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Abstract Twin-hypersphere support vector machine

(THSVM) for binary pattern recognition aims at generating

two hyperspheres in the feature space such that each hy-

persphere contains as many as possible samples in one

class and is as far as possible from the other one. THSVM

has a fast learning speed since it solves two small sized

support vector machine (SVM)-type quadratic program-

ming problems (QPPs). However, it only simply considers

the prior class-based structural information in the optimi-

zation problems. In this paper, a structural information-

based THSVM (STHSVM) classifier for binary classifica-

tion is presented. This proposed STHSVM focuses on the

cluster-based structural information of the corresponding

class in each optimization problem, which is vital for

designing a good classifier in different real-world prob-

lems. In addition, it also leads to a fast learning speed since

this STHSVM solves a series of smaller-sized QPPs com-

pared with THSVM. Experimental results demonstrate that

STHSVM is superior in generalization performance to

other classifiers.

Keywords Binary classification � Quadratic
programming problem � Twin-hypersphere support vector

machine � Structural information

1 Introduction

Support vector machine (SVM) [1–3] finds the maximal

margin between two classes [4] by solving a quadratic

programming problem (QPP) in the dual space based on

the structural risk minimization principle. Within a few

years after its introduction SVM not only has a serious of

improvements [5, 6], but also has already outperformed

most other systems in a wide variety of applications [7–9].

However, classical SVM not only has the large computa-

tional cost, but also usually pays more attention to the

separation between classes than the prior structural infor-

mation within classes. In fact, for different real-world

problems, different classes may have different underlying

data structures.

Recently, a class of nonparallel hyperplane classifiers

have been developed. For instance, TWSVM [10] aims at

generating a pair of nonparallel planes such that each plane

is as close as possible to the corresponding class and is at

least one far from the other class. To this end, it solves a

pair of smaller-sized QPPs, instead of a large one in SVM,

making the learning speed of TWSVM be approximately

four times faster than that of SVM in theory [10]. Some

extensions to TWSVM include the least squares TWSVM

(LSTWSVM) [11], nonparallel-plane proximal classifier

(NPPC) [12], m-TWSVM [13], twin parametric-margin

SVM (TPMSVM) [14], projection twin support vector

machine (PTSVM) [15], nonparallel hyperplane SVM

(NHSVM) [16], twin support vector regression (TSVR)

[17], and twin parametric insensitive support vector

regression (TPISVR) [18].

Different from TWSVM which seeks a hyperplane for

each class using a SVM-type formulation, Peng and Xu

[19] proposed a twin-hypersphere support vector machine

(THSVM) classifier for binary classification, which aims at
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generating two hyperspheres in the feature space such that

each hypersphere contains as many as possible samples in

one class and is as far as possible from the other one. The

THSVM not only has a faster learning speed than classical

SVM since it solves two smaller sized QPPs instead of a

large QPP as in classical SVM, but also successfully avoids

the shortcomings in TWSVM [19], such as the matrix

inversion problem. In this paper, we mainly focus on this

THSVM.

As the relation between the structural information of

data and SVM, it is desirable that an SVM classifier be

adaptable to the discriminant boundaries to fit the struc-

tures in the data, especially for increasing the generaliza-

tion capacities of the classifier. Fortunately, some

algorithms have been developed to focus more attention on

the structural information than SVM recently. They pro-

vide a novel view in which to design a classifier, that is, a

classifier should be sensitive to the structure of data dis-

tribution [20]. These algorithms can be mainly divided into

two kinds of approaches. The first one is manifold

assumption-based, which assumes that the data actually lie

on a sub-manifold in the input space. A typical model is

Laplacian SVM (LapSVM) [21, 22]. LapSVM constructs a

Laplacian graph for each class on top of the local neigh-

borhood of each point to form the corresponding Laplacian

(matrix) to reflect the manifold structure of individual-class

data. They are then embedded into the traditional frame-

work of SVM as additional manifold regularization terms.

The second approach is cluster assumption-based [23],

which assumes that the data contains clusters. For instance,

structured large margin machine (SLMM) [20], ellipsoidal

kernel machine (EKM) [24], minimax probability machine

(MPM) [25], and maxi-min margin machine (M4) [26].

However, the computational cost of these approaches is

larger than classical SVM. More recently, Xue et al. [27]

proposed a structural regularized SVM (SRSVM). This

SRSVM embeds a cluster granularity into the regulariza-

tion term to capture the data structure, Peng et al. [28]

proposed a structural regularized PTSVM (SRPTSVM) for

data classification in the spirit of this SRSVM.

THSVM only considers the relationship between two

classes, i.e., it finds two hyperspheres to respectively cover

the classes of points. In other words, it embeds the class

granularity-based structural information [27] into the

optimization problems, but not the covariance matrices of

two classes. However, this structural information is too

rough for real-world problems, which makes THSVM can

not find the reasonable projection for each class, then

reduce the generalization performance. To overcome this

shortcoming, we present an improvement version for

THSVM in this paper, called the structural-information-

based THSVM (STHSVM) classifier. This STHSVM

respectively embeds the data structures of two classes into

the optimization problems based on the cluster granularity

[27]. That is, in the pair of optimization problems of

STHSVM, it considers the cluster-based structural-infor-

mation constraints for each class, i.e., it introduces a series

of hyperspheres but not a single hypersphere to respec-

tively cover the corresponding class of points. Further, for

each point in the opposite class, this STHSVM wishes it be

as far as possible from the centers of all hypersphres under

the given probability values. This STHSVM only needs to

solve a series of much smaller sized QPPs compared with

THSVM, indicating it has a much faster learning speed

than THSVM for solving their QPPs. The experiment

results show that this STHSVM obtains the better gener-

alization than THSVM and the other classifiers.

The rest of this paper is organized as follows: Sect. 2

briefly introduces the structural granularities of data and

THSVM. Section 3 presents the proposed STHSVM.

Experimental results both on the toy and real-world prob-

lems are given in Sect. 4. Some conclusions and possible

further work are drawn in Sect. 5.

2 Background

In this paper, the training samples are denoted by a set

D ¼ fðxi; yiÞgli¼1, where xi 2 X � Rm and yi 2 fþ1;�1g,
i ¼ 1; . . .; l. For simplicity, we use I� to denote the sets of

index i such as yi ¼ �, k ¼ 1; 2, use the set I to denote all

point indices, i.e., I ¼ Iþ [ I�, and use the matrices

C 2 Rm�l, Cþ 2 Rm�lþ and C� 2 Rm�l� to represent all

training points, and points belonging to classes �1,

respectively, where l� ¼ jI�j.

2.1 Structural granularity

Let S1; . . .;St be a partition of D according to some rela-

tion measure, where the partition characterizes the whole

data in the form of some structures such as cluster, and

S1 [ . . . [ St ¼ D. Here Si, i ¼ 1; . . .; t is called structural

granularity [27]. In general, four granularity layers can be

differentiated:

Global granularity The granularity refers to the dataset

D. With this granularity, the whole data are characterized

or enclosed by a single ellipsoid with center l and

covariance matrix R obtained by minimizing its volume

[24]:

min
l;R

ln Rj j

s:t: ðxi � lÞ�1R�1ðxi � lÞ
�
�

�
�

�
�

�
�� 1; 8i;

R� 0:

ð1Þ
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The corresponding classifier, such as EKM [24], aims to

utilize such global data structure, or more precisely, global

data scatter in its design.

Class granularity The granularities are the class parti-

tioned data subsets. Single ellipsoid can be used to describe

an individual class to form the so called class structure. The

covariance matrices of two classes are defined as

R� ¼ 1

l�

X

i2I�

xi � l�½ 	 xi � l�½ 	T¼ C�J�J
T
�C

T
�; ð2Þ

where J� ¼ 1ffiffiffiffi
l�

p I � 1
l�
eeT

� �

, l� ¼ 1
l�

P

i2I�
xi are the

means of two classes, e is the vector of ones with appro-

priate dimensions, and I is the identity matrix with

appropriate dimension. For example, PTSVM [15],

respectively embeds the class granularities into the two

optimization problems.

Cluster granularity The granularities are the data sub-

sets within each class. The data structures within each class

are depicted by a certain amount ellipsoids that are

obtained by some clustering techniques. The corresponding

covariance matrix in cluster i is: RCi ¼ CCi JCi J
T
CiC

T
Ci , where

Ci is the index set of cluster i and JCi ¼ 1ffiffiffiffiffi
jCij

p I � 1
jCij ee

T
� �

.

For example, SLMM [20] considers the cluster assumption

about the data.

Point granularity The granularities are the neighbor-

hoods neðxiÞ of each point xi, which are described by

overlapped local ellipsoids surrounding the data in each

class, whose covariance matrix can be viewed as a kind of

local generalized covariance

Ri ¼
P

j2neðxiÞ sijðxi � xjÞðxi � xjÞT , where

sij ¼ expð�cjjxi � xjjj2Þ, c[ 0. One of the most successful

classifier under this granularity is LapSVM [21], which is

successfully applied into semi-supervised problems.

2.2 Twin-hypersphere support vector machine

For binary pattern recognition, the THSVM uses a pair of

hyperspheres, one for each class, to describe the samples in

two classes, and classifies points according to which hy-

persphere a given point is relatively closest to. To this end,

it obtains two optimization problems, and each one has an

SVM-type formulation. Specifically, the THSVM is

obtained by solving the following pair of optimization

problems:

min R2
þ � mþ

l�

X

j2I�
uðxjÞ � cþ
�
�

�
�

�
�

�
�2þ cþ

lþ

X

i2Iþ

ni

s:t: uðxiÞ � cþj jj j2 �R2
þ þ ni;

R2
þ � 0; ni � 0; i 2 Iþ;

ð3Þ

min R2
� � m�

lþ

X

i2Iþ

uðxiÞ � cþj jj j2þ c�
l�

X

j2I�
nj

s:t: uðxjÞ � c�
�
�

�
�

�
�

�
�2 �R2

� þ nj;

R2
� � 0; nj � 0; j 2 I�;

ð4Þ

where c� [ 0 and m� [ 0 are pre-specified penalty factors,

and c� 2 H and R� are the centers and radiuses of the

hyperspheres, respectively.

Clearly, the first term of (3) or (4) minimizes the squares

radius of the hypersphere to keep the hypersphere as

compact as possible. The second term in the objective

function of (3) or (4) maximizes the sum of squared dis-

tances from the center of hypersphere to the points of the

opposite class, which leads to keep the center of this hy-

persphere far from the samples of the opposite class. The

constraints require that the samples of the corresponding

class be covered by this hypersphere. Otherwise, a set of

error variables is used to measure the errors wherever these

points are not covered by this hypersphere. The last term of

(3) or (4) minimizes the sum of error variables, thus

attempting to minimize misclassification due to points

belonging to the opposite class.

Introducing the Lagrangian functions for the problems

(3) and (4) and considering the Karush–Kuhn–Tucker

(KKT) necessary and sufficient optimality conditions, we

obtain their dual problems

max
X

i2Iþ

ai
h 2mþ
l�

X

j2I�

kðxj; xiÞ þ ð1� mþÞkðxi; xiÞ
i

�
X

i1;i22Iþ

ai1ai2kðxi1 ; xi2Þ

s:t:
X

i2Iþ

ai ¼ 1; 0� ai �
cþ
lþ

; i 2 Iþ:

ð5Þ

max
X

j2I�

aj
h 2m�
lþ

X

i2Iþ

kðxi; xjÞ þ ð1� m�Þkðxj; xjÞ
i

�
X

j1;j22I�

aj1aj2kðxj1 ; xj2Þ

s:t:
X

j2I�

aj ¼ 1; 0� bj �
c�
l�

; j 2 I�;

ð6Þ

where ai’s are the nonnegative Lagrangian multipliers, and

kðu; vÞ is a kernel function: kðu; vÞ ¼ uTv for the linear

case, and kðu; vÞ ¼ uðuÞTuðvÞ for the nonlinear case, such

as the Gauss kernel kðu; vÞ ¼ expf�rjju� vjj2g; r[ 0.

After solving (5) and (6), we will obtain the two hy-

perspheres uðxÞ � c�j jj j2 �R2
�, where the c� and R2

� val-

ues are computed by the KKT necessary and sufficient

optimality conditions, which are:
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c� ¼ 1

1� m�

�
X

i2I�

aiuðxiÞ �
m�
l


X

j2I


uðxjÞ
�

; ð7Þ

R2
� ¼ 1

jI 0�j
X

i2I0�

uðxiÞ � c�j jj j2; ð8Þ

where the index sets I0
� ¼

�

i
�
�
�0\ai\ c�

l�
; i 2 I�

	

.

Then, a new test sample x is assigned to the class þ or

�, depending on which of the two hyperspheres it lies

relatively closest to, i.e.:

f ðxÞ ¼ argmin
þ;�

uðxÞ � cþj jj j2

R2
þ

;
uðxÞ � c�j jj j2

R2
�

( )

: ð9Þ

3 Structural information-based twin-hypersphere

support vector machine

Following the line of the cluster granularity model, the

structural information-based twin-hypersphere support

vector machine (STHSVM) classifier has two steps: clus-

tering and learning. STHSVM first adopts some clustering

techniques to capture the data distribution within classes,

then respectively embeds the minimization of the com-

pactness between the estimated clusters into the objective

functions. In the following subsections, we will discuss

these steps concretely.

3.1 Clustering

In this step, many clustering methods, such as k-means

[29], nearest neighbor clustering [30], and fuzzy clustering

[31], can be employed. The aim of clustering is to inves-

tigate the underlying data distribution within classes in

SRPTSVM. After clustering, the structural information is

introduced into the optimization problem by the covariance

matrices of the clusters. So the clusters should be compact

and spherical for the computation. Following this objec-

tive, we consider the following Wards linkage clustering

(WLC) technique [32]. Here we only show the linear case,

while this clustering method can also be applicable in the

kernel space.

Concretely, if C1 and C2 are two clusters, also are the

index sets of the points in the two clusters, then their Wards

linkage WðC1; C2Þ can be calculated as

WðC1; C2Þ ¼
jC1j � jC2j � jjlC1 � lC2 jj

2

jC1j þ jC2j
; ð10Þ

where lC1 and lC2 are the means of the two clusters,

respectively.

Initially, each sample is a cluster in the clustering

algorithm. The Wards linkage of two samples xi and xj is

defined as Wðxi; xjÞ ¼ jjxi � xjjj2=2. During clustering, the

two clusters with the smallest Wards linkage value are

merged. When two clusters C1 and C2 are being merged to a

new cluster C0, the linkage WðC0; CÞ of C0 and other cluster

C can be conveniently derived from WðC1; CÞ, WðC2; CÞ,
and WðC1; C2Þ by
WðC0; CÞ

¼ ðjC1j þ jCjÞWðC1; CÞ þ ðjC2j þ jCjÞWðC2; CÞ � jCjWðC1; C2Þ
jC1j þ jC2j þ jCj :

ð11Þ

To simply determine the cluster number, this WLC uses

kernels to measure the similarity between clusters. Salva-

dor and Chan [33] provided a method to automatically

determine the number of clusters that selects the number

corresponding to the knee point, i.e., the point of maximum

curvature, on the curve.

3.2 STHSVM classifier

Without loss of generality, we denote the clusters in two

classes as P1; . . .;Pc1 and N 1; . . .;N c2 , respectively. To

find the hyperspheres for each class, which show the

compactness within classes, i.e., the clusters that cover the

different structural information in different classes, the

STHSVM classifier optimizes the following two optimi-

zation problems:

min
Xc1

s¼1

lþ;s

lþ
R2
þ;s�

mþ
l�

X

j2I�

Xc1

s¼1

pj;s uðxjÞ� cþ;s

�
�

�
�

�
�

�
�
2þcþ

lþ

X

i2Iþ

ni

s:t: jjuðxiÞ� cþ;sjj2�R2
þ;sþni; if i2Ps;

ni�0; R2
þ;s�0; i2Iþ; s¼ 1; . . .;c1; ð12Þ

min
Xc2

t¼1

l�;t

l�
R2
�;t�

m�
lþ

X

i2Iþ

Xc2

t¼1

pi;t uðxiÞ� c�;t

�
�

�
�

�
�

�
�
2þc�

l�

X

j2I�

nj

s:t: jjuðxjÞ� c�;tjj2�R2
�;tþnj; if j2N t;

nj�0; R2
�;t�0; j2I�; t¼ 1; . . .;c2; ð13Þ

where c�;m�, k¼ 1;2 are penalty factors given by users,

lþ;s ¼ jPsj, s¼ 1; . . .;c1 and l�;t ¼ jN tj, t¼ 1; . . .;c2 denote

the sizes of the clusters Ps and N t, lþ ¼
Pc1

s¼1 lþ;s,

l� ¼
Pc2

t¼1 l�;t, cþ;s;Rþ;s, s¼ 1; . . .;c1 and c�;t;R�;t,

t¼ 1; . . .;c2, are the centers and radiuses of clusters Ps and

N t, respectively. In addition, pj;s, s¼ 1; . . .;c1, j2I� are

the probabilities of xj belonging to clusters Ps, and pi;t,

t¼ 1; . . .;c2, i2Iþ are the probabilities of xi belonging to

clusters N t. In this work, we define them as

pi;t ¼
j
�

jjxi � l�;tjj
�

Pc2
t0¼1 j

�

jjxi � l�;t0 jj
� ; i 2 Iþ; t ¼ 1; . . .; c2;

ð14Þ

and
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pj;s ¼
j
�

jjxj � lþ;sjj
�

Pc1
s0¼1 j

�

jjxj � lþ;s0 jj
� ; j 2 I�; s ¼ 1; . . .; c1;

ð15Þ

where jðuÞ ¼ expð�su2Þ, s[ 0, lþ;s, s ¼ 1; . . .; c1 and

l�;t, t ¼ 1; . . .; c2 are the means of clusters Ps and N t,

respectively. We have
Pc2

t¼1 pi;t ¼ 1 for all i 2 Iþ and
Pc1

s¼1 pj;s ¼ 1 for all j 2 I�. Obviously, for any point xi,

i 2 Iþ, we have a larger value pi;t if xi, i 2 Iþ is nearer to

cluster t than the other clusters in Class �.

First of all, we consider the illustrations of the opti-

mization problems (12) and (13) before optimizing them.

First, the constraints require that the samples in a cluster

of the corresponding class be covered by one hypersphere.

Otherwise, a set of error variables fni; i 2 Iþg or fnj; j 2
I�g is used to measure the errors wherever these points

are not covered by this hypersphere. Compared with the

corresponding term of THSVM, this term makes

STHSVM pay more attention to the cluster granularity-

based structure information, which are more reasonable

for real-world problems. Clearly, for many real-world

problems, it is not suitable to use one hypersphere to only

cover the points in one class. The last term of the

objective function of (12) or (13) minimizes the sum of

error variables, thus attempting to minimize misclassifi-

cation due to points belonging to the opposite class.

Second, the first term in the objective function of (12) or

(13) minimizes the squares radiuses of the hyperspheres.

Hence, minimizing them tends to keep these hyperspheres

as compact as possible, i.e., makes these hyperspheres be

as small as possible. Note that this term gives the dif-

ferent weights for these hyperspheres according to the

sizes of clusters. This definition for weights is reasonable

since the clusters with larger sizes should have larger

influence than those with smaller sizes. Last, the second

term in the objective function of (12) or (13) maximizes

the sum of squared distances from the centers of hyper-

spheres to the points of the opposite class, which leads to

keep the centers of this hyperspheres far from the samples

of the opposite class. However, by considering the cluster

granularity-based structure information, this term intro-

duces the different weights pj;s or pi;t. In fact, if one point

in Class � is nearer to a cluster of Class þ, we will hope

it is as far as possible from the corresponding hyperp-

here’s center of this cluster than the other centers. In this

STHSVM, we use (14) or (15) to depict this end, which

can describe the above design.

We now consider to optimize the primal optimization

problems (12) and (13). The corresponding Lagrangian

function of the problem (12) is

Lðcþ;s;R
2
þ;s; ni; ai; bi; ksÞ

¼
Xc1

s¼1

lþ;s

lþ
R2
þ;s �

mþ
l�

X

j2I�

Xc1

s¼1

pj;s uðxjÞ � cþ;s

�
�

�
�

�
�

�
�
2

þ cþ
lþ

X

i2Iþ

ni �
X

i2Iþ

bini �
Xc1

s¼1

ksR
2
þ;s

þ
Xc1

s¼1

X

i2Ps

ai jjuðxiÞ � cþ;sjj2 � R2
þ;s � ni

� �

;

ð16Þ

where ks � 0, s ¼ 1; . . .; c1, ai � 0; bi � 0; i 2 Iþ are the

Lagrangian multipliers. Differentiating the Lagrangian

function () with respect to cþ;s; R
2
þ;s, and ni; i 2 Iþ yields

the following Karush–Kuhn–Tucker (KKT) necessary and

sufficient optimality conditions:

oL
ocþ;s

¼� 2mþ
l�

X

j2I�

pj;s cþ;s � uðxjÞ

 �

þ 2
X

i2Ps

ai cþ;s � uðxiÞ

 �

¼ 0

)cþ;s ¼
1

P

i2Ps
ai � mþ

l�

P

j2I�
pj;s

X

i2Ps

aiuðxiÞ �
mþ
l�

X

j2I�

pj;suðxjÞ
 !

s ¼ 1; . . .; c1;

ð17Þ

oL
oR2

þ;s

¼ lþ;s

lþ
�
X

i2Ps

ai � ks ¼ 0 )
X

i2Ps

ai �
lþ;s

lþ
;

s ¼ 1; . . .; c1;

ð18Þ

oL
oni

¼ cþ
lþ

� ai � bi ¼ 0 ) 0� ai �
cþ
lþ

; i 2 Iþ; ð19Þ

uðxiÞ � cþ;s

�
�

�
�

�
�

�
�
2 �R2

þ;s þ ni; i 2 Ps; ð20Þ

ai jjuðxiÞ � cþ;sjj2 � R2
þ;s � ni

� �

¼ 0; ai � 0;

i 2 Ps; s ¼ 1; . . .; c1;
ð21Þ

bini ¼ 0; ni � 0; bi � 0; i 2 Iþ; ð22Þ

ksR
2
þ;s ¼ 0; R2

þ;s � 0; ks � 0: ð23Þ

Note that R2
þ;s [ 0 will hold in the optimality result of

problem (12) if the suitable parameters mþ and cþ are

given. Then, we have
P

i2Ps
ai ¼ lþ;s

lþ
, s ¼ 1; . . .; c1;

according to the KKT conditions (18) and (23), and

cþ;s ¼
1

lþ;s

lþ
� mþ

l�

P

j2I�
pj;s

�
X

i2Ps

aiuðxiÞ �
mþ
l�

X

j2I�

pj;suðxjÞ
�

;

s ¼ 1; . . .; c1:

ð24Þ
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Substituting (18), (19) and (24) into (16), we obtain the

dual optimization problem of (12) as following:

max �
Xc1

s¼1

"

1
lþ;s

lþ
� mþ

l�

P

j2I�
pj;s

X

i12Ps

X

i22Ps

ai1ai2kðxi1 ; xi2Þ

� 2
1

lþ;s

lþ
� mþ

l�

P

j2I�
pj;s

X

i2Ps

ai
X

j2I�

mþ
l�

pj;skðxi; xjÞ

�
X

i2Ps

aikðxi; xiÞ
#

þ constant

s:t:
X

i2Ps

ai ¼
lþ;s

lþ
; 0� ai �

cþ
lþ

; i 2 Ps; s ¼ 1; . . .; c1;

ð25Þ

where the constant term does not influence the solution of

this optimization problem. Hence we can omit this term in

the optimization process.

This optimization problem can be broken down into a

series of small-sized optimization problems by multiplying

the objective functions by
lþ;s

lþ
� mþ

l�

P

j2I�
pj;s

� �

for

s ¼ 1; . . .; c1:

min
X

i12Ps

X

i22Ps

ai1ai2kðxi1 ; xi2Þ

�
X

i2Ps

ai

"
X

j2I�

2mþ
l�

pj;skðxi; xjÞ

þ lþ;s

lþ
� mþ

l�

X

j2I�

pj;s

 !

kðxi; xiÞ
#

s:t:
X

i2Ps

ai ¼
lþ;s

lþ
; 0� ai �

cþ
lþ

;

i 2 Ps; s ¼ 1; . . .; c1:

ð26Þ

Next, notice that uðxiÞ � cþ;s

�
�

�
�

�
�

�
�
2¼ R2

þ;s if 0\ai\
cþ
lþ
; i 2

Ps according to the KKT conditions (19)–(23). Thus, we

compute the square radiuses R2
þ;s, s ¼ 1; . . .; c1 by the

following formula:

R2
þ;s ¼

1

jIR
þ;sj

X

i2IR
þ;s

uðxiÞ � cþ;s

�
�

�
�

�
�

�
�
2
; s ¼ 1; . . .; c1; ð27Þ

where the index sets IR
þ;s ¼ i

�
�
�
�
0\ai\

cþ
lþ
; i 2 Ps

� 	

,

s ¼ 1; . . .; c1.

Similarly, we obtain the c2 simplified dual of problems

(13) as following:

min
X

j12N t

X

j22N t

aj1aj2kðxj1 ; xj2Þ

�
X

j2N t

aj

�
X

i2Iþ

2m�
lþ

pi;tkðxj; xiÞ

þ
�
l�;t

l�
� m�

lþ

X

i2Iþ

pi;t

�

kðxj; xjÞ


s:t:
X

j2N t

aj ¼
l�;t

l�
; 0� aj �

c�
l�

;

j 2 N t; t ¼ 1; . . .; c2;

ð28Þ

where aj; j 2 I� are the nonnegative Lagrangian multi-

pliers, and the centers c�;t, t ¼ 1; . . .; c2 are

c�;t ¼
1

l�;t

l�
� m�

lþ

P

i2Iþ
pi;t

�
X

j2N t

ajuðxjÞ �
m�
lþ

X

i2Iþ

pi;tuðxiÞ
�

;

t ¼ 1; . . .; c2:

ð29Þ

Also, the square radiuses R2
�;t, t ¼ 1; . . .; c2 are

R2
�;t ¼

1

jIR
�;tj

X

j2IR
�;t

uðxjÞ � c�;t

�
�

�
�

�
�

�
�2; t ¼ 1; . . .; c2; ð30Þ

where the index sets IR
�;t, t ¼ 1; . . .; c2 are

IR
�;t ¼ j

�
�
�
�
0\aj\

c�
l�

; j 2 N t

� 	

; t ¼ 1; . . .; c2:

Once the elements ðcþ;s;R
2
þ;sÞ, s ¼ 1; . . .; c1 and

ðc�;t;R
2
�;tÞ, t ¼ 1; . . .; c2 are calculated by (24), (27), (29)

and (30), a series of hyperspheres

uðxÞ � cþ;s

�
�

�
�

�
�

�
�
2 �R2

þ;s; s ¼ 1; . . .; c1;

uðxÞ � c�;t

�
�

�
�

�
�

�
�
2 �R2

�;t; t ¼ 1; . . .; c2 ð31Þ

are obtained. A new test sample x is assigned to the class þ
or �, depending on which of these hyperspheres given by

(31) it lies relatively closest to, i.e.,

f ðxÞ ¼ argmin
þ;�

min
s¼1;...;c1

�
uðxÞ � cþ;s

�
�

�
�

�
�

�
�
2

lþ;s

lþ
R2
þ;s



;

(

min
t¼1;...;c2

�
uðxÞ � c�;t

�
�

�
�

�
�

�
�
2

l�;t

l�
R2
�;t



g:
ð32Þ

In summary, our STHSVM algorithm for pattern recogni-

tion is listed as follows:
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Algorithm 1 The STHSVM algorithm

1. Set the parameters m�, c�, and kernel function;

2. Determine the clusters P1; . . .;Pc1 for Class þ and the

clusters N 1; . . .;N c2 for Class � according to some

clustering technique;

3. Optimize the optimization problems (26) and (28) by

some optimization technique;

4. Compute ðcþ;s;R
2
þ;sÞ, s ¼ 1; . . .; c1 and ðc�;t;R

2
�;tÞ, t ¼

1; . . .; c2 by (24), (27), (29) and (30);

5. Predict the label for a new point x by (32).

4 Experiments

In this section, we run a series of experiments systemati-

cally on both toy and real-world classification problems to

evaluate the proposed STHSVM algorithm. First, we

present two synthetic datasets, i.e., the XOR and Hex

datasets, to intuitively compare STHSVM with THSVM.

On real-world problems, several datasets in the UCI data-

base are used to evaluate the classification accuracies

derived from STHSVM in comparison to some other

algorithms, including the TWSVM [10], TPMSVM [14],

SRSVM [27], SRPTSVM [28], and THSVM [19]. Remark

that the regularization terms are introduced in the

TPMSVM, which is helpful to the generalization perfor-

mance. Here only Gaussian kernel is employed for non-

linear problems. For these classifiers, the kernel widths and

the regularization parameters are selected from the set

f2�9; . . .; 210g by cross-validation. While the m=c values in
TPMSVM are selected from the set f0:05; 0:1; . . .; 0:95g.
All methods are implemented in MATLAB1 on Windows

XP running on a PC.

4.1 Toy datasets

In this part we compare our method with THSVM on the

2-D XOR and Hex problems, in which the points are ran-

domly generated under Gaussian distributions in each

class. Table 1 describes the corresponding attributes of the

XOR and Hex problems. It can be easily seen that, for the

two problems, the two classes are composed of some

clusters and these clusters have totally different distribu-

tions. Thus, in these cases, the structural information within

the classes may be more important than the discriminative

information between the classes. For each cluster of the

two problems, we randomly generate 100 training points

and 500 test points, respectively.

For the XOR and Hex problems, we use the linear and

kernel STHSVM and kernel THSVM classifiers to find the

decision bounds. Remark that the linear THSVM can not

successfully obtain the suitable separating bound for this

problem, Figs. 1 and 2 show the one-run training results

obtained by the linear and kernel STHSVM and kernel

THSVM on these two problems. Due to the formal neglect

of the structural information within the classes, kernel

THSVM cannot differentiate the different data occurrence

trends, i.e., the clusters in each class. Then, the derived

hyperspheres for two classes only as possibly as cover the

points in the corresponding classes. Specifically, it can be

found from Figs. 1a and 2a that the obtained hyperspheres

cover the same area, i.e., they can not successfully depict

the data, since the structural information under cluster

granularity is ignored. Different to the THSVM classifier,

STHSVM embeds the structure information within the

classes into the optimization problems. Then, STHSVM

should get more reasonable discriminant boundaries than

THSVM which basically accord with the data occurrence

trend, and thus has the best classification performance than

the other classifiers in theory. Figures 1b, c and 2b, c

confirm this conclusion, in which the results show that it

Table 1 Attributes of the toy XOR and Hex datasets

Set Class Distribution Prob. Mean Covariance

XOR Class I Gauss distr. I1 0.5 ½2:5; 2:5	 ½1:5; 0; 0; 1:5	
Gauss distr. I2 0.5 ½�2:5;�2:5	 ½1:0; 0; 0; 1:0	

Class II Gauss distr. II1 0.5 ½�2:5; 2:5	 ½1:5; 0; 0; 1:5	
Gauss distr. II2 0.5 ½2:5;�2:5	 ½1:0; 0; 0; 1:0	

Hex Class I Gauss distr. I1 0: _3 T0½3; 0	a T0½1; 0; 0; 0:25	TT
0

Gauss distr. I2 0: _3 T2½3; 0	 T2½1; 0; 0; 0:25	TT
2

Gauss distr. I3 0: _3 T4½3; 0	 T4½1; 0; 0; 0:25	TT
4

Class II Gauss distr. II1 0: _3 T1½3; 0	 T1½1; 0; 0; 0:25	TT
1

Gauss distr. II2 0: _3 T3½3; 0	 T3½1; 0; 0; 0:25	TT
3

Gauss distr. II3 0: _3 T5½3; 0	 T5½1; 0; 0; 0:25	TT
5

a Tk ¼ cosðkp=3Þ;� sinðkp=3Þ; sinðkp=3Þ; cosðkp=3Þ½ 	, k ¼ 0; . . .; 5

1 Available at: http://www.mathworks.com.
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obtains a better separating bound than THSVM. To further

explain the conclusion, we make ten independent runs on

the XOR and Hex problems and compare with the results of

the two classifiers, listed in Table 2. It can be found that

our linear and kernel STHSVM obtains the better perfor-

mance than the kernel THSVM classifier.

To further explain the performance of the proposed

STHSVM classifier, in Figs. 3 and 4, we depict the two-

dimensional scatter plots for kernel THSVM and linear/

nonlinear STHSVM on the XOR and Hex problem with

100þ 100 and 150þ 150 test points, respectively. The

plots are obtained by plotting test points with coordinates

ðd1; d2Þ. Here, diþ and di� are the relative ‘distances’ of a

test point xi to the centers of the positive and negative

hyperspheres for the THSVM, i.e., di� ¼ jjuðxiÞ � c�jj=R�
for the THSVM. While diþ and di� are the minimum rela-

tive ‘distances’ of a test point xi to the centers of the

positive and negative hyperspheres for the STHSVM, i.e.,

diþ ¼ mins
ffiffiffiffiffi
lþ

p
jjuðxiÞ � cþ;sjj=

ffiffiffiffiffiffiffi
lþ;s

p
Rþ;s

� �

and di� ¼
mint

ffiffiffiffiffi
l�

p
jjuðxiÞ � c�;tjj=

ffiffiffiffiffiffiffi
l�;t

p
R�;t

� �

for the STHSVM. In

short, the point xi is assigned to class þ1 if the value of diþ
is less than di� and vice versa. In Figs. 3 and 4, each point is

marked as ‘‘�’’ if its class label is þ1 and ‘‘h’’ otherwise.

Obviously, the two-dimensional projections for test points
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Fig. 1 Training results of kernel THSVM (a), linear STHSVM (b),
and kernel STHSVM (c) on the XOR problem. The two classes of

points are marked by ‘‘�’’ and ‘‘þ’’, the decision bounds of these

classifiers are marked by solid curves in black, and the hyperspheres

of these classifiers marked by solid curves in blue and red,

respectively

302 Int. J. Mach. Learn. & Cyber. (2017) 8:295–308

123



indicate how well the classification criterion is able to

discriminate between the two classes. It can be seen that for

the kernel THSVM, most points are covered by the

corresponding hyperspheres and are far from the opposite

hyperspheres, i.e., the corresponding diþ’s or di�’s are not

larger than one. This indicates the hyperspheres in the

THSVM can effectively depict the data characteristic of

classes. However, for the linear and kernel STHSVM, it not

only can be found that most points are covered by the

corresponding hyperspheres and are far from the opposite

hyperspheres, but also is more robust than the THSVM. In

fact, this is because the STHSVM embeds the structure

information within the classes into the optimization

problems.
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Fig. 2 Training results of kernel THSVM (a), linear STHSVM (b),
and kernel STHSVM (c) on the Hex problem. The two classes of

points are marked by ‘‘�’’ and ‘‘þ’’, the decision bounds of these

classifiers are marked by solid curves in black, and the hyperspheres

of these classifiers marked by solid curves in blue and red,

respectively

Table 2 Results of linear/kernel STHSVM and kernel THSVM on

XOR and Hex datasets

Dataset Kernel THSVM Linear STHSVM Kernel STHSVM

XOR 96.15 ± 0.72 97.76 ± 0.64 97.80 ± 0.50

Hex 96.05 ± 0.85 97.17 ± 0.70 97.20 ± 0.68

Int. J. Mach. Learn. & Cyber. (2017) 8:295–308 303

123



4.2 Benchmark datasets

In this section, we compare with the performance of

TWSVM, TPMSVM, SRSVM, SRPTSVM, THSVM, and

STHSVM on the 13 benchmark datasets [34] in that order:

Banana (B), Breast Cancer (BC), Diabetes (D), Flare (F),

German (G), Heart (H), Image (I), Ringnorm (R), Splice

(S), Thyroid (Th), Titanic (T), Twonorm (Tw), and Wave-

form (W). In particular, we use in each problem the train-

test splits given in that reference (100 for each dataset

except for Image and Splice, where only 20 splits are given).

In Table 3, we report the training time of one-run and the

average test accuracies of linear TWSVM, TPMSVM,

SRSVM, SRPTSVM, THSVM, and STHSVM on these

benchmark datasets. For the linear SRPTSVM classifier, we

adopt the recursive strategy to find the best prediction perfor-

mance. Table 4 lists the training time of one-run and the

average test accuracies of nonlinear TWSVM, TPMSVM,

SRSVM, SRPTSVM, THSVM, and STHSVMwith Gaussian

kernels. From these results, we can find that STHSVMobtains

the best learning results than THSVM and other classifiers for

most datasets. In fact, this is because STHSVM embeds the

structural information of each class under cluster granularity

into its two optimization problems, which is more helpful to

further improve the learning performance. In addition, it canbe

found that compared with the other methods, SRSVM and
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Fig. 3 Two-dimensional projections for test points from the XOR dataset with the kernel THSVM (a), linear STHSVM (b), and kernel STHSVM
(c)
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SRPTSVM obtain better generalization performance than

TWSVM and TPMSVM for many datasets. This is also

because the two methods successfully embed the data struc-

tural information into their optimization problems. However,

the results in Tables 3 and 4 show that ourmethod outperforms

SRSVM and SRPTSVM for many datasets. A possible reason

is that it uses a more reasonable strategy to depict the data

structure than the latter. In order to find out whether STHSVM

is significantly better than the other algorithms,we perform the

t test on the classification results to calculate the statistical

significance of STHSVM. The null hypothesis H0 demon-

strates that there is no significant difference between the mean

numbers of patterns correctly classified by STHSVM and the

other algorithms. If the hypothesis H0 of each dataset is

rejected at the 5 % significance level, i.e., the t test value is

more than 1.734, the corresponding results in Tables 3 and

4 is denoted ‘‘*’’. Consequently, as shown in Tables 3 and

4, it can be clearly found that STHSVM possesses signifi-

cantly superior classification performance compared with

the other classifiers on the most datasets. This just accords

with our conclusions. As for the learning time of these

methods, remark that it need find the cluster-based struc-

tural information through some clustering technique, which

leads to some extra learning time compared with THSVM.

However, it can be seen that, for most datasets, the pro-

posed STHSVM with different kernels has a comparable
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Fig. 4 Two-dimensional projections for test points from the Hex dataset with the kernel THSVM (a), linear STHSVM (b), and kernel STHSVM

(c)
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speed with THSVM. In fact, this is because this proposed

STHSVM only needs to optimize a series of smaller-sized

optimization problems compared with THSVM, which

leads it to have a much faster speed than THSVM. Tables 3

and 4 also confirm this conclusion. In fact, the time for

clustering in this STHSVM is listed in tables indicates this

method is much efficient. In summary, these simulation

results show that our STHSVM not only obtains a better

generalization performance than these related methods, but

also has a fast learning speed.

5 Conclusions

The twin-hypersphere support vector machine (THSVM)

[19] for binary classification seeks two hypersphres by

solving two SVM-type problems, one for each class, to

make the points in each class are covered as many as

possibly by one hyperphere. Then, it classifies a new point

according to which hypersphere is relatively closest to.

However, it only considers the global structure information

of each class, which leads to hardly extend to real-world

problems.

In this paper, under the structural granularity [27],

which characterizes a series of data structures involved in

the various classifier design ideas, we have introduced an

improved THSVM named the structural information-

based THSVM (STHSVM) classifier. In each optimization

problem of STHSVM, a data structural-information

derived from the cluster granularity [27] is absorbed into

the learning process. Further, STHSVM introduces a

different probability sum of projected center for each

Table 3 Prediction accuracies and learning time (in s) of linear TWSVM, TPMSVM, SRPTSVM, SRSVM, THSVM, and STHSVM on

benchmark datasets

Set TWSVM TPMSVM SRPTSVM SRSVM THSVM STHSVM

Acc. (%) Acc. Acc. Acc. Acc. Acc.

Size Time (s) Time Time Time Time Time

B 55.78 ± 5.84*a 61.90 ± 2.54 62.23 ± 4.68 58.63 ± 2.97* 60.15 ± 3.90* 63.40 ± 2.57

400/4,900 9 2 0.204 0.970 0.912 3.784 0.457 0.414/0.301b

BC 71.43 ± 4.80* 71.50 ± 4.10* 72.78 ± 4.76* 71.28 ± 4.35* 72.12 ± 3.64* 74.10 ± 3.12

200/77 9 9 0.092 0.074 0.204 0.422 0.076 0.105/0.052

D 76.68 ± 2.05 75.03 ± 2.40* 77.03 ± 2.41 76.24 ± 2.33* 76.21 ± 2.54* 78.13 ± 2.60

468/300 9 8 0.203 1.317 1.136 3.780 1.035 1.037/0.769

F 66.80 ± 1.60* 67.25 ± 1.54 67.50 ± 3.04 67.16 ± 1.85 67.49 ± 2.87 67.78 ± 2.12

666/400 9 9 0.511 2.779 3.120 5.320 0.903 0.578/0.355

G 75.73 ± 1.90 73.32 ± 2.82* 73.26 ± 3.85* 73.19 ± 3.10* 73.25 ± 3.01* 75.61 ± 3.43

700/300 9 20 0.970 2.612 1.636 5.367 1.115 1.022/0.803

H 84.30 ± 3.13 83.90 ± 3.18* 85.25 ± 3.21 83.76 ± 3.52* 83.01 ± 2.70* 85.16 ± 3.22

170/100 9 13 0.026 0.192 0.292 0.310 0.205 0.212/0.188

I 79.08 ± 2.24 79.45 ± 2.06 78.91 ± 1.30 79.02 ± 1.98 78.75 ± 1.97 79.17 ± 2.30

1300/1,010 9 18 5.307 14.274 28.431 156.253 6.032 5.175/3.016

R 75.50 ± 0.72* 76.38 ± 0.62* 76.67 ± 0.56 76.45 ± 0.70 76.52 ± 0.76 77.12 ± 0.71

400/7,000 9 20 0.391 0.935 2.934 4.490 0.652 0.647/0.408

S 83.45 ± 0.84* 83.72 ± 0.98* 84.62 ± 1.05 84.15 ± 1.68 83.92 ± 1.16 84.48 ± 1.49

1,000/2,175 9 60 2.708 7.221 20.631 17.245 4.287 3.152/2.076

Th 82.80 ± 3.18* 89.13 ± 3.88 92.27 ± 3.72* 89.38 ± 3.90 89.40 ± 3.70 90.32 ± 3.52

140/75 9 5 0.021 0.143 1.024 0.433 0.073 0.078/0.060

T 77.60 ± 0.37* 77.64 ± 0.42* 78.42 ± 0.37 78.59 ± 0.65 77.84 ± 0.61 78.82 ± 0.54

150/2,051 9 3 0.017 0.138 0.426 0.692 0.089 0.105/0.0921

Tw 97.21 ± 0.24 97.66 ± 0.08 97.68 ± 0.15 97.68 ± 0.22 97.56 ± 0.23 97.72 ± 0.25

400/7,000 9 20 0.081 0.939 6.821 5.076 0.242 0.272/0.214

W 82.72 ± 0.81* 87.73 ± 0.37* 87.95 ± 0.41 88.05 ± 0.89 87.70 ± 0.41* 88.78 ± 0.68

400/4,600 9 21 0.077 1.478 3.621 4.873 1.128 1.050/0.982

a ‘*’The difference between STHSVM and this algorithm is significant at 5 % significance level, i.e., t value [ 1:734
b The time for clustering in STHSVM

306 Int. J. Mach. Learn. & Cyber. (2017) 8:295–308

123



point to depict the cluster granularity-based structural

information. The experiments have confirmed that this

STHSVM successfully embeds into the cluster granular-

ity-based structural information and obtains the good

performance. The idea in this method can be easily

extended to some other TWSVM classifiers. There still

exists some future work. For example, we only apply our

method into the middle-scale classification problems since

it has a large cost to cluster large-scale datasets. In

addition, another problem is to discuss the relationship

between the performance and the cluster number. Also,

the parameter-selection problem is an important further

problem.
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