mental advantage of RS theory is the ability to handle a

category that cannot be sharply defined given a knowledge

base [124]. Therefore, the RS theory is used in attribute

selection, rule discovery and various knowledge discovery

applications as data mining, machine learning and medical

diagnoses [33].

The role of RS in the FTS modeling approach is dis-

cussed below.

• For rule induction: In the FTS modeling approach, each

fuzzy set carries the information of occurrence of the

historic event in the past. So, if these fuzzy sets would

not be handled efficiently, then important information

may be lost. Therefore, after generating the intervals,

the historical time series data set is fuzzified, and used

to generate the rules. Sometimes, the number of fuzzy

sets are very large, and the rules generation from these

fuzzy sets become very tedious. For this purpose, Teoh

et al. [150, 151] employ the concept of RS in the FTS

modeling approach to generate rules from the various

FLRs, because the RS [125] acts as a powerful tool for

analyzing data and information tables. In this case,

fuzzy sets are used to establish the FLRs, and then RS

based rule induction technique (LEM2 algorithm) is

employed to mine reasonable rules from the informa-

tion table. The rules produced by RS rule induction

method are in the form of ‘‘If-Then’’ by combining a

Fig. 4 Block diagrams of FTS-ANN hybridized models

Fig. 5 ANN architecture for the nth-order FLRs
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condition value (~Ai) with several decision values

(~Aj; ~Ak; . . .; ~An). For example, these decision values

can be represented with ‘‘Then’’ as follows:

If condition¼ ~Ai

	 

Then decision¼ ~Aj½S�; ~Ak½S�;...; ~An½S�

	 


ð14Þ

Here, each S represents the rule support value. Fol-

lowing is an example of one-order rule generated from

the FLRs as:

If condition¼ ~A4

	 

Then decision¼ ~A5½3�; ~A7½4�; ~A9½1�

	 


ð15Þ

In Eq. 15, when the condition, ~A4, occurs, there are

three possible decision values as: ~A5, ~A7 and ~A9. Here,

each value in square brackets represents the different

support value for each decision value. For example,
~A5½3� indicates that there are three cases occurred for

the fuzzy set ~A5 when the condition value is ~A4, and the

total support value for this rule is 3. Similarly, the rest

of the rules can be explained.

4.3 Evolutionary computing (EC)

EC is a collection of problem solving techniques that

includes paradigms such as Evolutionary Strategies, Evo-

lutionary Programs, Genetic Algorithms (GAs), and

Genetic Programming (GP) [11]. GA concept was first

proposed by Holland [62]. In the GA, a population consists

of chromosomes and a chromosome consists of genes,

where the number of chromosomes in a population is called

the population size [96]. In the following, we briefly review

the basic concept of GA from articles [58, 59, 142]:

• Step 1. Create a random initial state. An initial

population is created from a random selection of

solutions (chromosomes).

• Step 2. Evaluate fitness. A value for fitness is assigned

to each solution depending on how close it actually is to

solving the problem.

• Step 3. Reproduce. Those chromosomes with a higher

fitness value are more likely to reproduce offspring.

• Step 4. Next generation. If the new generation contains

a solution that produces an output that is close enough

or equal to the desired answer then the problem has

been solved. Otherwise, iterate the whole process with

the new generation.

Particle swarm optimization (PSO) is a new algorithm of

EC, which is applied to solve the bilevel programming

problem [156]. To deal with complicated optimization

problem, recently many researchers hybridized this opti-

mization technique with the FTS modeling approach. In the

following, we briefly review the basic concept of the PSO

from articles [77, 100, 120].

The PSO algorithm was first introduced in article

[48]. It is a population-based evolutionary computation

technique, which is inspired by the social behavior of

animals such as bird flocking, fish schooling, and

swarming theory [49, 113, 114]. The PSO can be

employed to solve many of the same kinds of problems

as GAs [85]. The PSO algorithm is applied to a set of

particles, where each particle has assigned a randomized

velocity. Each particle is then allowed to move towards

the problem space. At each movement, each particle

keeps track of its own best solution (fitness) and the best

solution of its neighboring particles. The value of that

fitness is called ‘‘p-best’’. Then each particle is attracted

towards the finding of global best value by keep

tracking the overall best value of each particle, and its

location [152]. The particle which obtained the global

fitness value is called ‘‘g-best’’.

At each step of optimization, velocity of each particle is

dynamically adjusted according to its own experience and

its neighboring particles, which is represented by the fol-

lowing equations:

Velid;t ¼ a� Velid;t þM1 � Rand � ðPBid � CPid;tÞþ
M2 � Rand � ðPGbest � CPid;tÞ

ð16Þ

The position of a new particle can be determined by the

following equation:

CPid;t ¼ CPid;t þ Velid;t ð17Þ

where i represents the ith particle and d represents the

dimension of the problem space. In Eq. 16, a represents the

inertia weight factor; CPid;t represents the current position

of the particle i in iteration t; PBid denotes the previous best

position of the particle i that experiences the best fitness

value so far (p-best); PGbest represents the global best fit-

ness value (g-best) among all the particles; Rand gives the

random value in the range of ½0; 1�; M1 and M2 represent

the self-confidence coefficient and the social coefficient,

respectively; and Velid;t represents the velocity of the par-

ticle i in iteration t. Here, Velid;t is limited to the range

½�Velmax;Velmax�, where Velmax is a constant and defined by
users.

The role of EC in the FTS modeling approach is cate-

gorized below based on different functions.

(a) For determination of optimal interval lengths: In the

FTS modeling approach, GA is used to arrive

optimal interval lengths using certain genetic oper-

ators. In this case, some chromosomes are defined as

the initial population based on the number of
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intervals, where each chromosome consists of genes.

Initially each chromosome is randomly generated by

the system. Then, the system randomly selects

chromosomes and genes from the population to

perform the crossover and mutation operations,

respectively. The whole process is repeated until

optimal interval lengths are achieved. The achieve-

ment of optimality can be measured with the

performance measure parameters (refer to Sect. 6),

such as AFER, MSE, etc. Based on this concept,

researchers in articles [25, 26] presented the methods

for forecasting the enrollments by hybridizing GA

technique with the FTS modeling approach. How-

ever, the basic difference between the models

presented in [26] and [25] is that first model is

based on high-order FLRs, whereas second model is

based on first-order FLRs. Similar to above

approach, Lee et al. [96, 97] presented new methods

for temperature and the TAIFEX forecasting based

on two-factors high-orders FLRs.

(b) For finding best intervals using PSO: The main

downside of FTS forecasting model is that increase

in the number of intervals increases accuracy rate of

forecasting, and decreases the fuzziness of time

series data sets [133]. Recently, many researchers

[65, 66, 92, 93] show that appropriate selection of

intervals also increases the forecasting accuracy of

the model. Therefore, in order to get the optimal

intervals, they used PSO algorithm in their proposed

model [65, 66, 92, 93]. They signify that the PSO

algorithm is more efficient and powerful than the GA

as applied by [26] in selection of proper intervals.

The basic concept of FTS-PSO hybridized model is

explained below. Let n be the number of intervals, x0
and xn be the lower and upper bounds of the universe

of discourse U on historical time series data set DðtÞ,
respectively. A particle is an array consisting of n�
1 elements such as x1, x2, . . ., xi, . . ., xn�2 and xn�1,

where 1� i� n� 1 and xi�1\xi. Now based on

these n� 1 elements, define the n intervals as

I1 ¼ ðx0; x1�, I2 ¼ ðx1; x2�, ..., Ii ¼ ðxi�1; xi�, ...,

In�1 ¼ ðxn�2; xn�1� and In ¼ ðxn�1; xn�, respectively.
Now, in Fig. 6, each x1, x2, . . ., xi, . . ., xn�2 and xn�1

represents the position of the particle at the corre-

sponding interval I1 ¼ ðx0; x1�, I2 ¼ ðx1; x2�, ...,

Ii ¼ ðxi�1; xi�, ..., In�1 ¼ ðxn�2; xn�1� and

In ¼ ðxn�1; xn�, respectively. In case of movement

of a particle from one position to another position,

i.e., from x1 to x2, the elements of the corresponding

new array always require to be adjusted in an

ascending order such that x1 � x2 � . . .xn�1. In this

process, the FTS-PSO hybridized model allows the

particles to move other positions based on Eqs. 16

and 17, and repeats the steps until the stopping

criterion is satisfied or the optimal solution is found.

If the stopping criterion is satisfied, then employ all

the FLRs obtained by the global best position (g-

best) among all personal best positions (p-best) of all

particles. Based on the similar concept, Singh and

Borah [1] introduced a new FTS-PSO hybridized

model that can deal with M-factors time series data

sets. The main difference between the existing

models [92, 93] and the Singh and Borah [1] model

is the procedure for handling the intervals based on

their importance. Singh and Borah [1] model also

incorporates more information in terms of observa-

tions, which are represented in terms of FLRs. These

FLRs are later employed for defuzzification opera-

tion based on a technique proposed in the article.

(c) For determination of membership values using PSO:

The PSO technique is first time employed by the

researcher Aladag et al. [4] to obtain the optimal

membership values of the fuzzy sets in the fuzzy

relationship matrix ‘‘R’’ (refer to Eq. 11). In this

approach, first FCM clustering algorithm is used for

fuzzification phase of time series data set. Then,

Eq. 11 is used to compute the forecasted values.

4.4 Other hybridization approaches

To improve the forecasting accuracy, some researchers also

hybridize Hidden-Markov model (HMM), Adaptive

expectation (AE), Intuitionistic fuzzy set (IFS) and statis-

tical linear models with the FTS modeling approach.

Related works corresponding to hybridization of these

techniques with the FTS modeling approach are discussed

next.

• FTS with HMM: Sullivan and Woodall [147] proposed

the HMM based model by using conventional matrix

multiplication to minimize the overhead of computation

time in deriving the FLRs in Song and Chissom’s

model [144–146]. Similarly, Hsu et al. [64] applied a

fuzzy Markov relationship matrix to perform forecast-

ing. However, their applications are limited to forecast

the price limit and trading volume difference of Taiwan

weighted stock index (TWSI). Researchers in articles

[108] and [43] extended the work of [147], and

proposed a novel stochastic forecasting model for the

FTS modeling approach. This model is based on the

Fig. 6 The graphical representation of particle
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HMM in which the FLRs are formulated as state

transitions so that it can handle two-factors forecasting

problems.

• FTS with AE: The AE is a post defuzzification

operation used to enhance the forecasting accuracy. In

these articles [3, 35, 36, 38, 118], authors employ the

following adaptation equations:

Adaptedðt þ 1Þ ¼ Actualðt � 1Þ þ a

� ForecastðtÞ � Actualðt � 1Þð Þ
ð18Þ

Chen et al. [31] proposed a fibonacci based AE

method, which can be represented as:

Adaptedðt þ 1Þ ¼ActualðtÞ þ a

� Forecastðt þ 1Þ � ActualðtÞð Þþ
b� ForecastðtÞ � Actualðt � 1Þð Þ

ð19Þ

Chen et al. [32] extended the AE model to derive a

multi-period AE model based on the following Eq. 20:

Adaptedðt þ 1Þ ¼ ActualðtÞ þ
Xk

i¼1

hi � ei ð20Þ

Tsaur and Kuo [154] obtained the forecasting value

using the proposed adaptive FTS model as:

AdaptedðtÞ ¼ a� ActualðtÞ þ ð1� aÞ � Adaptedðt � 1Þ
ð21Þ

In Eqs. 18 and 19, a and b represent adapted param-

eters. In Eq. 20, ei is the ith period of forecast error, and

hi is the adaptation parameter for ei.
• FTS with IFS: A significant features of IFS [5] is to

assign to each element a membership degree and a

nonmembership degree. Therefore, it can be regarded

as a powerful tool to deal with uncertainty and

vagueness in real applications. Based on hybridization

of IFS and FTS, Joshi and Kumar [81] propose a novel

computational model of forecasting. In the proposed

method, degree of nondeterminacy is used to establish

the FLRs. The time series data are fuzzified on the basis

of degree of nondeterminacy in the IFSs.

• FTS with statistical linear models: Egrioglu et al. [52]

introduced a new hybrid model based on FTS, SARIMA

and ANN. In the first phase of the proposed method, the

best SARIMAmodel for the crisp time series is determined

using Box-Jenkins method. In the second phase, the

parameters and order of the proposed model, which is

called partial high order bivariate FTS forecasting model, is

found dependent upon the inputs of determined by

SARIMA model. Then, FLRs are established using ANN.

Wong et al. [164] proposed two forecasting methods, viz.,

traditional time series method (ARIMA model and

VARMA model) and FTS Method (two-factor model,

Heuristic model, and HMM) for the forecasting problem.

Their comparison studies show that the ARIMA model

comparatively got smaller forecasting errors for longer

period of data set. However, for short period of data,

forecasting accuracy of FTS model is higher. In compar-

ison of forecasting accuracy between one variable and two

variable models, the HMM with one variable performs

better forecasting than two variables model.

Wang in article [158] presented the comparison studies of

two forecasting methods, viz., ARIMA time series method

and the FTS method. Based on the FTS method, three

models referred to as Factor model, Heuristic model, and

the HMM, are designed. Comparison studies show that the

ARIMA model has the forecast advantage, with little

prediction errors when the test period is lengthy. On the

other hand, if the test period is relatively shorter, the FTS

model has been proved to be more effective than the

ARIMA model. Overall analysis shows that the Heuristic

model has the lowest prediction error, followed by the

HMM.

5 Financial forecasting and type-2 FTS models

The application of FTS in financial forecasting [102]

has attracted many researchers’ attention in the recent

years. In recent years, many researchers focus on

designing the models for the TAIEX [42, 67, 161, 173]

and the TIFEX [4, 6, 8, 92] forecasting. Their appli-

cations are limited to deal with either one-factor or two-

factors time series data sets. However, forecasting

accuracy of financial data set can be improved by

including more observations (e.g., close, high, and low)

in the models. In Type-2 FTS modeling approach,

observation that is handled by Type-1 FTS model can

be termed as ‘‘main-factor/Type-1 observation’’,

whereas observations that are handled by Type-2 FTS

model can be termed as ‘‘secondary-factors/Type-2

observations’’. Later, both these observations are

combined together to take the final decision. But, due to

involvement of Type-2 observations with Type-1

observation, massive FLRGs are generated in Type-2

model. For this reason, Type-2 FTS model suffers from

the burden of extra computation. Therefore, most of the

researchers still use to prefer Type-1 FTS modeling

approach for forecasting. But, as far as accuracy of

forecasting is concerned, Type-2 FTS models produce

better result than Type-1 FTS models. Basic steps

involve in Type-2 FTS modeling approach that can deal

with multiple observations together are presented in

Algorithm 1.
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Contributions of various researchers in Type-2 FTS

models are presented below:

(a) Huarng and Yu [71] model: This model first time

employs the Type-2 FTS concept in financial

forecasting (TAIEX) by considering close, high,

and low observations together. In this model, they

suggested some improvement in Algorithm 1 as: (1)

Introduction of union (_) and intersection (^)
operators. This operators are applied in Step 8 of

Algorithm 1. Both these operators are used to

include Type-1 and Type-2 observations, and (2)

For defuzzification operation, they employ Principal

1 and Principal 2 (as discussed in Sect. 3) in Step 9

of Algorithm 1.

(b) Bajestani and Zare [9] model: This model is the

enhancement of the model proposed by Huarng and

Yu [71]. In this model, researchers employ the four

changes as: (1) Using triangular fuzzy set with

indeterminate legs and optimizing these triangular

fuzzy sets. This improvement is applied in Step 3

of Algorithm 1, (2) using indeterminate coefficient

in calculating Type-2 forecasting. This improve-

ment is applied in Step 9 of Algorithm 1, (3) using

center of gravity defuzzifier. This improvement is

applied in Step 9 of Algorithm 1, and (4) using

4-order Type-2 FTS. This improvement is applied

in Step 5 of Algorithm 1.

(c) Lertworaprachaya et al. [101] model: Based on

articles [71, 137], a novel high-order Type-2 FTS

model is proposed in [101]. This model is divided

into two parts: high-order Type-1 FTS forecasting

and Type-2 FTS forecasting. The high-order Type-1

FTS model is employed to define the FLRs. This

improvement is suggested in Step 5 of Algorithm 1.

The high-order FLRs can be defined based on

Definition 6. Then the rule in the high-order Type-

1 FTS is used in Type-2 FTS forecasting.

(d) Singh and Borah [1] model: This Type-2 FTS model

can utilize multiple observations together in

forecasting, which was the limitation of previous

existing Type-2 FTS models. This model suggested

the following changes in Algorithm 1 as: (1) Utilize

the PSO in Step 2 of Algorithm 1 to adjust the

lengths of intervals in the universe of discourse that

are employed in forecasting, without increasing the

number of intervals, and (2) introduce two new

operators [ and \, and apply them on FLRGs of

Type-1 and Type-2 observations, and obtain the

fuzzified forecasting data. This improvement is

suggested in Step 8 of Algorithm 1. For these two

improvement, accuracy rate of this model is better

than various existing FTS models [18, 19, 71, 135,

171].

6 Performance measure parameters

To assess the performance of the time series forecasting

models (especially FTS models), researchers use numerous

performance measure parameters, such as AFER, MAPE,

MSE, RMSE, �A, SD, U, TS, DA, dr, R, R2, PP, etc. All these

parameters and their statistical significance are presented in

Table 1. In this table, each Fi and Ai is the forecasted and

actual value of day/year i, respectively, and N is the total

number of days/years to be forecasted.

7 Classification of FTS models based on input variables

Based on the number of input variables, FTS models can be

classified into either one-factor or M-factors. Each one-

factor model employs only one input variable, two-factors

model employs only two inputs variable, and so on.

However, there are some models that employ M-factors. In

Tables 2 and 3, we summarize the detail of input variables

choices (in the second column) for the several FTS fore-

casting models. In these tables, we also present the list of

articles (in the first column) in which researchers compare

their forecasting accuracies with the various FTS models

(listed in the third column).

[Discussion] In Table 2, a total of 103 articles are cited.

44% of the cited articles [see Fig. 7 (left)] use the university

enrollment data set in one-factor FTS models. About 22% of

the cited articles [(see Fig. 7 (left)] use stock index prices as

input data, i.e., the daily closing price and its dependent

variables. Mostly used stock index prices are TAIFEX and

TAIEX. Some researchers use TAIEX in their one-factor

FTS models [72, 150, 151], whereas some researchers use

TAIFEX in their one-factor FTS models [4, 92]. About 34%
of the reviewed articles [(see Fig. 7 (left)] concentrate on

using different time series data as inputs. For example, in
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article [52], seasonal sulfur dioxide time series data is used;

in articles [158, 164], TE data is used as inputs.

In Table 2, a total of 48 articles are cited. In 2000, first

two-factors FTS model was proposed in article [27]. In this

model, the main-factor is DTDST, whereas the second-

factor is DCDDST. Later, many researchers provide sev-

eral solutions to enhance the predictability of the proposed

model [27], and contribute 31% of the cited articles [see

Fig. 7 (right)]. In 2001, Huarng [70] first time uses both

TAIEX and TAIFEX data sets in its two-factors model. In

this model, Huarng forecasts TAIFEX by employing

TAIFEX as the main-factor and TAIEX as the second-

factor. Later, researchers contribute 17% of the cited

articles [see Fig. 7 (right)] for TAIFEX forecasting, by

considering TAIEX as the second-factor. In 2009, Chen

and Chen [16] first time designed M-factors FTS model for

TAIEX forecasting. In this model, remaining factors are

either the Dow Jones, the NASDAQ, the M1b, or their

combination. Based on similar data sets, researchers design

several models, which contribute 10% of the cited articles

[see Fig. 7 (right)].

8 Existing unsolved problems and research trends

The FTS modeling approach is an interminable and an

arousing research domain that has continually increased

challenges and problems over the last decade. In this sec-

tion, we present various research problems and trends

associated with the FTS modeling approach. These dis-

cussions are based on the recent research articles published

by Singh and Borah [1, 133–135].

Problem Definition 1 (lengths of intervals). For fuzz-

ification of time series data set, determination of lengths of

intervals of the historical time series data set is very

important. In case of most of the FTS models [18, 69, 74,

144, 146], the lengths of the intervals were kept the same.

No specific reason is mentioned for using the fixed lengths

of intervals.

Problem Definition 2 (ignorance of repeated FLRs).

After generating the intervals, the historical time series

data sets are fuzzified based on the FTS theory. Each

fuzzified time series values are then used to create the

FLRs. Still most of the existing FTS models ignore repe-

ated FLRs. To explain this, consider the following four

FLRs at four different time functions, Fðt ¼ 1; 2; 3; 4Þ as:

Table 1 Performance measure parameters and its statistical significance

Parameter Significant

AFER ¼ jFi�Ai j=Ai

N
� 100% Smaller value of AFER indicates good forecasting

MAPE ¼
PN

i¼1
jFi�Ai j=Ai

N

Smaller value of MAPE indicates good forecasting

MSE ¼
PN

i¼1
ðFi�AiÞ2

N

Smaller value of MSE indicates good forecasting

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ðFi�AiÞ2

N

r
Smaller value of RMSE indicates good forecasting

�A=

PN

i¼1
Ai

N

For a good forecasting, the observed mean should be close to the predicted mean

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1ðAi � �AÞ2

q
For a good forecasting, the observed SD should be close to the predicted SD

U ¼ A
B Here, A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðAi � FiÞ2

q
and B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 A

2
i

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 F

2
i

q

The U is bounded between 0 and 1, with values closer to 0 indicating good forecasting accuracy

TS ¼ Rsfe

Mad

A TS value between �4 and þ4 indicates that the model is working correctly

Here, Mad =

PN

i¼1
jðFi�AiÞj
N

and Rsfe =
PN

i¼1ðFi � AiÞ
A Mad [ 0 indicates that forecasting model tends to under-forecast

A Mad\0 indicates that forecasting model tends to over-forecast

DA ¼ 1
N�1

PN�1
i¼1 ai Here, ai ¼

1; Aiþ1 � Aið Þ Fiþ1 � Aið Þ[ 0

0; Otherwise

�

DA value is measured in % and its value closer to 100 indicates good forecasting

dr=
jFi�Ai j
SD

A value of dr less than 1 indicates good forecasting

R ¼ n
P

AiFi�ð
P

AiÞð
P

FiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð
P

A2
i
Þ�ð

P
AiÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð
P

F2
i
Þ�ð

P
FiÞ2

p A value of R greater than equal to 0:8 is generally considered as strong

The R2 lies between 0\R2\1, and indicates the strength of the linear association between Ai and Fi

PP ¼ 1� ðRMSE=SDÞ A PP value greater than zero indicates good forecasting and vice-versa
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Fðt ¼ 4Þ ~Ai ! ~Ai;

Fðt ¼ 3Þ ~Ak ! ~Aj;

Fðt ¼ 2Þ ~Ai ! ~Ai;

Fðt ¼ 1Þ ~Ai ! ~Aj:

ð22Þ

In Eq. 22, three FLRs at functions Fðt ¼ 4Þ, Fðt ¼ 2Þ and
Fðt ¼ 1Þ have the same fuzzy set, (~Ai), in the previous

state. Hence, these FLRs can be represented in the fol-

lowing FLRG as:

Fðt ¼ 4Þ ~Ai ! ~Ai;

Fðt ¼ 3Þ ~Ak ! ~Aj;

Fðt ¼ 2Þ ~Ai ! ~Ai;

Fðt ¼ 1Þ ~Ai ! ~Aj:

ð22Þ

In Eq. 22, three FLRs at functions Fðt ¼ 4Þ, Fðt ¼ 2Þ and
Fðt ¼ 1Þ have the same fuzzy set, (~Ai), in the previous

state. Hence, these FLRs can be represented in the fol-

lowing FLRG as:

Table 2 Categorization of one-factor FTS models based on input data sets

Articles Data set used Compared with existing FTS Models Performance measure

(in terms of considered data set) parameters mainly used

[134]a University enrollment data set of Alabama [18, 28, 34, 39, 57, 95, 115, 128, 144, 165] AFER, RMSE, PP, TS, etc.

[67]b TAIEX [18] RMSE

[4]c TAIFEX [63, 96, 97] RMSE, MAPE, DA

[116] PVMI and MSSD [18, 36, 74, 95] MAPE

[22] ID [69, 73] RMSE

[34] ITPE [18] MSE, AFER

[31] TSMC [18, 171] RMSE

[137] WP [18] MSE

[139] RPP [18] MSE

[157] TTUSA [70, 74] RMSE, MAPE

[138] LCP � AFER, MSE

[32] HSI [18, 31, 35, 171] RMSE

[7] FOREX [19, 25] �A, SD

[41] OPV [18, 171] AFER, MSE

[10] AQPP and MG � RMSE

[40] DOC [18, 171] RMSE, MAPE

[151] NYSE [18, 171] RMSE

[150] NASDAQ [18, 171] RMSE

[4, 169] IMKB [18, 39, 69, 73, 144] RMSE, MAPE, DA

[115] PG [18, 74, 95] MSE, MAPE

[158, 164] TE � MSE

[110, 111] MR [106] MSE, DA

[110, 111] DT [106] MSE, DA

[111] DCD [106] MSE, DA

[57, 81] SBI [18, 137] MSE, AFER

[129] SCI [18, 71, 99, 144, 145] RMSE

[52] ANSO � AFER, RMSE

[52] Series G [18, 19, 143] AFER, RMSE

[154] TTD [18] AFER, RMSE

[38] ICT � �
[117, 131] MSVPMC [117] AFER

a In this column, more list of articles can be included as: [2–4, 6, 8, 14, 18, 22, 25, 26, 34, 39, 50, 51, 54, 57, 65, 66, 69, 70, 73, 74, 81, 84, 93,

95, 105, 106, 115, 117, 128, 130–132, 137–139, 144–146, 154, 155, 159, 165, 170]
b In this column, more list of articles can be included as: [22, 30–32, 35, 36, 39, 42, 69, 72, 73, 150, 151, 161, 165, 170, 171, 173]
c In this column, more list of articles can be included as: [6, 8, 92]
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~Ai ! ~Ai; ~Aj: ð23Þ

Since existing FTS models do not consider the identical

FLRs during forecasting. They simply use the FLR as

shown in Eq. 23 by discarding the repeated FLRs in the

FLRG.

Problem Definition 3 (equal importance to FLRs). In

existing FTS models, each FLR is given equal importance,

which is not an effective way to solve real time problems.

Because, each fuzzy set in the FLR represents various

uncertainty involved in the domain. According to Yu [171],

there are two possible ways to assign weights, i.e., (1)

assign weights based on human interpretation, and (2)

assign weights based on their chronological order.

Assignment of weights based on human-knowledge is not

an acceptable solution for real world problems as human-

interpretation varies from one to another. Moreover,

human-interpretation is still an issue which is not under-

stood by the computational scientists [134]. Therefore, Yu

[171] considered the second way, where all the FLRs are

given importance based on their chronological order. In

this scheme, weight for each FLR is determined based on

their sequence of occurrence.

Problem Definition 4 (utilization of first-order FLRs).

Most of the previous FTS models [18, 34, 74, 144–146] use

first-order FLRs (see Eq. 4) to get the forecasting results.

The first-order FLRs based models use only previous one

day/year fuzzified value for forecasting. Hence, the models

which employ the first-order FLRs, are unable to capture

more uncertainty reside in the events.

Problem Definition 5 (utilization of current state’s

fuzzy sets). Previous FTS models [144–146] utilize the

current state’s fuzzified values (i.e., right-hand side of the

FLR, see Eq. 4) for forecasting. This approach, no doubt,

improves the forecasting accuracy, but it degrades the

predictive skill of the FTS models, because predicted val-

ues lie within the sample.

Problem Definition 6 (defuzzification operation). In

1996, Chen [18] used simplified arithmetic operations for

defuzzification operation by avoiding the complicated

max-min operations (see Eq. 11), and their method pro-

duced better results than Song and Chissom models [144–

146]. Most of the existing FTS models (e.g., refer to arti-

cles [50, 70, 73, 105]) have used Chen’s defuzzification

method [18] to acquire the forecasting results. However,

forecasting accuracy of these models are not good enough.

Table 3 Categorization of M-factors FTS models based on input data sets

Articles Main-factor data set Second-factor data set Compared with existing FTS Models Performance measure

(in terms of considered data sets) parameters mainly used

[133]a DTDST DCDDST [15, 27, 96–98, 160] AFER

[28]b TAIFEX TAIEX [18, 70, 98] MSE

[20]c TAIEX Dow Jones, NASDAQ, M1b [18, 21, 24, 68, 72, 172] RMSE

[172] TAIEX TAIFEX [72] RMSE

[118] TAIEX High, Low, Close, Open Price [18, 39, 171] AFER

[9]d TAIEX High, Low, Close Price [18, 71] RMSE

[17] TAIEX M1b [18, 24, 72, 171, 172] RMSE

[107] TSEC NASDAQ [96] MSE, AFER

[44] TAIEX Trading Volume [27, 71] RMSE

[44] NASDAQ Trading Volume [27, 71] RMSE

[17]e NTD JPY, KRW, CNY, TAIEX [103] MSE

[108] TWSI Exchange Rate Data [98] MSE, AFER

[64] TWSI Trading Volume Difference � �
[123] KOSPI 200 KOSPI 200 (Underlying Price) � MSE

[43] TWSI NASDAQ [24, 98, 108] MSE, AFER

[53]f YRAC MW, DW, SW, LC [79, 98] AFER

[68] TSI Dow Jones, NASDAQ, M1b [18] RMSE

[6] IKD IKD, IK � MSE

a In this column, more list of articles can be included as: [6, 15, 21, 27, 28, 43, 63, 96–98, 107–109, 160]
b In this column, more list of articles can be included as: [63, 70, 96–98, 123, 160]
c In this column, more list of articles can be included as: [16, 21, 24, 29]
d In this column, more list of articles can be included as: [71, 101]
e In this column, an article can be included as: [103]
f In this column, more list of articles can be included as: [78, 79]
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9 Future directions

In this article, we reviewed various models based on the

FTS modeling approach. However, this study deserve

further studies, therefore this section is dedicated to confer

a few significant future works closely related to our study.

• In observation of certain events, recorded time series

values do not only depend on previous values but also

on current values. Therefore, the representation of FLR

in terms of high-order is a worthy idea in the FTS

modeling approach [34]. However, defining FLR in

high-order is more complicated and computationally

more expensive than first-order [3]. Therefore, many

researchers employ ANN based method to define FLRs

in high-order [2, 52, 53, 55]. But, still there is no any

method suggested to find out the optimal order of the

high-order FLRs. Therefore, there is a need to put more

stress on development of new method that can

automatically determine the optimal order of the

high-order FLRs to deal the forecasting problems.

• The multivariate FTS models are based on the prior

assumption that one-factor always dependent on other

factors. Therefore, in order to fuzzify all these factors

together, it is very much essential to extract the hidden

information from the data, and then try to explore the

membership values of each datum. To tackle this

problem, many researchers use a FCM technique [4, 21,

39, 109–111]. While some researchers [7, 10, 29, 30,

50, 73, 135] introduce unsupervised clustering tech-

niques that determine the membership values effi-

ciently. In spite of all these developments, there is the

need for future research on developing more robust data

clustering algorithm for multivariate FTS model.

• FTS model was introduced in an article [144] try to

predict the future values by capturing the past uncer-

tainties. For example, how much difference between

the past values and current values will be considered as

very low, low, medium, high and very high, are

determined based on human perception. The FTS

models developed so far can only predict the future

values, but they don’t consider the change in trend

associated with the time series values in terms of

upward, downward or unchanged. 13 years later, some

researchers [17, 30, 35, 38, 131] considered these

trends, and proposed trend-based FTS models. How-

ever, these trend-based models are very few in num-

bers, so still need some attention in this approach.

Therefore, in future more robust trend-based models

can be expected from the researchers.

• The study reflects that hybridized models are more

robust than conventional FTS models. However,

difficulties arise in determining the applications of

such techniques in suitable phase. Therefore, there

is the need to develop a model selection technique

that can effectively make the use of both input

variables and knowledge, and fulfill the forecasting

objectives.

• Most of the existing FTS models have used Chen’s

defuzzification method [18] to acquire the forecast-

ing results. However, forecasting accuracy of these

models are not good enough. Researchers also

introduce various defuzzification techniques. In

spite of these contributions, there is a future scope

to propose new defuzzification technique. For

example, one can employ entropy [148, 163] for

the defuzzification purpose. For this purpose, we

need to first obtain the entropy for each of the

Fig. 7 Time distributions of the referred articles based on one-factor (left) and M-factors (right) data sets
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intervals based on the frequencies of the intervals.

Then, apply the following steps for the defuzzifica-

tion operation as:

– If forecasting day is YðtÞ, then obtain the fuzzified

value for day Yðt � 1Þ as ~Aiði ¼ 1; 2; 3; . . .; nÞ.
– Obtain the FLRG whose the previous state is

~Aiði ¼ 1; 2; 3; . . .; nÞ, and the current state is
~Ak; ~As; . . .; ~An, i.e., the FLRG is in the form of
~Ai ! ~Ak; ~As; . . .; ~An.

– Find the intervals where the maximum membership

value of the fuzzy sets ~Ak; ~As; . . .; ~An occurs, and let

these intervals be ak; as; . . .; an, respectively. All

these intervals have the corresponding mid-points

Mk;Ms; . . .;Mn, and the corresponding entropies

Hk;Hs; . . .;Hn, respectively.

– Apply the following formula to calculate the

forecasted value for day, YðtÞ:

Forecast tð Þ ¼ Mk �
HkPn

i¼1 Hk þ Hs þ . . .þ Hn

� �
þ

Ms �
HsPn

i¼1 Hk þ Hs þ . . .þ Hn

� �
þ

. . .

Mn �
HnPn

i¼1 Hk þ Hs þ . . .þ Hn

� �
:

ð24Þ

• In further research work, one can present a model based

on the hybridization of FTS and Grey system theory

[82] to predict the time series values. The predicted

results obtained can be analyzed based on various

statistical parameters as discussed in Sect. 6. The

performance of this model can also compared with

various statistical models (http://www.spss.com.hk/

statistics/).

10 Conclusion and discussion

From 1994 onwards, numerous time series forecasting

models have been proposed based on the FTS modeling

approach. Due to the uncertain nature of time series, scope of

extensive applications in this domain raised simultaneously

with the development of new algorithms and architectures.

The FTSmodeling approach is currently applied to a diverse

range of fields from economy, population growth, weather

forecasting, stock index price forecasting to pollution fore-

casting, etc. Various aspects of complexities arise in this

research domain, if the number of factors in time series data

sets is large. These complexities can be evolved in terms of

(a) determination of length of intervals, (b) establishment of

FLRs between different factors, and (c) defuzzification of

fuzzified time series values.

Present research in the FTS modeling approach mainly

aims at designing algorithms for discretization of time

series data set, rule generation from the fuzzified time

series values, proposing techniques for defuzzification

operation, and designing various hybridized based archi-

tectures for resolving complex decision making problems.

SC techniques comprise of ANN, RS, EC, and their

hybridizations, have recently been employed to solve FTS

modeling problems. They endeavor to provide us approx-

imate results in a very cost effective manner, thereby

reducing the time complexity. In this survey, a categori-

zation has been presented based on utilization of different

SC techniques with the FTS modeling approach along with

basic architectures of different hybridized based FTS

models.

Fuzzy sets are the oldest component of SC, which is

known for representation of real time or uncertain events in

a linguistic manner, and can take decisions very faster.

ANNs are especially used in discovering the rules, and can

establish a linear association between the inputs and out-

puts. RSs is mainly employed for extracting hidden pat-

terns from the data in terms of rules. EC provides efficient

search algorithms to select based intervals from the dis-

cretized time series data set, based on some evaluation

criterion.

FTS-ANN hybridization exploits the features of both

ANN and fuzzy sets in establishment of FLRs/linguistic

rules, data discretization, and defuzzification of fuzzified

time series data set. FTS-RS hybridization uses the

features of both RS and fuzzy sets in discovering

meaningfull rules from the fuzzified time series data set,

thereby employing these rules in defuzzification opera-

tion. FTS-EC hybridization utilizes the characteristics of

both EC and fuzzy sets in the determination of optimal

interval lengths of the discretized time series data set,

which are further used to represent time series data set in

terms of fuzzy sets/linguistic terms. From this survey, it

is obvious that the research scope in FTS will be

increased in the near future for its flexibility in repre-

senting real life problems in a very natural way. This

study also describes elaborately different phases of the

FTS modeling approach. Various research issues and

challenges in the FTS modeling approach are presented

in the subsequent section. All these inclusions may help

the researchers to identify: (a) what are the problems in

the FTS modeling approach?, (b) how to resolve all these

problems using heuristics approach?, and (c) how to

employ different SC methodologies in the FTS modeling

approach to improve its efficiency?
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Appendix

1. Abbreviations used in Sect. 3:

• SLFF: Single-layer feed forward

• MLFF: Multi-layer feed forward

• FFNN: Feed-forward neural network

• BPNN: Back-propagation neural network

• GA: Genetic algorithm

• GP: Genetic programming

2. Abbreviations used in Sect. 4:

• ANN: Artificial neural network

• GA: Genetic algorithm

• EC: Evolutionary computing

• PSO: Particle swarm optimization

• HMM: Hidden-markov model

• AE: Adaptive expectation

• IFS: Intuitionistic fuzzy set

• SOFM: Self-organizing feature maps

• FFNN: Feed-forward neural network

• CPDA: Cumulative probability distribution

approach

• FCM: Fuzzy c-mean

• LEM2: Learning from example module 2

• TAIFEX: Taiwan futures exchange

• TWSI: Taiwan weighted stock index

• SARIMA: Seasonal autoregressive integrated mov-

ing average

• HMM: Hidden-markov model

• IFS: Intuitionistic fuzzy set

• ARIMA: Autoregressive integrated moving

average

• VARMA: Vector autoregressive moving average

3. Abbreviations used in Sect. 5:

• TAIEX: Taiwan stock exchange capitalization

weighted stock index

• TAIFEX: Taiwan futures exchange

4. Abbreviations/symbols used in Section 6:

• �A: Mean

• U: Theil’s Statistic

• TS: Tracking Signal

• DA: Directional Accuracy

• dr: Evaluation Parameter

• R: Correlation Coefficient

• R2: Coefficient of Determination

• PP: Performance Parameter

• AFER: Average Forecasting Error Rate

• MAPE: Mean Absolute Percent Error

• RMSE: Root Mean Square Error

• MSE: Mean Square Error

5. Abbreviations used in Sect. 7:

• TAIFEX: Taiwan futures exchange

• TAIEX: Taiwan stock exchange capitalization

weighted stock index

• PVMI: Production value of the machinery industry

in Taiwan

• MSSD: Monthly sales of soft drinks

• ID: Inventory demand

• ITPE: IT project expenditures

• TSMC: Taiwan semiconductor manufacturing

company

• HSI: Heng seng index

• WP: Wheat production

• TTUSA: Taiwan tourists to the USA

• LCP: Lahi crop production

• FOREX: Foreign exchange market

• OPV: Outpatient visits

• AQPP: Australian quarterly power production

• MG: Mackey-Glass

• DOC: Daily Ozone Concentration

• DTDST: Daily Temperature Data of Taipei

• DCDDST: Daily Cloud Density Data of Taipei

• TWSI: Taiwan Weighted Stock Index

• TSEC: Taiwan Stock Exchange Corporation

• NTD: New Taiwan dollar

• KOSPI: Korea composite stock price index

• YRAC: Yearly road accident casualties

• TSI: Taiwan stock index

• NYSE: New York stock exchange composite index

• NASDAQ: National association of securities deal-

ers automated quotations system

• IMKB: Index 100 in stocks and bonds exchange

market of Istanbul

• PG: Patient Granted

• TE: Taiwan export

• MR: Monthly Rainfall

• DT: Daily Temperature

• DCD: Daily Cloud Density

• SBI: State bank of India

• SCI: Shanghai composite index

• ANSO: Seasonal time series data of sulfur dioxide

• Series G: Monthly passenger data travel in inter-

national air

• TTD: Taiwan’s tourism demand

• ICT: Diffusion of information and communication

technologies

• IKD: Iran khordo diesel

• IK: Iran khordo

• LMA: Levenberg-Marquardt algorithm

• RPP: Rice production of Pantnagar

• MLP: Multilayer Perceptron

• AR: Autoregressive
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• MA: Moving average

• ARMA: Autoregressive moving average

• VARMA: Vector autoregressive moving average

• ARIMA: Autoregressive integrated moving

average

• SARIMA: Seasonal autoregressive integrated mov-

ing average

• HMM: Hidden-markov model

• LRM: Linear regression model

• MSVPMC: Monthly sales volume of propelynes

manufacturing company

• GDCI: Gross domestic capital of India
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