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Abstract This paper mainly focus on building the ideals

theory of non regular residuated lattices. Firstly, the notions

of ideals and fuzzy ideals of a residuated lattice are intro-

duced, their properties and equivalent characterizations are

obtained; at the meantime, the relation between filter and

ideal is discussed. Secondly, two types prime ideals of a

residuated lattice are introduced, the relations between the

two types ideals are studied, in some special residuated lat-

tices (such as MTL-algebras, lattice implication algebras,

BL-algebras), prime ideal and prime ideal of the second kind

are coincide. At the meantime, the notions of fuzzy prime

ideal and fuzzy prime ideal of the second kind on a residuated

lattice are introduced, aiming at the relation between prime

ideal and prime ideal of the second kind, we mainly inves-

tigate the fuzzy prime ideal of the second kind. Finally, we

investigated the fuzzy congruence relations induced by fuzzy

ideal, we construct a new residuated lattice induced by fuzzy

congruences, the homomorphism theorem is given.

Keywords Residuated lattice � (fuzzy) Ideals � (fuzzy)
Prime ideals � (fuzzy) Prime ideals of the second kind �
Fuzzy congruence � Homomorphism theorem

1 Introduction

As is known to all, one significant function of artificial

intelligence is to make computer simulate human being in

dealing with uncertain information. And logic establishes

the foundations for it. However, certain information pro-

cess is based on the classic logic. Non-classical logics

consist of these logics handling a wide variety of uncer-

tainties (such as fuzziness, randomness, and so on) and

fuzzy reasoning. Therefore, non-classical logic has been

proved to be a formal and useful technique for computer

science to deal with fuzzy and uncertain information.

Many-valued logic, as the extension and development of

classical logic, has always been a crucial direction in non-

classical logic. Lattice-valued logic, an important many-

valued logic, has two prominent roles: One is to extend the

chain-type truth-valued field of the current logics to some

relatively general lattices. The other is that the incom-

pletely comparable property of truth value characterized by

the general lattice can more effectively reflect the uncer-

tainty of human being’s thinking, judging and decision.

Hence, lattice-valued logic has been becoming a research

field and strongly influencing the development of algebraic

logic, computer science and artificial intelligent technol-

ogy. At the same time, various logical algebras have been

proposed as the structures of truth degrees associated with

logic systems, for example, residuated lattices, MV-alge-

bras, BL-algebras, G€odel algebras, lattice implication

algebras, MTL-algebras, NM-algebras and R0-algebras,

etc. Among these logical algebras, residuated lattices are
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very basic and important algebraic structure because the

other logical algebras are all particular cases of residuated

lattices [3, 4].

Nonclassical logic is closely related to logic algebraic

systems. A number of researches have motivated to

develop nonclassical logics, and also to enrich the content

of algebra [7, 18–20]. In modern fuzzy logic theory, re-

siduated lattices and some related algebraic systems play

an extremely important role because they provide an

algebraic frameworks to fuzzy logic and fuzzy reasoning.

By using the theory of residuated lattices, Pavelka has built

up a more generalized logic systems, and he has success-

fully proved the semantical completeness of the Lu-

kasiewicz’s axiom system in 1979. From a logical point of

view, various filters and ideals corresponding to various

sets of provable formulae. The sets of provable formulas in

the corresponding inference systems from the point of view

of uncertain information can be described by fuzzy ideals

of those algebraic semantics. In the meantime, ideal theory

is a very effectively tool for investigating these various

algebraic and logic systems. The notion of ideal has been

introduced in many algebraic structure such as lattices,

rings, MV-algebras, lattice implication algebras. In these

algebraic structure, as filter, the ideal is in the center

position. However, in BL-algebras and residuated lattices

(especially non regular residuated lattice), the focus is

shifted to deductive systems or filters [1, 2, 5, 6, 8–12, 14–

16, 22, 24, 26, 27]. The study of residuated lattice have

experienced a tremendous growth and the main focus has

been on filters. For BL-algebras, Lele and Nganou [13]

introduced the notion of ideal in BL-algebras as a natural

generalization of that of ideal in MV-algebras. However,

non regular residuated lattice as a more general important

algebraic structure, the notion of ideal is missing.

But so far, mostly focus on filters and fuzzy filters while

the study of ideals and fuzzy ideals in a residuated lattices

have been completely ignored. We could not find and even

a single paper on ideals and fuzzy ideals on non regular

residuated lattices. Knowing the importance of ideals and

congruences in classification problems, data organization,

formal concept analysis, and so on; it is meaningful to

make and intensive study of ideals in non regular resid-

uated lattices. The fact that ideal is an dual of filter in some

special logical algebras such that R0-algebras, lattice

implication algebras and so on. But, the dual of filter is not

an ideal in MTL-algebras.

The main goal of this work is to fill this gap by intro-

ducing the notion of ideal and fuzzy ideals in a non regular

residuated lattice. This notion must generalize the existing

notion in MV-algebras, BL-algebras and lattice implication

algebras. Firstly, the notions of ideals and fuzzy ideals of a

residuated lattice are introduced in Sect. 3, their properties

and equivalent characterizations are obtained; at the

meantime, the relation between filter and ideal is discussed,

unlike in lattice implication algebras and R0-algebras, we

observe that ideals and the dual of filters be quite differ-

ently in residuated lattices. Secondly, two types prime

ideals of a residuated lattice are introduced in the Sect. 4,

the relations between the two types ideals are studied, in

some special residuated lattices (such as MTL-algebras,

lattice implication algebras, BL-algebras), prime ideal and

prime ideal of the second kind are coincide. At the

meantime, the notions of fuzzy prime ideal and fuzzy

prime ideal of the second kind on a residuated lattice are

introduced, aiming at the relation between prime ideal and

prime ideal of the second kind, we mainly investigate the

fuzzy prime ideal of the second kind. Finally, we investi-

gated the fuzzy congruence relations induced by fuzzy

ideal in Sect. 5, we construct a new residuated lattice

induced by fuzzy congruences, the homomorphism theo-

rem is given.

2 Preliminaries

Definition 2.1 ([4]) A residuated lattice is an algebraic

structure L ¼ ðL;_;^;�;!; 0; 1Þ of type (2,2,2,2,0,0)

satisfying the following axioms:

(C1) ðL;_;^; 0; 1Þ is a bounded lattice.

(C2) ðL;�; 1Þ is a commutative semigroup (with the unit

element 1).

(C3) ð�;!Þ is an adjoint pair.

Proposition 2.1 ([4]) A algebraic structure L ¼
ðL;_;^;�;!; 0; 1Þ of type (2,2,2,2,0,0) is a residuated

lattice if and only if it satisfies the following conditions, for

any x; y; z 2 L:

(R1) If x� y, then x� z� y� z.

(R2) if x� y, then z ! x� z ! y and y ! z� x ! z.

(R3) x� y� z if and only if x� y ! z.

(R4) ðx� yÞ � z ¼ x� ðy� zÞ.
(R5) x� y ¼ y� x.

(R6) 1� x ¼ x.

In what follows, let L denote a residuated lattice unless

otherwise specified.

In a residuated lattice L, denote x
0 ¼ x ! 0. A residua-

ted lattice is regular if x
00 ¼ x for all x 2 L.

AMTL-algebras is a residuated latticewith the prelinearity

condition (i.e. ðx ! yÞ _ ðy ! xÞ ¼ 1 for any x; y 2 L)

Proposition 2.2 ([4, 17, 18]) In each residuated lattice L,
the following properties hold for all x; y; z 2 L :

(P1) ðx� yÞ ! z ¼ x ! ðy ! zÞ.
(P2) x� ðx ! yÞ� y.
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(P3) ðx ! yÞ � x� x.

(P4) x� y� x ^ y.

(P5) ðx _ yÞ � z ¼ ðx� zÞ _ ðy� zÞ:
(P6) if x� y, then y

0 � x
0
:

(P7) y ! z�ðx ! yÞ ! ðx ! zÞ:
(P8) ðx� yÞ

0
¼ x ! y

0
.

(P9) xm � xn, m; n 2 N, m� n:

(P10) 1 ! x ¼ x; x ! x ¼ 1:

(P11) x ! ðy ! zÞ ¼ y ! ðx ! zÞ:
(P12) x� y , x ! y ¼ 1.

(P13) 0
0 ¼ 1; 1

0 ¼ 0; x
0 ¼ x

000
; x� x

00
:

(P14) x ! y�ðx� y
0 Þ

0
.

(P15) y ! x�ðx ! zÞ ! ðy ! zÞ.
(P16) ðx� yÞ

00
¼ x

00 � y
00
.

(P17) x ! ðy ^ zÞ ¼ ðx ! yÞ ^ ðx ! zÞ.
(P18) ðx _ yÞ ! z ¼ ðx ! zÞ ^ ðy ! zÞ.
In a residuated lattice, the binary operation � defined by

x� y ¼ x0 ! y for any x; y 2 L.

Proposition 2.3 In each residuated lattice L, the fol-

lowing properties hold for all x; y; z 2 L :

(P19) if x� y, then x� z� y� z.

(P20) x� y� x and x� y� y.

(P21) x� x
0 ¼ 0.

(P22) x� y�ðx0 � y0Þ0.
(P23) ðx ^ yÞ � z ¼ ðx� zÞ ^ ðy� zÞ:
(P24) x� ðy ^ zÞ ¼ ðx� yÞ ^ ðx� zÞ:
(P25) ðx� yÞ � zÞ ¼ x� ðy� zÞ:

Remark 2.1 � is associative and non commutative.

Definition 2.2 ([27]) A non-empty subsetF of a residuated

lattice is called a filter of L if it satisfies, for any x, y in L

(F1) x; y 2 F ) x� y 2 F.

(F2) x 2 F; x� y ) y 2 F.

Proposition 2.4 ([27]) A non-empty subset F of a re-

siduated lattice is a filter of L if and only if

(F3) 1 2 F.

(F4) x 2 F; x ! y 2 F ) y 2 F:

3 Fuzzy ideals of residuated lattices

In this section, we will introduce the notions of ideal and

fuzzy ideal in a residuated lattice which coincides with the

notions of ideals in MTL-algebras, BL-algebras, Lattice

implication algebras etc.

3.1 Ideals of residuated lattices

Definition 3.1 Let L be a residuated lattice and

; 6¼ I � L. I is said to be an ideal of L, if I satisfies:

(I1) for any x; y 2 L, if x� y and y 2 I, then x 2 I;

(I2) for any x; y 2 I, x� y 2 I.

From the Definition 3.1, for any residuated lattice L, f0g
and L are ideals of L. The ideal of lattice implication

algebras is also called LI-ideal.

Example 3.1 Let L ¼ f0; a; b; c; d; 1g, the Hasse diagram

of L be defined as Fig. 1 and its implication operator ! be

defined as Table 1 and operator � be defined as Table 2.

Then L ¼ ðL;_;^;�;!; 0; 1Þ is a residuated lattice. L is

also a regular residuated lattice.

It is routine to verify that I1 ¼ f0; cg and I2 ¼ f0; d; ag
are ideals of L.

Fig. 1 Hasse diagram of L

Table 1 ! of L

! 0 a b c d 1

0 1 1 1 1 1 1

a c 1 b c b 1

b d a 1 b a 1

c a a 1 1 a 1

d b 1 1 b 1 1

1 0 a b c d 1
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Example 3.2 Let L ¼ f0; a; b; c; d; e; f ; 1g be such that

0\a\b\c\1, 0\d\e\f\1, a\e and b\f . Its

implication operator ! and operator � as follows Table 3:

Then L ¼ ðL;^;_;!;^; 0; 1Þ is a residuated lattice

which is a non-regular residuated lattice Table 4. It is

routine to verify that I3 ¼ f0; dg and I4 ¼ f0; a; b; cg are

ideals of L.

Theorem 3.1 Let L be a residuated lattice. I is an ideal of

L if and only if I satisfies following conditions:

(I3) 0 2 I;

(I4) for any x; y 2 L, if x
0 � y 2 I and x 2 I, then y 2 I.

Proof Suppose I is an ideal of L. It follows from (I1) that

0 2 I, so (I3) holds. Let x; y 2 L such that x
0 � y 2 I and

x 2 I. Observe that y ! ðx� ðx0 � yÞÞ ¼ y ! ðx0 ! ðx0 �
yÞÞ ¼ ðy� x

0 Þ ! ðy� x
0 Þ ¼ 1, we have y� x� ðx0 � yÞ.

As x
0 � y 2 I and x 2 I, it follows from (I2) that

x� ðx0 � yÞ 2 I, by (I1), hence y 2 I. Therefore, (I4) holds.

Conversely, Let x; y 2 L such that x� y and y 2 I, then

y
0 � x

0
and y

0 � x� x
0 � x ¼ 0, it follows that

y
0 � x ¼ 0 2 I, by y 2 I, we have x 2 I, that is, (I1) holds.

Assume x; y 2 I. Since x
0 � ðx� yÞ ¼ x

0 � ðx0 ! yÞ� y

and y 2 I, by (I2), we have x
0 � ðx� yÞ 2 I. It follows

from (I4) that x� y 2 I. h

Theorem 3.2 Let L be a residuated lattice. I is an ideal of

L if and only if I satisfies following conditions:

(I3) 0 2 I ;

(I5) for any x; y 2 L, if ðx0 ! y
0 Þ

0
2 I and x 2 I, then

y 2 I.

Table 2 � of L

� 0 a b c d 1

0 0 0 0 0 0 0

a 0 a d 0 d a

b 0 d c c 0 b

c 0 0 c c 0 c

d 0 d 0 0 0 d

1 0 a b c d 1

Table 3 ! of L

! 0 a b c d e f 1

0 1 1 1 1 1 1 1 1

a d 1 1 1 d 1 1 1

b d f 1 1 d f 1 1

c d e f 1 d e f 1

d c c c c 1 1 1 1

e 0 c c c c 1 1 1

f 0 b c c c f 1 1

1 0 a b c c e f 1

Table 4 � of L

� 0 a b c d e f 1

0 0 0 0 0 0 0 0 0

a 0 a a a 0 a a a

b 0 a a b 0 a a b

c 0 a b c 0 a b c

d 0 0 0 0 d d d d

e 0 a a a d e e e

f 0 a a b d e e f

1 0 a b c d e f 1
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Proof Let I be an ideals of L, so (I3) is obvious. Assume

ðx0 ! y
0 Þ

0
2 I and x 2 I. Since x

0 � y
00 � ðx0 � y

00 Þ
00
¼

ððx0 � y
00 Þ

0
Þ
0
¼ ðx0 ! y

000 Þ
0
¼ ðx0 ! y

0 Þ
0
2 I, by (I1), we

have x
0 � y

00 2 I, it follows from (I4) that y
00 2 I. As y

00 � y,

we have y 2 I.

Conversely, assume that (I5) holds, taking y ¼ x
00
in (I5),

we have x
00 2 I. Let x; y 2 I such that x

0 � y 2 I and x 2 I,

we obtain ðx0 � yÞ
00
2 I. Since

ðx0 � yÞ
00
¼ ððx0 � yÞ

0
Þ
0
¼ ðx0 ! y

0 Þ
0
, we have

ðx0 ! y
0 Þ

0
2 I. By (I5), we have y 2 I. Therefore I is an

ideal of L. h

Corollary 3.1 Let L be a residuated lattice and I is an

ideal of L. Then x 2 I if and only if x
00 2 I.

Remark 3.1 If the residuated lattice is a MTL-algebras,

the notion of ideal as well as the concept of ideals in lattice

implication algebras, R0-algebras are coincidence.

Theorem 3.3 Let L be a residuated lattice. I is an ideal of

L if and only if I satisfies following conditions:

(I2) for any x; y 2 I, x� y 2 I ;

(I6) for any x; y 2 L, if x _ y 2 I, then x 2 I and y 2 I.

Proof This proof is straightforward from the Definition

3.1. h

Theorem 3.4 Let L be a residuated lattice. I is an ideal of

L if and only if I satisfies following conditions:

(I2) for any x; y 2 I, x� y 2 I ;

(I7) for any x; y 2 L, if x 2 I, then x ^ y 2 I.

Proof If I is an ideal of L, then it is clear that I satisfies

(I7). Let I satisfy (I2) and (I7). Let x 2 I, y 2 L and y� x.

Then 0 ¼ x ^ 0 2 I and y ¼ x ^ y 2 I. Thus I is an ideal of

L. h

Definition 3.2 Let L be a residuated lattice. I is an lattice

ideal of L if and only if

(I1) for any x; y 2 L, if x� y and y 2 I, then x 2 I;

(I6) for any x; y 2 I, x _ y 2 I.

Theorem 3.5 Let L be a residuated lattice and I an ideal

of L. Then I is a lattice ideal of L.

Proof Let I be an ideal of L, so (I1) is obvious. For any

x; y 2 I, then x� y 2 I. Since x� y ¼ x
0 ! y� y and

x� y ¼ x
0 ! y� x

00 � x, we have x� y� x _ y, by (I1), we

have x _ y 2 I. Therefore I is a lattice ideal of L.
In general, the converse of Theorem may not be true. In

fact, In Example 3.2, f0; ag is a lattice ideals of L, but it is
not an ideal of L.

Lattice implication algebra, MV-algebras, MTL-alge-

bras and BL-algebra are residuated lattice. x ¼ x
00
is true in

lattice implication algebras and MV-algebras. But it may

not be true in BL-algebras and MTL-algebras. In lattice

implication algebras L, F � L is a filter of L if and only if

F
0 ¼ fx0 jx 2 Fg is an LI-ideal. But the result may not be

true in non-regular residuated lattices, the main reason is

the involution law does not hold in general in non-regular

residuated lattice such as MTL-algebras and BL-algebras

and so on. h

Example 3.3 In Example 3.1, I1; I2 are ideals of L,
meanwhile, I

0
1 ¼ f1; ag; I 02 ¼ f1; b; cg are all filters. But in

Example 3.2, L is non-regular residuated lattice, the

set I
0
4 ¼ f1; dg is not a filter of L. At the meantime,

F ¼ f1; d; e; fg is a filter of L, but F 0 ¼ f0; cg not an ideal

of L.

Example 3.4 Let L ¼ f0; a; b; c; d; 1g, the Hasse diagram

of L be defined as Fig. 2 and its operator ! be defined as

Table 5 and implication operator � be defined as Table 6:

Then L ¼ ðL;_;^;�;!; 0; 1Þ is a residuated lattice,

but not a regular residuated lattice, because

ða ! 0Þ ! 0 6¼ a. Obviously, L ¼ f0; a; b; c; d; 1g is an

ideal, but L
0 ¼ f0; 1; dg is not an ideal of L.

The following Theorems 3.6, 3.7 will reveal the rela-

tions between ideal and filter in a non regular residuated

lattice.

Theorem 3.6 Let F be a filter of a residuated lattice L.
Then F� is an ideal of L, where F� ¼ fx 2 Ljthereexists
y 2 F suchthat x

00 � y
0 g

Proof Let x; y 2 L such that x� y and y 2 F�, then there

exist y0 2 F such that y
00 � y

0
0. As x� y� y

00 � y
0
0, so

x 2 F�.

Fig. 2 Hasse diagram of L
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Let x; y 2 L such that x; y 2 F�, then there exist x0; y0 2
F such that x

00 � x
0
0; y

00 � y
0
0. Since F is a filter, we have

x0 � y0 2 F. We observe that ðx� yÞ
00
� ðx0 � y

0 Þ
000
¼ ðx0 �

y
0 Þ

0
¼ x

0 ! y
00 � x

0 ! y
0
0 � x0 ! y

0
0 ¼ ðx0 � y0Þ

0
, thus

x� y 2 F�. Therefore F� is an ideal of L. h

Theorem 3.7 Let I be an ideal of a residuated lattice L.
Then I� is a filter of L, where I� ¼ fx 2 Ljthereexists y 2 I

suchthat x
00 � y

0 g:

Proof Let x; y 2 L such that x� y and x 2 I�, then there

exist a 2 I such that x
00 � a

0
. We observe that x

00 � y
00
, we

have y
00 � a

0
. Therefore y 2 I�.

Let x; y 2 L such that x; y 2 I�, then there exist a; b 2 I

such that x
00 � a

0
and y

00 � b
0
. We observe that

x ! y
0 � y

00 ! x
0 � b

0 ! x
0 � x

00 ! b
00 � a

0 ! b
00 ¼ a� b

00
,

we have ðx ! y
0 Þ

0
� ða� b

00 Þ
0
, that is, ðx� yÞ

00
� ða� b

00 Þ
0
.

Since I is an ideal of L and a; b 2 I, we have a� b 2 I.

Since a� b
00 � a� b, by I is an ideal, we have a� b

00 2 I,

and so x� y 2 I�. Therefore I� is a filter of L. h

Theorem 3.8 Let Iiði 2 CÞ be ideals of L. Then
T

i2C Ii is

an ideals of L, where C is an index set.

Proof This proof is straightforward. h

Definition 3.3 Let A be nonempty set of a residuated

lattice L. The least ideal containing A is called the ideal

generalized by A, written hAi.

Theorem 3.9 Let A be nonempty set of a residuated

lattice L. Then

hAi ¼ fa 2 Lja�
�
� � � ððx1 � x2Þ � x3Þ � � �

�
� xn;

xi 2 A; i ¼ 1; 2; . . .; ng:

Proof Let U ¼ fa 2 Lja�
�
� � � ððx1 � x2Þ � x3Þ � � �

�
�

xn; xi 2 A; i ¼ 1; 2; . . .; ng: Obviously, 0 2 U. Let x
0 � y 2

U and x 2 U, then there exists ai; bj 2 Aði ¼ 1; 2; . . .; n; j ¼
1; 2; . . .;mÞ such that

x
0 � y�

�
� � � ðða1 � a2Þ � a3Þ � � �

�
� an;

x�
�
� � � ððb1 � b2Þ � b3Þ � � �

�
� bm:

we have

x
0 �

�
ð� � � ððb1 � b2Þ � b3Þ � � �Þ � bm

�0
:

and

y� x
0 !

�
ð� � � ðða1 � a2Þ � a3Þ � � �Þ � an

�

�
�
ð� � � ððb1 � b2Þ � b3Þ � � �Þ � bm

�0

!
�
ð� � � ðða1 � a2Þ � a3Þ � � �Þ � an

�

¼
�
ð� � � ððb1 � b2Þ � b3Þ � � �Þ � bm

�

�
�
ð� � � ðða1 � a2Þ � a3Þ � � �Þ � an

�
:

Therefore y 2 U and so U is an ideal of L and A � U.

Let V be any ideal of L and A � V . For any x 2 U, then

there exists ai 2 Aði ¼ 1; 2; . . .; nÞ such that

x�ð� � � ðða1 � a2Þ � a3Þ � � �Þ � an;

then x�
�
ð� � � ðða1 � a2Þ � a3Þ � � �

�
� an	1Þ

0
� an. Since A

is an ideal of L and an 2 A, therefore

ðð� � � ðða1 � a2Þ � a3Þ � � �Þ � an	1Þ
0
2 A � V , as ðða1 �

Table 5 ! of L

! 0 a b c d 1

0 1 1 1 1 1 1

a 0 1 b b d 1

b 0 a 1 b d 1

c 0 1 1 1 d 1

d d 1 1 1 1 1

1 0 a b c d 1

Table 6 � of L

� 0 a b c d 1

0 0 0 0 0 0 0

a 0 a c c d a

b 0 c b c d b

c 0 c c c d c

d 0 d d d 0 d

1 0 a b c d 1
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a2Þ � a3Þ � � �Þ � an	1Þ 2 A � V and V is an ideal, so x 2 V .

h

Corollary 3.2 For any element a of a residuated lattice

L, we have

hai ¼ fx 2 Ljx�ð� � � ðða� aÞ � aÞ � � �Þ � a
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

nterms

;

n is a natural number.g:

Let I be an ideal of a residuated lattice L. We define a

binary relation 
 on L as follows:

x
 Iy if and only if ðx ! yÞ
0
2 I and ðy ! xÞ

0
2 I:

From the definition of the binary 00 
 00
I , we have the fact

that x
 Ix
00
for any x 2 L.

Lemma 3.1 00 
 00
I is an equivalence relation on L.

Proof It is obvious that 
 I is reflexive and symmetric.

Now, to prove the transitivity. Assume x
 Iy and y
 Iz,

then ðx ! yÞ
0
2 I; ðy ! xÞ

0
2 I and

ðy ! zÞ
0
2 I; ðz ! yÞ

0
2 I. Since

z ! y�ðy ! xÞ ! ðz ! xÞ� ðz ! xÞ
0
! ðy ! xÞ

0
, we

have ðz ! yÞ
0
� ððz ! xÞ

0
! ðy ! xÞ

0
Þ
0
¼

ðððy ! xÞ
0
Þ
0
! ððz ! xÞ

0
Þ
0
Þ
0
. Since ðz ! yÞ

0
2 I and I is an

ideal, we have ðððy ! xÞ
0
Þ
0
! ððz ! xÞ

0
Þ
0
Þ
0
2 I. It follows

from Theorem 3.2 that we have ðz ! xÞ
0
2 I. Similarly, we

have ðx ! zÞ
0
2 I. Therefore x
 Iz. This completes the

proof. h

Theorem 3.10 00 
 00
I is an congruence relation on L:

Proof Assume x
 Iy, then ðx ! yÞ
0
2 I and ðy ! xÞ

0
2 I.

For any z 2 L, since ðx _ zÞ ! ðy _ zÞ ¼ ðx ! ðy _ zÞÞ ^
ðz ! ðy _ zÞÞ ¼ ðx ! ðy _ zÞÞ� x ! y, we have

ððx _ zÞ ! ðy _ zÞÞ
0
� ðx ! yÞ

0
. As I is an ideal of L and

ðx ! yÞ
0
2 I, so ððx _ zÞ ! ðy _ zÞÞ

0
2 I. Similarly, we

have ððy _ zÞ ! ðx _ zÞÞ
0
2 I, therefore x _ z
 y _ z.

Suppose x
 Iy, then ðx ! yÞ
0
2 I and ðy ! xÞ

0
2 I. For

any z 2 L, since ðx ^ zÞ ! ðy ^ zÞ� x ! y, we have

ððx ^ zÞ ! ðy ^ zÞÞ
0
� ðx ! yÞ

0
. As I is an ideal of L and

ðx ! yÞ
0
2 I, so ððx ^ zÞ ! ðy ^ zÞÞ

0
2 I. Similarly, we

have ððy ^ zÞ ! ðx ^ zÞÞ
0
2 I, therefore x ^ z
 y ^ z.

Assume x
 Iy, then ðx ! yÞ
0
2 I and ðy ! xÞ

0
2 I. For

any z 2 L, since x ! y� x� z ! y� z, it follows that

ðx ! yÞ
0
� ððx� zÞ ! ðy� zÞÞ

0
, and so

ððy� zÞ ! ðx� zÞÞ
0
2 I. Similarly, we have

ððy� zÞ ! ðx� zÞÞ
0
2 I, hence x� z
 Iy� z.

Assume x
 Iy, then ðx ! yÞ
0
2 I and ðy ! xÞ

0
2 I. For

any z 2 L, since x ! y�ðy ! zÞ ! ðx ! zÞ, we have

ðx ! yÞ
0
� ððy ! zÞ ! ðx ! zÞÞ

0
. We observe that I is an

ideal and ðx ! yÞ
0
2 I, hence ððy ! zÞ ! ðx ! zÞÞ

0
2 I,

similarly, ððx ! zÞ ! ðy ! zÞÞ
0
2 I. Therefore

x ! z
 Iy ! z.

Therefore, 
 I is a congruence relation on a residuated

lattice L. h

Theorem 3.11 Let I be an ideal of a residuated lattice L.
Then I ¼ fx 2 Ljx
 I0g:

Proof Let B ¼ fx 2 Ljx
 I0g. Now we will prove B is an

ideal of L. Obviously, 0 2 B. Let x; y 2 L such that x 2 B

and x
0 � y 2 B, it follows that x
 I0 and x

0 � y
 I0, then

x
0 ¼ x ! 0
 I0 ! 0 ¼ 1 and x

0 � y
 I1� y ¼ y. By the

transitivity of 
 I , we have y
 I0, hence y 2 B. Therefore

B is an ideal of L.
For any x 2 I, we have ðx ! 0Þ

0
¼ x

00 2 I and

ð0 ! xÞ
0
¼ 0 2 I, therefore x
 I0, hence x 2 B. Con-

versely, For any x 2 B, we have x
 I0, that is,

x�ðx ! 0Þ
0
¼ x

00 2 I. Since I is an ideal of L, we have

x 2 I. Consequently, I ¼ B. h

Remark 3.2 In Theorem 3.11, the ideal fx 2 Ljx
 I0g
denoted by I
 . This expression ðx; yÞ 2 
 I means x
 Iy.

Theorem 3.12 Let I be an ideal of L and 
 be a con-

gruence relation on L. Then 
 I
 ¼ �
 and I
 I
¼ I.

Proof

(1) For any ðx; yÞ 2 
 I
 if and only if ðx ! yÞ
0
2 I


and ðy ! xÞ
0
2 I
 if and only if ððy ! xÞ

0
; 0Þ 2 
 I

and ððx ! yÞ
0
; 0Þ 2 
 I if and only if ðy ! xÞ

0
2 I

and ðx ! yÞ
0
2 I if and only if ðx; yÞ 2 
 I .

(2) x 2 I
 I
if and only if ðx; 0Þ 2 
 I if and only if

x�ðx ! 0Þ
0
¼ x

00 2 I and ð0 ! xÞ
0
2 I if and only if

x 2 I. Hence I
 I
¼ I.

h

Remark 3.3 Theorem 3.12 shows that there is a bijection

between the set of ideals and the set of congruence rela-

tions in a residuated lattice.

3.2 Fuzzy ideals on a residuated lattice

Let ½0; 1� be the closed unit interval of reals and L 6¼ ; be a

set. Recall that a fuzzy set ([21]) in L is any function

l : L ! ½0; 1�.
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If l and m are fuzzy sets in L, define l� m iff lðxÞ� mðxÞ
for all x 2 L. Level set lt defined by lt ¼ fx 2 LjlðxÞ� tg,
where t 2 ½0; 1�, the lt is also denoted by Uðl; tÞ.

If C � ½0; 1�, put
V
C ¼ infC and

W
C ¼ supC; In par-

ticular, if a; b 2 ½0; 1�, then a ^ b ¼ minfa; bg and a _ b ¼
maxfa; bg. Recall that ½0; 1� is a complete Heyting algebra.

Definition 3.4 Let l be a fuzzy subset of a residuated

lattice L. l is called a fuzzy ideal of L, if l satisfies the

following condition:

(FI1) for any x; y 2 L, if x� y, then lðxÞ� lðyÞ ;
(FI2) for any x; y 2 L, lðx� yÞ�minflðxÞ; lðyÞg.

Example 3.5 In Example 3.2, we define a fuzzy set l on

L as follows :

lð0Þ ¼ 0:9; lðaÞ ¼ lðbÞ ¼ lðcÞ ¼ 0:6; lðdÞ
¼ lðeÞ ¼ lðf Þ ¼ lð1Þ ¼ 0:2:

It is routine to verify l is a fuzzy ideal of L.

Corollary 3.3 Let l be a fuzzy ideal of L. The the fol-

lowing hold for any x; y 2 L:

(1) lðx _ yÞ ¼ minflðxÞ; lðyÞg,
(2) lðx ^ yÞ�minflðxÞ; lðyÞg,
(3) lðx� yÞ�minflðxÞ; lðyÞg,
(4) lðx� yÞ ¼ minflðxÞ; lðyÞg.

Proof We observe that x� y� x ^ y� x _ y� x� y for

any x; y 2 L. We have lðx� yÞ� lðx ^ yÞ� lðx _ yÞ�
lðx� yÞ�minflðxÞ; lðyÞg. Since x� y� x _ y� x; y, it

follows that lðx� yÞ� lðx _ yÞ� lðxÞ; lðyÞ, and so lðx�
yÞ� lðx _ yÞ�minflðxÞ; lðyÞg: This completes the proof.

h

Theorem 3.13 Let l be a fuzzy subset of a residuated

lattice L. Then l is a fuzzy ideal of L if and only if the

level set ltð6¼ ;Þ is an ideal of L.

Proof Let l be a fuzzy ideal of L and lt 6¼ ;. Assume

x; y 2 L such that x� y and y 2 lt, then lðyÞ� t. Since l is

a fuzzy ideal and x� y, it follows that lðxÞ� lðyÞ� t, we

have x 2 lt, and so (I1) holds. Let x; y 2 lt, we have

lðxÞ� t and lðyÞ� t, then lðx� yÞ�minflðxÞ; lðyÞg� t.

And so x� y 2 lt. Therefore lt is a ideal of L.
Conversely, assume that lt is an ideal of L. Let x; y 2 L,

taking t ¼ minflðxÞ; lðyÞg, we can obtain x 2 lt and

y 2 lt. By lt is an ideal, we have x� y 2 lt, and so

lðx� yÞ�minflðxÞ; lðyÞg ¼ t. Let x; y 2 L such that

x� y. Taking t ¼ lðyÞ, we have y 2 lt, It follows (I1) that
x 2 lt, and so lðxÞ� lðyÞ. Therefore l is a fuzzy ideal of

L. h

Theorem 3.14 Let l be a fuzzy subset of a residuated

lattice L. l is a fuzzy ideal of L, if l satisfies the following

condition:

(FI3) for any x 2 L, lð0Þ� lðxÞ ;
(FI4) for any x; y 2 L, lðyÞ�minflðxÞ; lðx0 � yÞg.

Proof Let l be a fuzzy ideal of L. Since 0� x for any

x 2 L, it follows that lð0Þ� lðxÞ. So (FI3) holds. Since

x� ðx0 � yÞ ¼ x
0 ! ðx0 ! yÞ� y and l is a fuzzy ideal, we

have lðyÞ� lðx� ðx0 � yÞÞ�minflðxÞ; lðx0 � yÞg. And

so (FI4) holds

Conversely, assume that (FI3) and (FI4) hold. Let x; y 2
L such that x� y, then y

0 � x
0
and x� y

0 � x� x
0 ¼ 0, and

so lð0Þ ¼ lðy0 � xÞ. By (FI4), we have

lðxÞ�minflðyÞ; lðy0 � xÞg ¼ minflðyÞ; lð0Þg� lðyÞ.
And hence (FI1) holds. Let x; y 2 L, since

x
0 � ðx� yÞ ¼ x

0 � ðx0 ! yÞ� y, we have

lðx0 � ðx� yÞÞ� lðyÞ. And

lðx� yÞ�minflðxÞ; lðx0 � ðx� yÞÞg�minflðxÞ; lðyÞg.
Therefore, l is a fuzzy ideal of L. h

Theorem 3.15 Let l be a fuzzy subset of a residuated

lattice L. l is a fuzzy ideal of L, if l satisfies the following

condition:

(FI3) for any x 2 L, lð0Þ� lðxÞ ;
(FI5) for any x; y 2 L, lðyÞ�minflðxÞ; lððx0 ! y

0 Þ
0
Þg.

Proof Let l be a fuzzy ideal of L. Since 0� x for any

x 2 L, it follows that lð0Þ� lðxÞ. So (FI3) holds. Since

x
0 � y

00 � ðx0 � y
00 Þ

00
¼ ðx0 ! y

0 Þ
0
, and so

lððx0 ! y
0 Þ

0
Þ � lðx0 � y

00 Þ. It follows that

lðy00 Þ � lðxÞ; lðx0 � y
00 Þ �minflðxÞ; lðx0 � yÞg

�minflðxÞ; lððx0 ! y
0 Þ

0
Þg. Since y

00 � y, we have

lðyÞ� lðy00 Þ. And so lðyÞ�minflðxÞ; lððx0 ! y
0 Þ

0
Þg, that

is, (FI5) holds.

Conversely, assume that (FI3) and (FI5) hold. In (FI5),

taking y ¼ x
00
, we have lðx00 Þ � lðxÞ. Let x; y 2 L, since

x
0 � y

00 � ðx0 � y
00 Þ

00
¼ ðx0 ! y

0 Þ
0
, we have

lðyÞ�minflðxÞ; lððx0 ! y
0 Þ

0
Þg�minflðxÞ; lðx0 � yÞg.

Therefore, l is a fuzzy ideal of L. h

Corollary 3.4 Let l be a fuzzy ideal of a residuated

lattice L. Then lðx00 Þ ¼ lðxÞ for any x 2 L.

Theorem 3.16 Let l be a fuzzy subset of a residuated

lattice L. l is a fuzzy ideal of L, if l satisfies the following

condition:
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(FI2) for any x; y 2 L, lðx� yÞ�minflðxÞ; lðyÞg;
(FI6) for any x; y 2 L, lðx ^ yÞ� lðxÞ.

Proof Assume that l is a fuzzy ideal and x; y 2 L. Since

x ^ y� x, we have lðx ^ yÞ� lðxÞg.
Conversely, suppose that l satisfies (FI2) and (FI6). Let

x; y 2 L such that y� x, then x ^ y ¼ y and

lðyÞ ¼ lðx ^ yÞ� lðxÞ. Hence l is a fuzzy ideal of L.
Let I be a nonempty subset of L and a; b 2 ½0; 1� such

that a[ b. Now we define fuzzy set lI by

lIðxÞ ¼
a; if x 2 I;

b; otherwise:

�

Particularly, lI is vI on I at a ¼ 1; b ¼ 0. h

Theorem 3.17 Let I be a non-empty subset of L. Then lI
is a fuzzy ideal of L if and only if I is an ideal of L.

Proof Assume that lI is a fuzzy ideal of L. For any

x; y 2 L, if x; y 2 I, then lIðxÞ ¼ lIðyÞ ¼ a. So

lIðx� yÞ�minflIðxÞ; lIðyÞg ¼ a, we have x� y 2 I.

Let x; y 2 I such that x� y and y 2 I, we have

lIðxÞ� lIðyÞ and lIðyÞ ¼ a. And so lIðxÞ ¼ a, that is,

x 2 I. Therefore I is an ideal of L.
Conversely, Let F be an ideal of L and x; y 2 L.

(Case I) If x; y 2 I, then x� y 2 I. Thus

lIðx� yÞ ¼ a ¼ minflIðxÞ; lIðyÞg.
(Case II) If x 62 F or y 62 F. Then lIðxÞ ¼ b or

lIðyÞ ¼ b. Thus lIðx� yÞ� b ¼ minflIðxÞ; lIðyÞg.
From Case I to Case II, we arrive at lIðx�
yÞ�minflIðxÞ; lIðyÞg for any x; y 2 L.

Let x; y 2 L and x� y.

(Case I) If y 2 I, then x 2 Ithen lIðyÞ ¼ a ¼ lIðxÞ.
(Case II) If y 62 I, then lIðyÞ ¼ b. Thus

lIðxÞ� lIðyÞ ¼ b.

Therefore, for any x; y 2 L and x� y, we have

lIðxÞ� lIðyÞ. So lI is a fuzzy ideal by Definition 3.4. h

Theorem 3.18 Let l be an fuzzy ideal of L. Then the set

I0 ¼ fx 2 LjlðxÞ ¼ lð0Þg

is an ideal of L.

Proof Let x; y 2 I0, then lðxÞ ¼ lðyÞ ¼ lð0Þ, and so

lðx� yÞ�minflðxÞ; lðyÞg ¼ lð0Þ. Since lð0Þ� lðxÞ for

any x 2 L, we have lð0Þ� lðx� yÞ, then lð0Þ ¼ lðx� yÞ,
that is, x� y 2 I0.

Let x; y 2 L such that x� y and y 2 I0. Then

lðxÞ� lðyÞ ¼ lð0Þ, hence lðxÞ ¼ lð0Þ. We have x 2 I0.

Consequently, I0 is an ideal of L. h

Theorem 3.19 Let l be a fuzzy set of L. Define a fuzzy

set m as follows:

mðxÞ ¼
_

fminflðx1Þ; lðx2Þ; . . .; lðxnÞg
jx�ð� � � ððx1 � x2Þ � x3Þ � � �Þ �
xn for some x1; x2; . . .; xn 2 Lg:

Then m is the smallest fuzzy ideal of L that contains l.

Proof Obviously, mð0Þ� mðxÞ for any x 2 L. Let x; y 2 L

such that

x�ð� � � ððb1 � b2Þ � b3Þ � � �Þ � bm

and

x
0 � y�ð� � � ðða1 � a2Þ � a3Þ � � �Þ � an:

Then

y� x� ðx0 � yÞ
¼ ðð� � � ððb1 � b2Þ � b3Þ � � �Þ � bmÞ
� ðð� � � ðða1 � a2Þ � a3Þ � � �Þ � anÞ:

and so mðyÞ�minflða1Þ; lða2Þ; . . .; lðanÞ; lðb1Þ;
lðb2Þ; . . .; lðbmÞg:

Denote by A ¼ fminflðb1Þ; lðb2Þ; . . .; lðbmÞgjx�
ð� � � ððb1 � b2Þ � b3Þ � � �Þ � bm for some b1; b2; � � � ; bm 2
Lg and B ¼ fminflða1Þ; lða2Þ; . . .; lðanÞgjx

0 � y� ð� � �
ðða1 � a2Þ � a3Þ � � �Þ � an for some a1; a2; . . .; am 2 Lg:

We have minfmðxÞ; mðx0 � yÞg ¼ minf
W
A;

W
Bg ¼

W

fminflða1Þ; l ða2Þ;� � � ; lðanÞ; lðb1Þ; lðb2Þ; � � � ; l ðbmÞg
jx0 � y�ð� � � ðða1 � a2Þ � a3Þ � � �Þ � an; x�ð� � � ððb1 �
b2Þ � b3Þ � � �Þ � bm for some a1; a2; . . .; am; b1; b2; . . .; bm
2 Lg; and so

mðyÞ�minfmðxÞ; mðx0 � yÞg:

Hence m is a fuzzy ideal of L. Since x� x� x for any x 2 L,

we have mðxÞ�minflðxÞ; lðxÞg ¼ lðxÞ, that is, m contains

l.
Let x be a fuzzy ideal of L that contains l. For any

x 2 L, mðxÞ ¼
W
fminflðx1Þ; lðx2Þ; . . .; lðxnÞgjx�

ð� � � ððx1 � x2Þ � x3Þ � � �Þ �xn for some x1; x2; � � � ; xn 2
Lg�

W
fminfxðx1Þ;x ðx2Þ; � � � ;xðxnÞgjx�ð� � � ððx1 �

x2Þ � x3Þ � � �Þ � xn for some x1; x2; . . .; xn 2 Lg �xðxÞ.
Therefore m is the smallest fuzzy ideal of L that contains

l. h

Remark 3.4 The smallest fuzzy ideal containing l is said

to be generated by l. It is also the intersection of all fuzzy

ideals of L containing l.
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4 Fuzzy prime ideals

4.1 Prime ideals

In the paper [6, 11], various types of filters are defined and

their properties are investigated. In particular, it is focused

on three kinds of prime filters of residuated lattices, prime

filters, prime filter of the second kind and prime filters of

the third kind.

A prime filter (PF) of L is a filter F satisfying, for all

x; y 2 L: x ! y 2 F or y ! x 2 F.

A prime filter of the second kind (PF2) is a filter F

satisfying, for any x; y 2 L, if x _ y 2 F, then x 2 F or

y 2 F.

A prime filter of the third kind (PF3) of a residuated

lattice is a filter of L satisfying, for all x; y 2 L,

ðx ! yÞ _ ðy ! xÞ 2 F.

In [6], authors point out:

A filter is a prime filter iff L is linearly ordered. In this

case, all filters are prime filters.

A filter is a prime filter of the second kind iff 1 is _-
irreducible (i.e. if 1 ¼ x _ y for x; y 2 L, then x ¼ 1 or

y ¼ 1) in L. Remark that in general, this does not imply

that all filters are prime filters of the second kind.

A filter is a prime filter of the third kind iff L is an MTL-

algebra. In this case, all filters are prime filters of the third

kind.

The classes of such prime filters of a residuated lattice L
are denoted by PFðLÞ, PF2ðLÞ and PF3ðLÞ, respectively. It
is proved in [6] that PFðLÞ � PF2ðLÞ, PFðLÞ � PF3ðLÞ
and that PFðLÞ ¼ PF2ðLÞ implies the prelinearity of L if L
is finite or 1 is _-irreducible. In the general case, it is left

an open problem, that is, it is conjectured that if PFðLÞ ¼
PF2ðLÞ then L is an MTL-algebra. In [11], Kondo and

Turunen give an answer to the open problem, that is, For

every residuated lattice L, PFðLÞ ¼ PF2ðLÞ then L is an

MTL-algebra.

We give the notions of two types prime ideals of a re-

siduated lattice L, and the relations among them are given.

Definition 4.1 Let I be a proper ideal of a residuated

lattice L. I is said to be a prime ideal, if for any x; y 2 L,

ðx ! yÞ
0
2 I or ðy ! xÞ

0
2 I.

Definition 4.2 Let I be a proper ideal of a residuated

lattice L. I is said to be a prime ideal of the second kind, if

for any x; y 2 L, x ^ y 2 I implies x 2 I or y 2 I.

In a residuated lattice L, denote Rl ¼ fl 2 Ljl� l ¼ lg.
Then Il ¼ fx 2 Ljx� l; l 2 Rlg is an ideal of L. In fact, if

x; y 2 L such that x� y and y 2 Il, we have x� y� l, and so

x 2 Il; At the meantime, if x; y 2 Il, then x� l and y� l, and

so x� y� l� l ¼ l, therefore x� y 2 Il.

Theorem 4.1 Let L be a residuated lattice. If l 2 Rl and l

be ^-irreducible element of L, then Il is a prime ideal of the

second kind of L.

Proof Suppose a ^ b 2 Il. Then l� a ^ b and therefore,

l ¼ l� l� l� ða ^ bÞ ¼ l
0 ! ða ^ bÞ ¼ ðl0 ! aÞ ^ ðl0 !

bÞ ¼ ðl� aÞ ^ ðl� bÞ� l ^ l ¼ l. So l ¼ ðl� aÞ ^ ðl� bÞ,
which implies l ¼ l� a or l ¼ l� b. So l� a or l� b,

which means exactly that a 2 Il or b 2 Il. h

Theorem 4.2 Let L be a residuated lattice. Every prime

ideal of L is also a prime ideal of the second kind. If L is an

MTL-algebra, then every prime ideal of the second kind of

L is also a prime ideal.

Proof Suppose F is a prime ideal of the residuated lattice

L, and a ^ b 2 I. We know that ða ! bÞ
0
2 I or

ðb ! aÞ
0
2 I. Without loss of generality, we assume

ða ! bÞ
0
2 I. It follows that ða ^ bÞ � ða ! bÞ

0
2 I

because I is an ideal of L. Since ða ^ bÞ � ða ! bÞ
0
¼

ða ^ bÞ
0
! ða ! bÞ

0
¼ ða ! bÞ ! ða ^ bÞ

00
� ða ! bÞ !

ða ^ bÞ ¼ ðða ! bÞ ! aÞ ^ ðða ! bÞ ! bÞ� a ^ a ¼ a.

This implies a 2 I, because I is a prime ideal of the second

kind of L.
Now suppose I is a prime ideal of the second kind of the

MTL-algebra L, and a; b 2 L. Because ða ! bÞ
0
^ ðb !

aÞ
0
¼ ðða ! bÞ _ ðb ! aÞÞ

0
¼ 1

0 ¼ 0 2 I, either ða !
bÞ

0
2 I or ðb ! aÞ

0
2 I. h

Remark 4.1 For a residuated lattice which satisfies the

prelinearity, then the prime ideal of the second kind is a

prime ideal. Such as, lattice implication algebras, MTL-

algebras, BL-algebras, MV-algebras.

In residuated lattices that are not MTL-algebras, prime

ideals of the second kind are in general not prime ideals.

The counterexample as follows:

Fig. 3 Hasse diagram of L
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Example 4.1 Three residuated lattices exist on the lattice

in Fig. 3 (Example 7 in [6]). If we consider the Heyting-

algebra, Also note that prelinearity does not hold:

ðb ! aÞ _ ða ! bÞ ¼ b _ a ¼ u. Remark that f0g is a

prime ideal of the second kind, but f0g is not a prime ideal.

4.2 Fuzzy prime ideals

In this section, we mainly introduce two types fuzzy prime

ideal, named fuzzy prime ideal and fuzzy prime ideal of the

second kind, respectively. The relation between the fuzzy

prime ideal and fuzzy prime ideal of the second kind are

revealed. We mainly focus on the fuzzy prime ideal of the

second kind. Its some important properties are investigated.

Definition 4.3 A fuzzy ideal l of L is said to be fuzzy

prime if it is non-constant and lððx ! yÞ
0
Þ ¼ lð0Þ or

lððy ! xÞ
0
Þ ¼ lð0Þ for any x; y 2 L.

Definition 4.4 A fuzzy ideal l of L is said to be fuzzy

prime of the second kind of L if it is non-constant and

lðx ^ yÞ�maxflðxÞ; lðyÞg for any x; y 2 L.

Lemma 4.1 Let l be a fuzzy ideal of L. Then l is a

constant fuzzy set if and only if lð1Þ ¼ lð0Þ.

Proof Necessity is obvious and we need to prove the

sufficiency:

Assume that l satisfies lð1Þ ¼ lð0Þ. Since l is a fuzzy

ideal, for any x 2 L, 0� x� 1, it follows that

lð0Þ� lðxÞ� lð1Þ. Hence lð1Þ ¼ lð0Þ ¼ lðxÞ for any

x 2 L. Hence l is constant. h

Example 4.2 In Example 3.2, we define a fuzzy set l on

L as follows :

lð0Þ ¼ 0:9; lðdÞ ¼ 0:6; lðaÞ ¼ lðbÞ ¼ lðcÞ
¼ lðeÞ ¼ lðf Þ ¼ lð1Þ ¼ 0:2:

It is routine to verify l is both a fuzzy prime ideal and

fuzzy prime ideal of the second kind of L.

Remark 4.2 Let l be a non constant fuzzy ideal of L.
Then l is a fuzzy prime ideal of the second kind if and only

if maxflðxÞ; lðyÞg ¼ lðx ^ yÞ.

Theorem 4.3 Let l be a non constant fuzzy set of L.
Then l is a fuzzy prime ideal of the second kind of L if and

only if lt is a prime ideal of the second kind of L, where
lt ¼ fx 2 LjlðxÞ� tg for any t 2 ½0; 1�.

Proof By Theorem 3.10, we have l is a fuzzy ideal of L
if and only is lt is a ideal of L. Now, we need to prove l is

fuzzy prime if and only if lt if is prime.

Let lt is prime and x; y 2 L. Setting t ¼ lðx ^ yÞ, we
have x ^ y 2 lt. It follows that x 2 lt or y 2 lt. Then

lðxÞ� t or lðyÞ� t. Therefore,

maxflðxÞ; lðyÞg� t ¼ lðx ^ yÞ.
Conversely, assume that l is non constant fuzzy ideal

and lðx ^ yÞ�maxflðxÞ; lðyÞg for any x; y 2 L. The there

exists t 2 ½0; 1� such that lt is proper. Let x ^ y 2 lt, then
lðx ^ yÞ� t, and so maxflðxÞ; lðyÞg� lðx ^ yÞ� t. Hence

lðxÞ� t or lðyÞ� t, which implies x 2 lt or y 2 lt. h

Corollary 4.1 Let I be a proper ideal of L. Then I is a

prime ideal of the second kind if and only if its charac-

teristic function vI is a fuzzy prime ideal of the second kind

of L.

Corollary 4.2 Let l be a non constant fuzzy ideal of L.
Then l is a fuzzy prime ideal of the second kind of L if and

only if llð0Þ is a prime ideal of the second kind of L.

Theorem 4.4 Let l be a fuzzy prime ideal of L. Then l is

a fuzzy prime ideal of the second kind of L. If L is a MTL-

algebras, then every fuzzy prime ideal of the second kind

of L is also a fuzzy prime ideal.

Proof The proof is straightforward from Theorems 4.2

and 4.3. h

Remark 4.3 For a residuated lattice which satisfies the

prelinearity, then the fuzzy prime ideal of the second kind

is the fuzzy prime ideal. Such as, lattice implication alge-

bras, MTL-algebras, BL-algebras. In this section. We

mainly focus on the fuzzy prime ideal of the second kind of

L.

Theorem 4.5 Let I be an ideal of L and l be a fuzzy set

in L. Then I is a prime ideal of the second ideal of L if and

only if lI is a fuzzy prime ideal of the second kind of L.

Proof Assume that I is a prime ideal of the second kind of

L, we have lI is nonconstant. Let x; y 2 L, if x ^ y 2 I, it

follows that x 2 I or y 2 I, hence

lIðx ^ yÞ ¼ a ¼ maxflIðxÞ; lIðyÞg. If x ^ y 62 I, then x 62 I

and y 62 I (in fact, if x 2 I or y 2 I, since x ^ y� x; y and I

is an ideal, we have x ^ y 2 I, contradiction). Hence

lIðx ^ yÞ ¼ b ¼ maxflIðxÞ; lIðyÞg. Therefore, lI is a

fuzzy prime ideal of the second kind of L.
Conversely, assume that lI is a fuzzy ideal of L. Then

lIðx ^ yÞ ¼ maxflIðxÞ; lIðyÞg. Let x ^ y 2 I, then

lIðx ^ yÞ ¼ a, we have lIðxÞ ¼ a or lIðyÞ ¼ a. That is,

when x ^ y 2 I, we have x 2 I or y 2 I. Therefore I is a

prime ideal of the second kind of L. h

Theorem 4.6 Let l be a fuzzy ideal of L. Then the fol-

lowing conditions are equivalent:

(1) l is a fuzzy prime ideal of the second kind of L;
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(2) for any x; y 2 L, lðx ^ yÞ ¼ lð0Þ implies lðxÞ ¼
lð0Þ or lðyÞ ¼ lð0Þ.

Proof Assume that l is a fuzzy prime ideal of the second

kind of L. Let x; y 2 L such that lðx ^ yÞ ¼ lð0Þ. We have

maxflðxÞ; lðyÞg ¼ lð0Þ. Hence lðxÞ ¼ lð0Þ or

lðyÞ ¼ lð0Þ. Hence (2) holds.

In order to prove l is a fuzzy prime ideal of the second

kind of L, we only need to prove that ltð6¼ ;Þ is a prime

ideal of the second kind of L for any t 2 ½0; 1�. Let x; y 2 L

such that x ^ y 2 lt, then lðx ^ yÞ� t for any t 2 ½0; 1�.
Taking t0 ¼ lð0Þ, we have lðx ^ yÞ ¼ lð0Þ, it follows from
(2) that lðxÞ ¼ lð0Þ� t or lðyÞ ¼ lð0Þ� t. That is, x 2 lt
or y 2 lt. Hence lt is a prime ideal, it follows from

Theorem 4.1 that l is a fuzzy prime ideal of the second

kind of L. h

Theorem 4.7 Let l be a fuzzy ideal of L and lð0Þ ¼ 1.

Then l is a fuzzy prime ideal of the second kind of L if and

only if

I0 ¼ fx 2 LjlðxÞ ¼ lð0Þg

is a prime ideal of the second kind of L.

Proof Assume that l is a fuzzy prime ideal of the second

kind of L. Then I0 is an ideal of L by Theorem 3.14. Since

l is a nonconstant, I0 is proper. Let x; y 2 L such that

x ^ y 2 I0, then lðx ^ yÞ ¼ lð0Þ. Since l is a fuzzy prime

ideal of the second kind, it follows from Theorem 4.2 that

lðxÞ ¼ lð0Þ or lðyÞ ¼ lð0Þ, that is, x 2 I0 or y 2 I0.

Therefore I0 is a prime ideal of the second kind of L.
Conversely, assume that I0 is a prime ideal of the second

kind of L. Let t 2 ½0; 1� such that lt is nonempty, we have

I0 � lt. Let x ^ y 2 lt, we have lðx ^ yÞ� t. Taking

t ¼ lð0Þ, by l is a fuzzy ideal, we have lðx ^ yÞ ¼ lð0Þ.
Hence x ^ y 2 I0. Since I0 is a prime ideal of the second

kind ofL, it follows that x 2 I0 � lt or y 2 I0 � lt. And solt
is a prime ideal of the second kind of L. It follows from

Theorem 4.1 that l is a fuzzy prime ideal of the second kind

of L. h

Theorem 4.8 Let l be a fuzzy set of L. Define a mapping

l� : L ! R as

l�ðxÞ ¼ lðxÞ þ 1	 lð0Þ;

for any x 2 L. Then l is a fuzzy prime ideal of the second

kind of L if and only if l� is a fuzzy prime ideal of the

second kind of L.

Proof Suppose l is a fuzzy prime ideal of the second kind

of L, then lðxÞ� lð0Þ for any x 2 L. Then l� is a fuzzy set

of L. Furthermore, for any x; y 2 L,

l�ð0Þ ¼ lð0Þ þ 1	 lð0Þ ¼ 1� l�ðxÞ

and minfl�ðxÞ; l�ðx0 � yÞg ¼ minflðxÞ þ 1	
lð0Þ; lðx0 � yÞ þ 1	 lð0Þg ¼ minflðxÞ; lðx0 � yÞg þ
1	 lð0Þ� lðyÞ þ 1	 lð0Þ ¼ l�ðyÞ: Therefore, l� is a

fuzzy ideal of L. Now, we prove l� is prime of the second

kind.

Since l is prime of the second kind, it follows that

lðx ^ yÞ ¼ maxflðxÞ; lðyÞg

and

lðx ^ yÞ þ 1	 lð0Þ ¼ maxflðxÞ; lðyÞÞg þ 1	 lð0Þ

which implies lðx ^ yÞ þ 1	 lð0Þ ¼ maxfðlðxÞ þ 1	
lð0ÞÞ; ðlðyÞ þ 1	 lð0ÞÞg: Hence l�ðx ^ yÞ ¼
maxfl�ðxÞ; l�ðyÞg for any x; y 2 L, and so l� is a fuzzy

prime ideal of the second kind of L.
Conversely, suppose l� is a fuzzy prime ideal of the

second kind, then l�ðxÞ� l�ð0Þ, that is,

lðxÞ þ 1	 lð0IÞ� lð0Þ þ 1	 lð0Þ, it follows that

lðxÞ� lð0Þ.
Since minfl�ðxÞ; l�ðx0 � yÞg� l�ðyÞ, so

minflðxÞ; lðx0 � yÞg� lðyÞ.
As l� is prime of the second kind, it follows that

l�ðx ^ yÞ ¼ maxfl�ðxÞ; l�ðyÞg, we have

lðx0 � yÞ ¼ maxflðxÞ;lðyÞg. Therefore, l is a fuzzy prime

ideal of the second kind L. h

Theorem 4.9 Let m be a fuzzy prime ideal of the second

kind of a residuated lattice L and a 2 ½0; mð0ÞÞ. Then ðm _
aÞðxÞ ¼ mðxÞ _ a is also a fuzzy prime ideal of the second

kind of L.

Proof Let m be a fuzzy prime ideal of the second kind and

a 2 ½0; mð1ÞÞ. Assume that there exist x; y 2 L such that

x� y. Since m is a fuzzy ideal, we have mðxÞ� mðyÞ, and so

mðxÞ _ a� mðyÞ _ a, that is, ðm _ aÞðxÞ� ðm _ aÞðyÞ. Let

x; y 2 L, since m is a fuzzy ideal, we have

mðx� yÞminfmðxÞ; mðyÞg. And ðm _ aÞðx� yÞ ¼ mðx� yÞ _
a� minfmðxÞ; mðyÞg _ a ¼ minfmðxÞ _ a; mðyÞ _ ag ¼
minfðm _ aÞðxÞ; ðm _ aÞðyÞg. Therefore m _ a is a fuzzy

ideal of L. Since m is nonconstant and a� mð0Þ, we have

ðm _ aÞð0Þ ¼ mð0Þ _ a ¼ mð0Þ 6¼ mð1Þ _ a. Hence m _ a is

nonconstant.

Since m is fuzzy prime of the second kind, we have

mðx ^ yÞ ¼ maxfmðxÞ; mðyÞg for any x; y 2 L. Hence ðm _
aÞðx ^ yÞ ¼ mðx ^ yÞ _ a ¼ maxfmðxÞ; mðyÞg _ a ¼
maxfmðxÞ _ a; mðyÞ _ ag ¼ maxfðm _ aÞðxÞ; ðm _ aÞðyÞg.
Therefore m _ a is also a fuzzy prime ideal of the second

kind of L. h
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5 Fuzzy congruence relation

Definition 5.1 Let h be a fuzzy relation on a residuated

lattice L. h is called an fuzzy congruence relation on L, if it
satisfies, for any x; y; z 2 L :

(IFC1) hðx; xÞ ¼ Supðy;zÞ2L�Lhðy; zÞ;
(IFC2) hðx; yÞ ¼ hðy; xÞ;
(IFC3) hðx; yÞ�minfhðx; yÞ; hðy; zÞg;
(IFC4) hðx; yÞ� hðx� z; y� zÞ;
(IFC5) hðx; yÞ�minfhðx ! z; y ! zÞ; hðz ! x; z ! yÞg.

Let h be a fuzzy relation on L, (IFC5) is equivalent with
the following conditions hold: hðx; yÞ� hðx ! z; y ! zÞ
and hðx; yÞ� hðz ! x; z ! yÞ.

For a fuzzy congruence relation h, the fuzzy subset

hx : L ! ½0; 1�, which is defined by hxðyÞ ¼ hðx; yÞ, is

called the fuzzy congruence class containing x. Let L=h be

the set of all fuzzy congruence classes hx, where x 2 L.

Theorem 5.1 For any fuzzy congruence relation h in L.
Then h0 is an fuzzy ideal of L.

Proof Let x 2 L, then

h0ð0Þ ¼ hð0; 0Þ ¼ hð1; 1Þ� hð0; xÞ ¼ h0ðxÞ. Let x; y 2 L,

by transitivity, we have h0ðyÞ ¼ hð0; yÞ�minfhð0; x0 �
yÞ; hðx0 � y; yg: Since h be a fuzzy congruence relation on

L, it follows that hðx0 � y; yÞ ¼ hðx0 � y; 1�
yÞ� hðx0

; 1Þ ¼ h ðx ! 0; x ! xÞ� hð0; xÞ ¼ h0ðxÞ. There-

fore, h0ðyÞ�minfh0ðx0 � yÞ; h0ðxÞg. It follows from The-

orem 3.14 that h0 is a fuzzy ideal of L. h

Theorem 5.2 Let l be a fuzzy ideal of L and a fuzzy

relation h on L by

hðx; yÞ ¼ minflððx ! yÞ
0
Þ; lððy ! xÞ

0
Þg. Then h is a fuzzy

congruence on L.

Proof Let l be a fuzzy ideal of L, we have lð0Þ� lðxÞ
for any x 2 L. Then hðx; xÞ ¼ minflððx ! xÞ

0
Þ;lðððx !

xÞ
0
Þg ¼ lð0Þ�minflððx ! yÞ

0
Þ; lððy ! xÞ

0
Þg ¼ hðx; yÞ:

Thus (IFC1) is valid. Obviously, (IFC2) is valid. Next, we

prove (IFC3) holds. We observe

z ! y�ðx ! zÞ ! ðx ! yÞ� ðx ! zÞ
00
! ðx ! yÞ

00
, and

ðz ! yÞ
0
� ððx ! zÞ

00
! ðx ! yÞ

00
Þ
0
. By l is a fuzzy ideal,

we have lððz ! yÞ
0
Þ � lðððx ! zÞ

00
! ðx ! yÞ

00
Þ
0
Þ and

lððx ! yÞ
0
Þ �minflððx ! zÞ

0
Þ; lðððx ! zÞ

00
! ðx !

yÞ
00
Þ
0
Þg�minflððx ! zÞ

0
Þ; lððz ! yÞ

0
Þg. Similarly, we can

prove lððy ! xÞ
0
Þ �minflððz ! xÞ

0
Þ;lððy ! zÞ

0
Þg.

Therefore minfhðx; zÞ; hðz; yÞg ¼ minfminflððx !
zÞ

0
Þ; lððz ! xÞ

0
Þg;minflððz ! yÞ

0
Þ; lððy ! zÞ

0
Þgg ¼

minfminflððx ! zÞ
0
Þ; lððz ! yÞ

0
Þg;minflððz ! xÞ

0
Þ;

lððy ! zÞ
0
Þgg�minflððx ! yÞ

0
Þ; lððy ! xÞ

0
Þg ¼ hðx; yÞ;

So (IFC3) is valid.

Since ðx� zÞ ! ðy� zÞ� x ! y and

ððx� zÞ ! ðy� zÞÞ
0
� ðx ! yÞ

0
, we have

lððx ! yÞ
0
Þ � lðððx� zÞ ! ðy� zÞÞ

0
Þ. Similarly,

lððy ! xÞ
0
Þ � lðððy� zÞ ! ðx� zÞÞ

0
Þ. Therefore hðx�

z; y� zÞ ¼ minflðððx� zÞ ! ðy� zÞÞ
0
Þ; lðððy� zÞ

0
!

ðx� zÞÞ
0
Þg�minflððx ! yÞ

0
Þ; lððy ! xÞ

0
Þg ¼ hðx; yÞ.

Then (IFC4) is valid.

We observe ðx ! zÞ ! ðy ! zÞ� x ! y, it follows that

ððx ! zÞ ! ðy ! zÞÞ
0
� ðx ! yÞ

0
, and so

lðððx ! zÞ ! ðy ! zÞÞ
0
Þ � lððx ! yÞ

0
Þ. Similarly,

lðððz ! xÞ ! ðz ! yÞÞ
0
Þ � lððy ! xÞ

0
Þ. It follows that

hðx ! z; y ! zÞ ¼ minflðððx ! zÞ ! ðy ! zÞÞ
0
Þ;lðððy !

zÞ ! ðx ! zÞÞ
0
Þg � minflððx ! yÞ

0
Þ; lððy ! xÞ

0
Þg ¼

hðx; yÞ. Therefore, q is a fuzzy congruence relation on

L.
h

Remark 5.1 The fuzzy congruence relation h in Theorem

5.2 is called an fuzzy congruence relation induced by fuzzy

ideal l and denoted by hl.

Theorem 5.3 hxl ¼ hyl if and only if

lððx ! yÞ
0
Þ ¼ lððy ! xÞ

0
Þ ¼ lð0Þ.

Proof Let hxl ¼ hyl for any x; y 2 L, then hxlðxÞ ¼ hylðxÞ.
Since hxlðxÞ ¼ lððx ! xÞ

0
Þ ¼

hxlðyÞ ¼ minflððx ! yÞ
0
Þ; lððy ! xÞ

0
Þg, that is,

lð0Þ ¼ minflððx ! yÞ
0
Þ; lððy ! xÞ

0
Þg. It follows that

lð0Þ� lððx ! yÞ
0
Þ and lð0Þ� lððy ! xÞ

0
Þ. Since l is a

fuzzy ideal, it follows that

lððx ! yÞ
0
Þ ¼ lððy ! xÞ

0
Þ ¼ lð0Þ.

Conversely, for any z 2 L,

hxlðzÞ ¼ minfðlððx ! zÞ
0
Þ; lððz ! xÞ

0
ÞÞ. Since ððz !

yÞ
00
! ðz ! zÞ

00
Þ
0
� ðy ! xÞ

0
and l is a fuzzy ideal of L,

we have lððz ! xÞ
0
Þ �minflððz ! yÞ

0
Þ; lðððz ! yÞ

00
!

ðz ! zÞ
00
Þ
0
Þ �minflððz ! yÞ

0
Þ; l ððy ! xÞ

0
Þg. Similarly,

we have lððx ! zÞ
0
Þ �minðlððx ! yÞ

0
Þ; lððy ! zÞ

0
ÞÞ.

Since lððx ! yÞ
0
Þ ¼ lððy ! xÞ

0
Þ ¼ lð0Þ, we have lððz !

xÞ
0
Þ �minflððz ! yÞ

0
Þ; lððy ! xÞ

0
Þg ¼ minflððz !

yÞ
0
Þ; lð0Þg� lððz ! yÞ

0
Þ and

lððz ! yÞ
0
Þ �minflððz ! xÞ

0
Þ; lð0Þg� lððz ! xÞ

0
Þ. And

so lððz ! xÞ
0
Þ ¼ lððz ! yÞ

0
Þ. Similarly, we can prove

lððx ! zÞ
0
Þ ¼ lððy ! zÞ

0
Þ. Consequently, we have
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hxlðzÞ ¼ minflððx ! zÞ
0
Þ; lððz ! xÞ

0
Þ ¼ minfl

ððz ! yÞ
0
Þ; lððy ! zÞ

0
ÞÞ ¼ hylðzÞ. Hence hxl ¼ hyl. h

Corollary 5.1 If l is a fuzzy ideal of a residuated lattice

L, then lx ¼ ly if and only if x
 llð0Þy, where x
 llð0Þy if

and only if ðx ! yÞ
0
2 llð0Þ and ðy ! xÞ

0
2 llð0Þ.

Theorem 5.4 Let h, l be a fuzzy congruence and a fuzzy

ideal of L, respectively. Then

(1) hlh ¼ h;
(2) lhl ¼ l.

Thus there is a bijection between the set FIðLÞ and FCðLÞ.

Corollary 5.2 Let h be a fuzzy ideal of L. Then

minfhð0; ðx ! yÞ
0
Þ; hð0; ðy ! xÞ

0
Þg ¼ hðx; yÞ for any

x; y 2 L.

Theorem 5.5 Let l be a fuzzy set of L. Then l is a fuzzy

ideal of L if and only if Uðl; lð0ÞÞ is an ideal of L.

Proof The proof is straightforward from Theorem 3.5. h

Let l be a fuzzy ideal of L. For any x 2 L, the fuzzy

subset lx is called a fuzzy coset of l such that

lxðyÞ ¼ minflððx ! yÞ
0
Þ; lððy ! xÞ

0
Þg. Let

L=l ¼ flxjx 2 Lg. Obviously, lx ¼ hxl and so

L=l ¼ L=hl.
Defining the binary operations on L=l as follows:

lx t ly ¼ lx_y; lx u ly ¼ lx^y; lx  ly

¼ lx�y; lx ! ly ¼ lx!y:

a partial ordering 0 �0 on L=l defined by lx � ly if and

only if lx t ly ¼ ly.

Theorem 5.6 Let l be a fuzzy idealof L. Then
ðL=l;t;u;;!; l0; l1Þ

is a residuated lattice.

Proof First, we prove that the operators on L=l are well

defined. Indeed, if lx ¼ ls, ly ¼ lt. By corollary 4.1, we

have x
 Uðl;lð0ÞÞs, y
 Uðl;lð0ÞÞt. Since 
 Uðl;lð0ÞÞ is a con-

gruence relation on L, we have x _ y
 Uðl;lð0ÞÞs _ t, and so

lx_y ¼ ls_t. Similarly, we can prove lx^y ¼ ls^t,
lx�y ¼ ls�t, lx!y ¼ ls!t, respectively. Now, we prove

that L=l is a residuated lattice. Clearly, L=l satisfies (C1)

and (C2). We only to prove ð;!Þ is an adjoin pair. We

note that the lattice order � on L=l is lx � ly if and only

if lx t ly ¼ ly. lx_y ¼ ly , ðx _ yÞ
 Uðl;lð0ÞÞy , lðððx _
yÞ ! yÞ

0
Þ ¼ lð0Þ , lðððx ! yÞ ^ ðy ! yÞÞ

0
Þ ¼ lð0Þ ,

lððx ! yÞ
0
Þ ¼ lð0Þ. Let lx; ly; lz 2 L=l, lx  ly � lz ,

lx�y � lz , lðððx� yÞ ! zÞ
0
Þ ¼ lð0Þ , lððx ! ðy !

zÞÞ
0
Þ ¼ lð0Þ , lx � ly!z , lx � ly ! lz: It is easy to

verify  is isotone on L=l, ! is anti tone in the first and

isotone in the second variable Therefore, (C3) holds.

Consequently, L=l is a residuated lattice. h

Theorem 5.7 (Homomorphism Theorem) Let l be a

fuzzy ideal in L. Define a mapping / : L ! L=l by

/ðxÞ ¼ lx. Then kerð/Þ ¼ Uðl; lð0ÞÞ and

L=l ffi L=kerð/Þ.

Proof For any x 2 kerð/Þ if and only if /ðxÞ ¼ l0 if and
only if lx ¼ l0 if and only if x
 Uðl;lð0ÞÞ0 if and only if

x 2 Uðl;lð0ÞÞ. Therefore, kerð/Þ ¼ Uðl; lð0ÞÞ.
Clearly, / is surjective. It is easy to verify that / is a

surjective homomorphism. And so L=l ffi L=kerð/Þ. h

6 Conclusions

Ideal theory and congruence theory play an very important

role in studying logical systems and the related algebraic

structures. In this paper, we develop the ideals theory of

general residuated lattices which enables us to analyze

some important algebraic properties of residuated lattices,

especially MTL-algebras.

In our future work, we will continue investigating the

relation among the prime ideal, prime ideal of the second

kind and MTL-prime ideal( i.e., A MTL-prime ideal of a

residuated lattice is an ideal of L satisfying, for all x; y 2 L,

ðx ! yÞ
0
^ ðy ! xÞ

0
2 I). Another direction is to investi-

gate some types ideals of a residuated lattice. For more

details, we shall give them out in the future paper. It is our

hope that this work will settle once and for all the existence

of ideals in residuated lattices.

Acknowledgments We would like to thank the anonymous

reviewers’ comments and suggestions improved both content and the

presentation of this paper. One of reviewer point out many typing

mistakes and grammar mistakes in the manuscripts, we gave him (her)

heartfelt thanks. This work was supported by National Natural Sci-

ence Foundation of P.R.China (Grant No. 61175055, 61305074),

Sichuan Key Technology Research and Development Program (Grant

No.2011FZ0051), Sichuan Province Science and technology plan

project (No. 15JC0239), Radio Administration Bureau of MIIT of

China (Grant No. [2011]146), China Institution of Communications

(Grant No. [2011]051). The Speciality Comprehensive Reform of

Mathematics and Applied Mathematics of Ministry of Education

(ZG0464). The Speciality Comprehensive Reform of Mathematics

and Applied Mathematics of Ministry of Education (01249). A Pro-

ject Supported by Scientific Research Fund of Sichuan Provincial

Education Department (14ZA0245). The Scientific Research

Research Fund of Neijiang Normal University (No. 13ZB05).

252 Int. J. Mach. Learn. & Cyber. (2017) 8:239–253

123



References

1. Akram M, Davvaz B (2012) Generalized fuzzy ideals of

K-algebras. J Multi Value Logic Soft Comput 19:475–491

2. Borzooei RA, Khosravani Shoar S, Ameri R (2012) Some types

of filters in MTL-algebras. Fuzzy Sets Syst 187:92–102

3. Belohlavek R (2003) Some properties of residuated lattices.

Czechoslovak Math J 53:161–171

4. Dilworth RP, Ward M (1939) Residuated lattices. Trans Am

Math Soc 45:335–354

5. Farahani Hadi, Zahiri Omid (2013) Algebraic view of MTL-fil-

ters. Ann Univ Craiova Math Comput Sci Ser 40(1):34–44

6. Van Gasse B, Deschrijver G, Cornelis C, Kerre EE (2010) Filters

of residuated lattices and triangle algebras. Inf Sci

180:3006–3020
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