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Abstract Data clustering is one of the most popular

techniques in data mining to group data with great simi-

larity and high dissimilarity into each cluster. This paper

presents a new clustering method based on a novel heu-

ristic optimization algorithm proposed recently and named

as multivariant optimization algorithm (MOA) to locate the

optimal solution automatically through global and local

alternating search implemented by a global exploration

group and several local exploitation groups. In order to

demonstrate the performance of MOA-clustering method,

it is applied to group six real-life datasets to obtain their

clustering results, which may be compared with those

received by employing K-means algorithm, genetic algo-

rithm and particle swarm optimization. The results show

that the proposed clustering algorithm is an effective and

feasible method to reach a high accurate rate and stability

in clustering problems.

Keywords Data clustering � Cluster centers �
Multivariant optimization algorithm � Global and local

optimization

1 Introduction

Cluster analysis has become an important technique in

exploratory data analysis, pattern recognition, machine

learning, image segmentation, neural computing, and other

engineering [1]. In the field of clustering, K-means

algorithm as a popular clustering method has been suc-

cessfully applied to many practical clustering problems

[2, 3]. However, the results obtained by using K-means

algorithm may contain several local minima as the objec-

tive function of K-means which is not convex [4, 5].

Evolutionary algorithms such as genetic algorithm (GA)

[6] and particle swarm optimization (PSO) [7] have been

therefore introduced to solve such problems and widely

applied to various clustering problems [8–17].

In this paper, the recently proposed discrete heuristic

optimization algorithm named multivariant optimization

algorithm (MOA) is adopted to solve clustering problems.

In MOA, a search individual is named as an atom. The

main idea of MOA is to search the solution space through

alternating global–local search iterations where global

exploration atoms explore the whole solution space to

locate potential areas and then multiple local exploitation

groups with different population are allotted to these

potential areas for different levels of local exploitations.

The better atoms generated in the optimization process are

recorded in a data structure which is made up of a queue

and some stacks, whereas the worse ones are extruded in

competition. As to clustering problem, we can regard an

array (atom) recording all cluster centers as a solution, and

only need to search for the optimal solution in the whole

solution space, so the clustering problem is converted to an

optimization problem. Then the MOA can be applied to

search for the optimal solution which contains all cluster

centers of different classes.

For the purpose of simplifying the description, MOA,

K-means, GA, and PSO based data clustering are named as

MOA-clustering, K-clustering, GA-clustering, and PSO-

clustering respectively in this paper.

In order to evaluate the performance of MOA-clustering,

some comparative experiments on MOA-clustering,
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K-clustering, GA-clustering and PSO-clustering based on

six datasets are conducted. The experimental results dem-

onstrate that the MOA-clustering not only has the ability to

locate the optimal solution but also has competitive per-

formance to GA-clustering and PSO-clustering, and out-

performs K-clustering in terms of the accurate rate and

stability, and that it is an effective and feasible method to

reach a high accurate rate and stability in clustering

problems.

2 Multivariant optimization algorithm

With the development of computer technology, the mem-

ory and speed of computer had improved a lot in a rapid

speed, as a result, a novel discrete evolutionary optimiza-

tion algorithm making full use of the memory of computer

is proposed in this paper. The idea of the proposed algo-

rithm is inspired by the characters of computer data

structure especially the ordered doubly-linked list. In the

MOA search process, global search atoms explore the

global space to locate potential areas and then local search

atoms exploit each potential local area in detail to improve

the results and then the better atoms are recorded in the

structure table. After sufficient global–local search itera-

tions under the instruction of a structure table, multiple

optimal solutions are recorded in the queue of the structure

table.

The search process of MOA is implemented by search

atoms under the instruction of a structure. For a minimum

optimization problem, the structure table illustrated in

Fig. 1 is designed according to the following rules:

1. Global search atoms are recorded in the queue.

2. The fitness values of atoms recorded in the queue are

increasing from the front to the rear.

3. Each node in the queue has a stack pointer which

points to a stack, the depth of the stacks is descending

from the left to the right.

4. Local search atoms generated in the neighborhood of

the i-th global atom are recorded in the i-th stack. The

fitness values of atoms recorded in each stack are

increasing from the bottom to the top.

In MOA algorithm, an atom stands for a candidate

solution of the optimization problem. The atoms are in two

types: global search and local search atoms. Global search

atoms are generated uniformly at random in the solution

space. Local search atoms are generated in the neighbor-

hood of the global atoms recorded in the queue node,

which is considered as the center of a potential area. In a D-

dimensional solution space, the global search atoms

denoted as atomg are generated according to the Eq. (1):

atomg ¼ unifrndðmin1;max1Þ; . . .; unifrndðminD;maxDÞf g
ð1Þ

where mini and maxi are the lower and the upper bounds of

the i-th dimension of solution space, which are determined

by calculating the minimum and maximum of the i-th

dimension in datasets. The function unifrnd(mini, maxi)

returns a random number which is uniformly distributed on

the interval from mini to maxi, so atomg is a vector.

The local search atoms denoted as atoml are generated in

each corresponding global atom’s neighborhood with

radius R according to the Eq. (2):

atoml ¼

atomg þ r � R � h1; . . .; hD½ �
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where atomg and R are the center vector and radius of the

neighborhood respectively, [h1,…,hD] is a vector with

random numbers uniformly distributed on [-1,1], and
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is a unit vector, so

R�½h1; . . .; hD�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PD
i¼1 h

2
i

q

stands for a circle with radius

R, r is a random number between 0 and 1. The definition of

radius R is as follows: let f(x) be defined on D and there

exists a global optimal point atomg 2 D. We say that

f(x) has a limit as x tends to atomg provided that there exists

an optimum A 2R such that for every e[ 0, no matter how

small, there always exists R[ 0 such that for every x 2D,

0\jx� atomgj\R :implies:jf ðxÞ � Aj\e

lim
iterations�[1
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8

>

>

<

>

>

:

Further, in the case that such an optimum A exists, we

shall say that A is the limit of f(x) as x tends to atomg. In
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QueueFront Rear
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Fig. 1 Structure table of multivariant optimization algorithm
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addition, f(x) will gradually converge to the optimum Awith

probability 1 when the number of iterations is enough.

The MOA algorithm searches the solution space by the

following steps which are illustrated by Fig. 2:

Step1: set the initial parameters of the MOA algorithm:

the length of queue, the depth of each steak, the

scope of neighborhood and the maximum number

of iterations

Step2: generate and evaluate global search atoms. At the

beginning of iteration, a number of new global

search atoms are generated and then their fitness

values are evaluated

Step3: update the queue. Compared the fitness value of

each new global atom with the atoms in the queue,

if a new atom is better enough to be recorded in

the queue, a new queue node which records this

atom should be inserted into the queue following

the same logic patterns used in a double linked

general ordered list and the rear node should be

deleted to keep the length of the queue fixed

Step4: generate and evaluate local search atoms. For each

stack, the local search atoms whose number equals

the depth of the stack are generated in the

neighborhood of their corresponding global

atoms in the queue and then their fitness values

are evaluated by fitness function

Step5: update each stack. Compared the fitness value of

each new atom with the atoms in the

corresponding stack, if a new atom is better

enough to be recorded in the stack, a new stack

node which records this atom should be inserted

into the stack. If the number of nodes in the stack

is bigger than the depth of the stack, the redundant

nodes should be deleted. If the best atom in the i-th

stack is better than the i-th global atom, they

should be replaced each other

Step6: check the termination criterion. If the termination

criterion is satisfied, the algorithm will stop.

Otherwise, return to Step2

3 Application of multivariant optimization algorithm

3.1 Encoding the search atoms

From the above description of MOA, we can know the

main encoded objects are the search atoms, including

global and local search atoms. In the context of clustering,

a single atom represents all cluster centers. That is, in a n-

dimensions space, the i-th atom is encoded as follows:

xi ¼ ðxi11; xi12; . . .; xi1n; xi21; xi22; . . .; xi2n; . . .; xiK1; xiK2; . . .xiKnÞ

where xjm
i refers to the m-th value of the j-th cluster center

vector in the i-th atom, K is the number of clusters. So the

length of each atom is K 9 n.

Figure 3 is an example of the encoding of a single

atom at the time of producing search atoms in the MOA.

Let n = 2, K = 3, i.e., the search space is two-dimension

and the number of clusters is three. The vector of this

atom represents three cluster centers [(x1, y1) (x2, y2)

(x3, y3)].

According to the encoding of a single atom, every atom

produced during the process of searching stands for a

candidate solution to optimization problem, so that we can

make the best of MOA to search the optimal solution in the

n-dimensions solution space as an optimization problem.

Generate and evaluate 
global search atoms

Update the queue

Termination criterion 
satisfied

Terminate

Yes

No

Set the parameter of 
the algorithm

Update each stack

Generate and evaluate 
local search atoms

Fig. 2 Flowchart of the MOA algorithm

x1 y1 x2 y2 x3 y3

Cluster center 
1

Cluster center 
2

Cluster center 
3

Fig. 3 The encoding of a single atom
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3.2 Designing the evaluation function

The design of the evaluation function of MOA-clustering is

a key issue of applying MOA to clustering, the main role of

it is to evaluate whether the atom gotten during the process

of searching is a better cluster center or not, if a new atom

is better than the old one during the process of updating,

then the old one will be replaced by the new one.

In this paper, we design the evaluation fitness following

two criteria as follows:

1. The inner-cluster distance as defined in Eq. (3), i.e. the

distance between data vectors and their corresponding

cluster center within a cluster, where the objective is to

minimize the inner-cluster distance.

J1 ¼
X

K

j¼1

X

8xi2Zj
xi� zjk k2 ð3Þ

where zj is the j-th cluster center, K is the number of

clusters, xi denotes data points belonging to zj.

2. The inter-cluster distance as defined in Eq. (4), i.e. the

distance between all cluster centers, where the objec-

tive is to maximize the distance between clusters.

J2 ¼
X

K

i¼1

X

K

j¼iþ1

zi� zjk k2 ð4Þ

where zi, zj are the i-th and j-th cluster center respec-

tively, K is the number of clusters.

According to the two criteria, the evaluation function is

designed as defined in Eq. (5), where generally the

objective is to minimize the value of evaluation

function.

fitness ¼ w1 � J1 � w2 � J2 ð5Þ

where w1, w2 are the weight coefficient of J1 and J2
respectively, which decide the influence of J1 and J2 in

evaluation. If w1 is bigger than w2, it means that J1
decides the result of evaluation in a large part. Through

a series of experiments, the clustering results are rel-

ative stabile and better when w1 = 0.8, w2 = 0.2. So

in this paper, we set w1 = 0.8, w2 = 0.2.

3.3 MOA-clustering

After encoding the search atoms and designing the evalu-

ation function, the execution of MOA-clustering is as

follow:

Step1: set the initial parameters of the MOA algorithm:

the length of queue, the depth of each steak, the

scope of neighborhood and the maximum number

of iterations

Step2: generate and evaluate global search atoms. At the

beginning of iteration, a number of new global

search atoms are generated randomly as the

above description of encoding the search atoms

in Fig. 3 and all data points xi are assigned to

their corresponding cluster centers zj with the

shortest distance between xi and zj according to

Euclidean distance as defined in Eq. (6), then

their fitness values are evaluated as the definition

of the Eq. (5)

D ¼ xi� zjk k; i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .;K

ð6Þ

where N is the number of dataset, K is the number

of clusters

Step3: update the queue. According to the principle that

the minimum is the best, compared the fitness

value of each new global atom with the atoms in

the queue, if a new atom is better than the worst

one in the queue, a new queue node which records

this atom should be inserted into the queue

following the same logic patterns used in a

double linked general ordered list and the node

where the worst atom is recorded should be

deleted to keep the length of the queue fixed

Step4: generate and evaluate local search atoms as same

as Step2. For each stack, the local search atoms

whose number equals the depth of the stack are

generated in the neighborhood of their

corresponding global atoms in the queue and

then their fitness values are evaluated by fitness

function

Step5: update each stack. According to the principle that

the minimum is the best, compared the fitness

value of each new atom with the atoms in the

corresponding stack, if a new atom is better

enough to be recorded in the stack, a new stack

node which records this atom should be inserted

into the stack. If the number of nodes in the stack

is bigger than the depth of the stack, the redundant

nodes should be deleted. If the best atom in the i-th

stack is better than the i-th global atom, they

should be replaced each other

Step6: check the termination criterion. If the termination

criterion is satisfied, the algorithm will stop.

Otherwise, return to Step2

Step7: The best atom is obtained from the structure table

of MOA, which contains the optimal cluster center

vector. Then all data points again are assigned to

their corresponding cluster centers according to

the Eq. (6). Finally, the accurate rate of clustering

results is calculated
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4 Experiments

This section compares the clustering results of K-cluster-

ing, GA-clustering, PSO-clustering and MOA-clustering on

six real-life datasets to verify the performance of MOA-

clustering.

4.1 Datasets

Six experimental datasets including Haberman’s Survival,

Iris, Vertebral Column, Wisconsin Breast Cancer, Contra-

ceptive Method Choice and Wine are used to assess the

performance of the respective clustering methods. All

datasets are available at http://archive.ics.uci.edu/ml/index.

html/ and listed in Table 1 and described briefly as follows:

1. Haberman’s Survival Dataset (n = 306, d = 3, k = 2)

consists of 306 objects characterized by three features:

Age of patient at time of operation, Patient’s year of

operation, Number of positive axillary nodes detected.

The dataset contains cases from a study that was

conducted between 1958 and 1970 at the University of

Chicago’s Billings Hospital on the survival of patients

who had undergone surgery for breast cancer. There

are two categories in the data: the patient survived

5 years or longer (225 objects) and the patient died

within 5 year (81 objects).

2. Fisher’s Iris Dataset (n = 150, d = 4, k = 3) consists

of three different species of iris flowers: iris setosa, iris

virginica and iris versicolour. For each species, 50

samples were collected from four features, namely

sepal length and width as well as petal length and

width.

3. Vertebral Column Dataset (n = 310, d = 6, k = 2)

consists of 310 objects characterized by six features:

pelvic incidence, pelvic tilt, lumbar lordosis angle,

sacral slope, pelvic radius and grade of spondylolis-

thesis. Dataset containing values for six biomechanical

features used to classify orthopaedic patients into two

classes: normal (210) and abnormal (100).

4. Wisconsin Breast Cancer Dataset (n = 683, d = 9,

k = 2) consists of 683 objects characterized by nine

features: clump thickness, cell size uniformity, cell

shape uniformity, marginal adhesion, single epithelial

cell size, bare nuclei, bland chromatin, normal nucleoli

and mitoses. There are two categories in the data:

malignant tumors (444 objects) and benign tumors

(239 objects).

5. Contraceptive Method Choice Dataset (CMC)

(n = 1,473, d = 9, k = 3) consists of 1,473 objects

characterized by nine features: Wife’s age, Wife’s

education, Husband’s education, Number of children

ever born, Wife’s religion, Wife’s now working,

Husband’s occupation, Standard-of-living index,

Media exposure. Dataset is a subset of the 1987

National Indonesia Contraceptive Prevalence Survey.

There are three contraceptive methods used in the data:

No-use (629), Long-term (333), Short-term (511).

6. Wine Dataset (n = 178, d = 13, k = 3) consists of

178 objects characterized by 13 features: alcohol

content, malic acid content, ash content, alkalinity of

ash, concentration of magnesium, total phenols, flav-

anoids, non-flavanoid phenols, and proanthocyanins,

and color intensity, hue and OD280/OD315 of diluted

wines and pralines. These features were obtained by

chemical analysis of wines that are produced in the

same region in Italy but derived from three different

cultivars. The quantities of objects in the three

categories of the dataset are: class 1 (59 objects), class

2 (71 objects), and class 3 (48 objects).

4.2 Settings for clustering algorithms

In order to demonstrate the selection process of radius

R and iteration number during data clustering, the relevant

experiments with fixed iterations or radius R are carried out

10 times on three datasets termed Iris, Cancer as well as

Wine and the relevant results are reported in Fig. 4 and

Table 2, respectively. The relevant parameters used in the

both two experiments are opted and enumerated as follows:

the queue length of the upper triangular structure is 10, the

depth of the i-th stack is determined by 10-i, thus the

number of searching atoms is 60. Meanwhile, the number

of iterations is 200 while radius R is changed from 0.1 to 10

in the fixed-iteration experiments and the radius R are set as

0.5, 3, 5, 7 as well as 9 with corresponding iterations of

200, 600, 800, 1,000 as well as 1,000 respectively in the

determined-radius experiments. Figure 4 reveals that the

radius R can be chosen randomly with 200 iterations and

the lower average clustering accuracy for larger radius

Table 1 The brief description of six real-life datasets

Datasets Total

no. of

dataset

No. of

attributes

No. of

classes

No. of instances

in each class

Haberman’s

survival

306 3 2 306 (225, 81)

Iris 150 4 3 150 (50, 50, 50)

Vertebral

column

310 6 2 310 (210, 100)

Cancer 683 9 2 683 (444, 239)

CMC 1,473 9 3 1,473 (629, 333, 511)

Wine 178 13 3 178 (59, 71, 48)
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R can also be attributed to the limited iterations. From

Table 2, it can be seen that when the iterations increases

with the raising of radius R, the average clustering accu-

racy is almost consistent to that with lower iteration

number for small radius R and the standard deviation is

also very small. It means that a good and stable clustering

accuracy can be obtained when the number of iterations is

enough for the determined bigger radius R. For balancing

the clustering accuracy and computationally cost effective

in the experiments, the radius R is randomly selected as 0.5

in the interval [0.1, 1] and the number of iterations is set as

200.

The common control parameters of these algorithms are

population size (P) and the number of maximum genera-

tion (maxg). In order to compare K-clustering, GA-clus-

tering, PSO-clustering and MOA-clustering fairly, these
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Fig. 4 The changing curve of clustering accuracy with the change of local radius R on Iris dataset (a), Cancer dataset (b) and Wine dataset

(c) when the number of iterations is 200

Table 2 The average clustering accuracy and the standard deviation of accuracy for different combinations

Dataset Accuracy Radius = 0.5/
iterations = 200

Radius = 3/
iterations = 600

Radius = 5/
iterations = 800

Radius = 7/
iterations = 1,000

Radius = 9/
iterations = 1,000

Iris Average (%) 91.27 90 90 90 89.93

Standard deviation 0.0027 0.0021 0.0031 0.0034 0.0034

Cancer Average (%) 96.49 96.47 96.49 96.44 96.43

Standard deviation 4.6300e-004 4.6300e-004 4.6300e-004 9.8821e-004 0.0012

Wine Average (%) 70.96 70.79 71.18 71.24 70.73

Standard deviation 0.0040 0.0079 0.008 0.0079 0.0049
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Table 3 the fitness of clustering results with the application of different clustering algorithm on six datasets

Datasets Fitness K-clustering PSO-clustering GA-clustering MOA-clustering

Haberman’s Survival Best 2096.5 2,050.2 2,050.2 2,050.2

Average 2,143.6 2,050.2 2,050.2 2,050.2

Worst 2,553.9 2,050.2 2,050.2 2,050.2

Standard deviation 140.31 0 0 0

Iris Best 97.33 96.66 97.66 96.66

Average 106.24 97.80 98.11 96.78

Worst 123.97 110.79 98.54 97.28

Standard deviation 12.46 3.12 0.36 0.21

Vertebral Column Best 7,274 7,154.8 7,154.8 7,154.8

Average 7,176.8 7,797.1 7,411.1 7,154.8

Worst 7,279.6 9,750.1 9,717.6 7,154.9

Standard deviation 2.87 1,141.5 788.79 0.05

Cancer Best 2,987 2,976.3 2,965.8 2,965.3

Average 2,988 3,194.7 2,968.2 2,966.5

Worst 2,988.4 3,543.2 2,972.5 2,968.8

Standard deviation 0.69 41.11 2.11 0.98

CMC Best 4,425.8 4,420 4,419.1 4,418.1

Average 4,427.1 4,424.5 4,421.9 4,418.5

Worst 4,428.3 4,444.6 4,427.5 4,420.5

Standard deviation 1.24 6.22 2.45 0.5

Wine Best 76.72 75.50 76.50 76.13

Average 78.46 75.60 76.51 76.49

Worst 85.44 75.87 76.52 76.90

Standard deviation 3.57 0.12 0.01 0.12

Table 4 The accurate rate of

clustering results with the

application of different

clustering algorithm on six

datasets

Datasets Accurate

rate

K-clustering

(%)

PSO-clustering

(%)

GA-clustering

(%)

MOA-clustering

(%)

Haberman’s survival Best 51.96 51.96 51.96 51.96

Average 48.43 51.96 51.96 51.96

Worst 24.18 51.96 51.96 51.96

Iris Best 89.33 90 92.67 92.67

Average 75.63 89.40 91.20 91.27

Worst 48.67 78 90 90

Vertebral column Best 67.1 71.29 71.61 71.61

Average 66.94 70.32 70.94 71.31

Worst 66.77 67.42 67.42 71.29

Cancer Best 96.19 96.63 96.48 96.63

Average 96.09 95.95 96.45 96.49

Worst 96.05 93.41 96.19 96.34

CMC Best 38.42 38.49 38.49 38.49

Average 37.92 38.35 38.34 38.41

Worst 37.47 37.95 37.95 38.02

Wine Best 70.22 71.91 71.91 71.91

Average 67.61 71.45 71.66 70.96

Worst 56.74 70.79 71.35 70.22
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methods use the same common control parameter values

which are denoted as P = 60, maxg = 200. Other control

parameters of GA-clustering and PSO-clustering are pre-

sented below.

For genetic algorithms, we have used the standard

version with no elitism, a mutation probability of 0.05 and

a crossover probability of 0.95 [8]. For PSO, we have also

used the standard version with the inertia weight is 0.7.

The learning factors are set to 2 without the inertia cor-

rection [17]. We have used a fixed population size of

n = 60 in all our simulations for all methods except

K-clustering.
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Fig. 5 The results of four algorithms on Haberman’s Survival dataset before (a) and after (b, c) clustering
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4.3 Experimental results and discussion

In order to evaluate the proposed algorithm, two criteria are

used: the fitness as defined in Eq. (5) and the accurate rate

as defined in Eq. (7).

Accuracy ¼
X

N

i¼1

1Ai ¼ Ai�

0Ai 6¼ Ai�

( !,

N � 100% ð7Þ

where N is the total number of data points. Ai and Ai� are

the i-th data point before and after clustering.
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The performance of MOA-clustering and other clustering

methods is compared by the two criteria. The fitness of all

four algorithms on six datasets is summarized in Table 3,

including the best fitness, the average fitness, the worst fit-

ness, and the standard deviation of fitness over 20 simula-

tions. Figure 6 shows the standard deviation of fitness with

bar chart. Table 4 summarizes the best accurate rate, the

average accurate rate and the worst accurate rate obtained

from the four clustering algorithms on six datasets over 20

simulation runs. Figure 7a–c shows the best accurate rate,

the average accurate rate and the worst accurate rate

respectively with bar charts. The clustering results of four

algorithms on Haberman’s Survival dataset are shown in

Fig. 5. Figure 5a shows the position of the dataset in

3-dimension space before clustering, Fig. 5b shows the

result of MOA-clustering, GA-clustering and PSO-cluster-

ing on this dataset after clustering with 51.96 % accurate

rate, Fig. 5c presents the result of K-clustering on this

dataset after clustering with 24.18 % accurate rate.

According to the results displayed in Table 3 and Fig. 6,

K-clustering is very unstable because of its least standard

deviation on Cancer dataset and most standard deviation on

Haberman’s Survival, Iris and Wine datasets. PSO-clus-

tering is not very stable because it has a large fluctuation on

Vertebral Column and Cancer datasets in terms of standard

deviation. GA-clustering and MOA-clustering proposed in

this paper are relative stable, however MOA-clustering

outperforms GA-clustering on Vertebral Column, Iris

Cancer and CMC datasets according to the standard devi-

ation of fitness. So on the whole, MOA-clustering is more

stable than other algorithm.

The results in Table 4 and Fig. 7 clearly show that the

MOA-clustering has the ability to locate the optimal

solution, because the proposed method can get the best

accuracy on all datasets in comparison of other algorithms,

which means it can locate the best cluster centers.

According to the accurate rate of clustering results, MOA-

clustering obviously outperforms K-clustering on all data-

sets. What’s more, MOA-clustering has competitive per-

formance to GA-clustering and PSO-clustering in terms of

accurate rate on Haberman’s Survival and Wine datasets,

and even has better accurate rate than GA -clustering and

PSO-clustering on other remaining datasets.

To sum up, MOA -clustering is capable of reaching a

high accurate rate and stability in clustering problems

compared with K-means, GA, and PSO on the fitness and

accurate rate of clustering results.

5 Conclusion

This paper provides a new clustering method based on

Multivariant Optimization Algorithm (MOA). Six real-life

datasets are used to investigate the performance of MOA-

clustering. The experimental results demonstrate that the

proposed clustering algorithm is an effective and feasible

method to reach a high accurate rate and stability in clus-

tering problems.
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