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Abstract In this paper, interval-valued fuzzy planar

graphs are defined and several properties are studied. The

interval-valued fuzzy graphs are more efficient than fuzzy

graphs, since the degree of membership of vertices and

edges lie within the interval [0, 1] instead at a point in

fuzzy graphs. We also use the term ‘degree of planarity’ to

measures the nature of planarity of an interval-valued fuzzy

graph. The other relevant terms such as strong edges,

interval-valued fuzzy faces, strong interval-valued fuzzy

faces are defined here. The interval-valued fuzzy dual

graph which is closely associated to the interval-valued

fuzzy planar graph is defined. Several properties of inter-

val-valued fuzzy dual graph are also studied. An example

of interval-valued fuzzy planar graph is given.

Keywords Interval-valued fuzzy graphs � Interval-valued
fuzzy multigraphs � Interval-valued fuzzy planar graphs

1 Introduction

Graph theory is applied in most of the research areas of real

life applications such as data mining, image segmentation,

clustering, image capturing, networking, communication,

planning, scheduling, etc. There are many practical

applications with a graph structure in which crossing

between edges is a nuisance such as design problems for

circuits, subways, utility lines, etc. Crossing of two con-

nections normally means that the communication lines

must be run at different heights. This is not a big issue for

electrical wires, but it creates extra expenses for some

types of lines, e.g. burying one subway tunnel under

another. Circuits, in particular, are easier to manufacture if

their connections can be constructed in fewer layers. These

applications are designed by the concept of planar graphs.

In a city planning, subway tunnels, pipelines, metro lines

are essential in twenty first century. Due to crossing, there

are chances of accident. Also the cost of crossing of routes

in underground is high. But, underground routes reduce the

traffic jam. In a city planning, routes without crossing are

perfect for safety. But, due to lack of space, crossing of

such lines is allowed. It is easy to observe that the crossing

between one congested and one non-congested route is

better than the crossing between two congested routes. The

term ‘congested’ have no definite meaning. We generally

use the terms ‘congested’, ‘very congested’, ‘highly con-

gested’ routes, etc. These terms are called linguistic terms

and they can be defined by some membership degrees

(generally by an interval in [0, 1]). A congested route may

be referred as strong route and low congested route may be

called as weak route. Thus crossing between strong route

and weak route is more safe than the crossing between two

strong routes. That is, crossing between strong route and

weak route may be allowed in city planning with certain

amount of safety. The terms ‘strong route’ and ‘weak

route’ lead strong edge and weak edge of an interval-val-

ued fuzzy graph respectively. And the permission of

crossing between strong and weak edges leads to the

concept of interval-valued fuzzy planar graph. After

development of fuzzy graph theory by Rosenfeld [18], this
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topic has been increased with a large number of branches.

Many works have been done on fuzzy sets as well as on

fuzzy graphs [4, 5, 7–17, 19–34, 36, 37]. Abdul jabbar et al.

[1] introduced the concept of fuzzy planar graph. Also,

Samanta and Pal [25] introduced fuzzy planar graph in a

different way. In this paper, they also introduced fuzzy

faces, strong fuzzy planar graphs and fuzzy dual graphs. In

1975, Zadeh [38] introduced the notion of interval-valued

fuzzy sets and related properties. Interval-valued fuzzy sets

are the extension of fuzzy sets and represent uncertainty

more perfectly. In recent time, Akram [3] introduced the

interval-valued fuzzy graphs. Some useful research in these

topics are found in [2, 3].

In this paper, interval-valued fuzzy planar graphs,

interval-valued fuzzy dual graphs are defined and some

important properties are established. Here, the ‘degree of

planarity’ is used to measure the nature of planarity of an

interval-valued fuzzy graph. Also, we introduced some

terms like interval-valued fuzzy multiset, interval-valued

fuzzy multigraph, interval-valued fuzzy dual graph. Some

theorems have been proved on degree of planarity.

Depending on the degree of planarity, the considerable

edge has been introduced. A real life application of inter-

val-valued fuzzy planar graph has been demonstrated.

2 Preliminaries and notations

A finite graph is a graph G ¼ ðV;EÞ such that V and E are

finite sets. An infinite graph is one with an infinite set of

vertices or edges or both. Most commonly in graph theory,

it is implied that the graphs discussed are finite. A multi-

graph is a graph that may contain multiple edges between

any two vertices, but it does not contain any self loops. A

graph can be drawn in many different ways. A graph may

or may not be drawn on a plane without crossing of edges.

A geometric representation of a graph on any plane surface

such that no edges intersect is called embedding. A graph

G is planar if it can be drawn in the plane with its edges

only intersecting at vertices of G. So the graph is non-

planar if it can not be drawn without crossing. A planar

graph with cycles divides the plane into a set of regions,

also called faces. The length of a face in a planar graph G is

the number of edges bounding the face. The portion of the

plane lying outside a graph embedded in a plane is infinite

region. In graph theory, the dual graph of a given planar

graph G is a graph which has a vertex corresponding to

each plane region of G, and the graph has an edge joining

two neighbouring regions for each edge in G, for a certain

embedding of G.

A fuzzy set A on an universal set X is defined by a

mapping m : X ! ½0; 1�, which is called the membership

function. A fuzzy set is denoted by A ¼ ðX;mÞ. A fuzzy

graph [31] n ¼ ðV ; r; lÞ is a non-empty set V together with

a pair of functions r : V ! ½0; 1� and l : V � V ! ½0; 1�
such that for all x; y 2 V ;lðx; yÞ � minfrðxÞ; rðyÞg,
where rðxÞ and lðx; yÞ represent the membership values of

the vertex x and of the edge ðx; yÞ in n respectively. A loop

at a vertex x in a fuzzy graph is represented by lðx; xÞ 6¼ 0.

An edge is non-trivial if lðx; yÞ 6¼ 0. A fuzzy graph n ¼
ðV; r; lÞ is complete if lðx; yÞ ¼ minfrðxÞ; rðyÞg for all

x; y 2 V .

Several definitions of strong edge are available in lit-

erature. Among them the definition of [6] is more suitable

for our purpose. For the fuzzy graph n ¼ ðV; r;lÞ, an edge

ðx; yÞ is called strong if
1

2
minfrðxÞ; rðyÞg � lðx; yÞ and

weak otherwise.

By an interval-valued fuzzy graph [3], we mean a pair

n ¼ ðA;BÞ, where A ¼ ðV; ½r�; rþ�Þ is an interval-valued

fuzzy set onV andB ¼ ðV � V; ½l�; lþ�Þ is an interval-valued
fuzzy set onV � V , such that l�ðx; yÞ � minfr�ðxÞ; r�ðyÞg
andlþðx; yÞ � minfrþðxÞ; rþðyÞg for all ðx; yÞ 2 E.Wecall

A as the interval-valued fuzzy vertex set of n and B as the

interval-valued fuzzy edge set of n respectively.

An interval-valued fuzzy graph n ¼ ðA;BÞ is said to be

complete interval-valued fuzzy graph [19] if l�ðx; yÞ ¼
minfr�ðaÞ; r�ðbÞg and lþðx; yÞ ¼ minfrþðxÞ; rþðyÞg,
for all x; y 2 V . An interval-valued fuzzy graph is said to be

bipartite if the vertex set V can be partitioned into two

independent sets V1 and V2 such that lþ ðv1; v2Þ[ 0 if

v1 2 V1 (or V2) and v2 2 V2 (or V1). This definition does

not mention about any condition for l� ðv1; v2Þ. If

lþ ðv1; v2Þ[ 0, then the edge ðv1; v2Þ exists even when

l� ðv1; v2Þ ¼ 0.

Throughout this paper the following notations are used.

G an arbitrary graph

V set of vertices of G

N set of natural numbers

E set of edges of G

X universal set

m membership function from a crisp set into [0, 1]

A a fuzzy set

n a interval-valued fuzzy graph

r membership function of the vertices

l membership function of the edges

½r�; rþ� the membership value of a vertex, r� and rþ

represents the left end and right end points

respectively

½l�; lþ� the membership value of an edge, l� and lþ

represents the left end and right end points

respectively

½r�i ; rþi � the ith membership value of a vertex, r�i and

rþi represents the left end and right end points

respectively
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½l�j ; lþj � the membership value of jth edge between two

vertices, l�j and lþj represents the left end and

right end points respectively

D1;D2 subintervals of the interval [0,1]

Iða;bÞ strength of the edge ða; bÞ, which is an interval

number whose left end point is I�ða;bÞ ¼

l�ða; bÞ
minfrþðaÞ; rþðbÞg and right end point is

Iþða;bÞ ¼
lþða; bÞ

minfrþðaÞ; rþðbÞg
IP intersecting number at the point of crossing of

two edges ða; bÞ and ðc; dÞ, which is an interval

number whose left end point is I�
P ¼

I�ða;bÞ þ I�ðc;dÞ
2

and the right end point is

Iþ
P ¼

Iþða;bÞ þ Iþðc;dÞ
2

f degree of planarity of a interval-valued fuzzy

graph, which is an interval number whose left

end point is f� ¼ 1

1þ fIþ
P1

þ Iþ
P2

þ � � � þ Iþ
Pk
g

and the right end point is

fþ ¼ 1

1þ fI�
P1

þ I�
P2

þ � � � þ I�
Pk
g, k being

the number of point of intersections

Np number of point of intersections between the

edges in a fuzzy graph

c considerable number

Now, we define interval-valued fuzzy multiset.

3 Interval-valued fuzzy multiset

A (crisp) multiset over a non-empty set V is simply a

mapping d : V ! N, where N is the set of natural numbers.

An element of non-empty set V may occur more than once

with possibly the same or different natural numbers. A

natural generalization of this interpretation of multiset leads

to the notion of fuzzy multiset, or fuzzy bag, over a non-

empty set V as a mapping C : V � ½0; 1� ! N. The mem-

bership values of v 2 V are denoted as rjðvÞ; j ¼ 1; 2; � � � ; p
where p ¼ maxfj : rjðvÞ 6¼ 0g. So the fuzzy multiset can

be denoted as M ¼ v; rjðvÞð Þ; j ¼ 1; 2; � � � ; pjv 2 Vf g.
Interval-valued fuzzy multiset (IVFMS) is another general-

isation of multiset. The definition is given below.

Definition 1 (Interval-valued fuzzy multiset). Let V be a

non-empty set. Also, let r�i : V ! ½0; 1� and rþi : V !
½0; 1� be the mappings such that r�i ðxÞ� rþi ðxÞ for all x 2 V

and i ¼ 1; 2; � � � ; p. The interval-valued fuzzy multiset on

V is denoted as ðV; ½r�i ; rþi �Þ and is defined as

ðV; ½r�i ; rþi �Þ ¼ fðx; ½r�i ; rþi �Þjx 2 V; i ¼ 1; 2; � � � ; pg.

Example 1 Let V ¼ fa; b; c; dg. Then one of the inter-

val-valued fuzzy multisets on V is fða; ½0:3; 0:5�Þ,
ða; ½0:4; 0:6�Þ, ðb; ½0:6; 0:8�Þ, ðc; ½0:6; 0:9�Þ, ðd; ½0:2; 0:4�Þ,
ðd; ½0:4; 0:5�Þ, ðd; ½0:3; 0:5�Þg. Here r�1 ðaÞ ¼ 0:3; rþ1 ðaÞ ¼
0:5 and r�2 ðaÞ ¼ 0:4; rþ2 ðaÞ ¼ 0:6, etc.

4 Interval-valued fuzzy multigraph

Now, we introduced the interval-valued fuzzy multigraph

(IVFMG) using the notion of interval-valued fuzzy multiset.

Let V be a non-empty set. Also let r�i : V ! ½0; 1� and rþi :

V ! ½0; 1� be themappings such thatA ¼ fðV ; ½r�i ; rþi �Þ; i ¼
1; 2; � � � ; pg be an IVFMSonV. Letl�j : V � V ! ½0; 1�,lþj :

V � V ! ½0; 1� be the mappings such that B ¼ fðV �
V ; ½l�j ; lþj �Þ; j ¼ 1; 2; � � � ; qg be an IVFMS on V � V . ðA;BÞ
is said to be IVFMG if l�j ðx; yÞ � minfr�i ðxÞ; r�i ðyÞg and

lþj ðx; yÞ � minfrþi ðxÞ; rþi ðyÞg, i ¼ 1; 2; � � � ; p, j ¼ 1; 2;

� � � ; q for all x; y 2 V .

An example of interval-valued fuzzy multigraph is given

below.

Example 2 Let V ¼ fa; bg be a set of vertices. Let

r�ðaÞ ¼ 0:6; rþðaÞ ¼ 0:8; r�ðbÞ ¼ 0:4; rþðbÞ ¼ 0:5

and l�1 ða; bÞ ¼ 0:3; lþ1 ða; bÞ ¼ 0:4; l�2 ða; bÞ ¼ 0:2; lþ2
ða; bÞ ¼ 0:4; l�3 ða; bÞ ¼ 0:2; lþ3 ða; bÞ ¼ 0:3: Then A ¼
fða; ½0:6; 0:8�Þ; ðb; ½0:4; 0:5�Þg and B ¼ fðða; bÞ; ½0:3; 0:4�Þ,
ðða; bÞ; ½0:2; 0:4�Þ, ðða; bÞ; ½0:2; 0:3�Þg. Therefore, ðA; BÞ is
an IVFMG (see Fig. 1).

Underlying crisp graph of an IVFMG n ¼ ðA;BÞ, is

denoted by G ¼ ðV ;EÞ where V ¼ fxjr�ðxÞ[ 0g and

E ¼ fðx; yÞjl�ðx; yÞ[ 0g. A special type of IVFMG is

discussed below.

5 Interval-valued fuzzy planar graphs

Planarity is important in connection with the wire lines, gas

lines, water lines, printed circuit designs, etc. But, some-

times little crossing may be accepted to these designs of

a([0.6, 0.8]) b([0.4, 0.5])

[0.3, 0.4]

[0.2, 0.4]

[0.2, 0.3]

Fig. 1 An example of IVFMG
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such lines or circuits. So the concept of interval-valued

fuzzy planar graph (IVFPG) is an important topic for these

connections. A crisp graph is called non-planar graph if

there is at least one crossing between the edges for all

possible geometrical representations of the graph. Let a crisp

graph G has a crossing for a certain geometrical represen-

tation between two edges ða; bÞ and ðc; dÞ and has another

crossing between the edges ðu; vÞ and ðw; xÞ. Now, when we
think about the strength of the edges of a graph in real

phenomenon, some crossing causes a big problem and some

are not. Here we assumed that ða; bÞ, ðc; dÞ and ðu; vÞ are

strong edges and ðw; xÞ is a weak edge of the graph G stated

above. In realistic view, the crossing between two strong

edges ða; bÞ and ðc; dÞ can not be taken in a planar graph,

whereas the crossing between one strong edge ðu; vÞ and one
weak edge ðw; xÞ may be acceptable. These linguistic words

can be stated in a well-defined manner as follows:

In IVF concept, we say that each of the three strong edges

ða; bÞ, ðc; dÞ and ðu; vÞ have membership values near to [1,

1] and the weak edge ðw; xÞ has membership value near to

[0, 0]. If we remove the edge ðc; dÞ, then the membership

value of the edge ðc; dÞ in the graph is taken as [0, 0].

Let n ¼ ðA;BÞ be an IVFMG and for a certain geometric

representation, the graph has only one crossing between two

edges ððw; xÞ; ½l�ðw; xÞ; lþðw; xÞ�Þ and ððy; zÞ, ½l�ðy; zÞ,
lþðy; zÞ�Þ. If l�ðw; xÞ ¼ 1 (obviously lþðw; xÞ ¼ 1) and

l�ðy; zÞ ¼ 0 ¼ lþðy; zÞ, then we say that the graph has no

crossing. Similarly, if l�ðw; xÞ has value near to 1 (obvi-

ously lþðw; xÞ[ l�ðw; xÞ has value near to 1) and l�ðy; zÞ
and lþðy; zÞ have value near to 0, the crossing will not be

important for the planarity. If l�ðw; xÞ has value near to 1

and l�ðy; zÞ has value near to 1, then the crossing becomes

very important for the planarity. So, left end value of the

membership degree (interval) is important for calculation.

Before going to the main definition, some co-related terms

are discussed below.

Addition: Let D1 ¼ ½a�; aþ� and D2 ¼ ½b�; bþ� be two

subintervals of [0, 1]. Then the sum of D1 and D2 is

denoted by D1 þ D2 and is defined by

D1 þ D2 ¼ ½a�; aþ� þ ½b�; bþ� ¼ ½a� þ b�; aþ þ bþ�.
Comparability: Let D1 ¼ ½a�; aþ� and D2 ¼ ½b�; bþ� be

two interval numbers in [0, 1]. Then D1 is greater than or

equal to D2 i.e., D1 �D2 if and only if a� � b� and

aþ � bþ. Also, D1 is less than or equal to D2 i.e., D1 �D2 if

and only if a� � b� and aþ � bþ. And, D1 ¼ D2 if and

only if a� ¼ b� and aþ ¼ bþ.

5.1 Intersecting value in IVFMG

In this paper, strength of an edge ða; bÞ is defined by an

interval number Iða;bÞ ¼ I�ða;bÞ; I
þ
ða;bÞ

h i
, where I�ða;bÞ ¼

l�ða; bÞ
minfrþðaÞ; rþðbÞg and Iþða;bÞ ¼

lþða; bÞ
minfrþðaÞ; rþðbÞg. An

edge ða; bÞ is non-trivial if I�ða;bÞ [ 0.

Now, we define strong edge in IVFMG as follows.

Definition 2 (Interval-valued fuzzy strong edge) Let n ¼
ðA;BÞ be an IVFMG. An edge ða; bÞ in n is said to be

interval-valued fuzzy strong if Iða;bÞ � ½0:5; 0:5� and inter-

val-valued fuzzy weak otherwise.

In IVFMG, when two edges intersect at a point, an

interval number is assigned to that point in the following

way.

Let in IVFMG, n ¼ ðA;BÞ, B contains two edges

ðða; bÞ; ½l�ða; bÞ; lþða; bÞ�Þ and ððc; dÞ; ½l�ðc; dÞ; lþ
ðc; dÞ�Þ which are intersected at a point P. Now, we cal-

culate the interval numbers Iða;bÞ and Iðc;dÞ for the

respective edges. We define the intersecting number at the

point P by

IP ¼ ½I�
P ; Iþ

P � ¼
I�ða;bÞ þ I�ðc;dÞ

2
;
Iþða;bÞ þ Iþðc;dÞ

2

" #
:

It is noted that IP is an interval number in [0, 1]. Now, we

recall the term ‘planarity’. In crisp sense, the planar graph

has no crossing of edges, i.e. there is no intersection of

edges. So, the ‘planarity’ of the planar graph is ‘full’.

Therefore, if the number of points of intersection in an

IVFMG increases, ‘planarity’ decreases. So for IVFMG,

IP is inversely proportional to the ‘planarity’. Based on

this concept, a new terminology is introduced below for

IVFMG.

Definition 3 (Planarity of an IVFMG) Let n be an IV-

FMG and for a certain geometrical representation

P1;P2; � � � ;Pk (k being an integer) be the points of inter-

sections between the edges. Then n is said to be interval-

valued fuzzy planar graph (IVFPG) with degree of pla-

narity f ¼ ½f�; fþ�, where

f� ¼ 1

1þ fIþ
P1

þ Iþ
P2

þ � � � þ Iþ
Pk
g ;

and fþ ¼ 1

1þ fI�
P1

þ I�
P2

þ � � � þ I�
Pk
g :

It is obvious that f is bounded and f 2 D½0; 1�, where
D½0; 1� is the set of all subintervals of the interval [0, 1].

If there is no point of intersection for a certain geo-

metrical representation of an IVFPG, then its degree of

planarity is [1, 1]. In this case, the underlying crisp graph

of this IVFPG is the crisp planar graph. According our
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definition every IVFG is an IVFPG with some degree of

planarity.

Example 3 Let us consider an IVFPG with one point of

intersection between two edges ða; bÞ and ðc; dÞ. Here the

membership degree of the vertices are given as

ða; ½0:2; 0:4�Þ, ðb; ½0:4; 0:5�Þ, ðc; ½0:7; 0:8�Þ, ðd; ½0:8; 0:9�Þ.
The membership degree of the edges are ðða; bÞ; ½0:1; 0:3�Þ,
ððc; dÞ; ½0:5; 0:6�Þ, ðða; cÞ; ½0:2; 0:05�Þ, ððb; dÞ; ½0:3; 0:4�Þ.
Now, Iða;bÞ ¼ ½0:25; 0:75� and Iðc;dÞ ¼ ½0:625; 0:75�. Hence,
the intersecting number of the point of intersection is

0:25þ 0:625

2
;
0:75þ 0:75

2

� �
¼ ½0:4375; 0:75�. So, the

degree of planarity of the IVFPG is

1

1þ 0:675
;

1

1þ 0:4375

� �
¼ ½0:597; 0:697�.

The degree of planarity of a complete IVFG is calcu-

lated in the following theorem.

Theorem 1 Let n be a complete IVFG. The degree of

planarity f of n is given by f ¼ ½f�; fþ�, where f� ¼

1

1þ Np

and
1

1þ Np

� fþ � 1, where Np is the number of

points of intersection between the edges in n.

Proof Let n ¼ ðA;BÞ be an IVFG. For the complete

IVFG, l�ðx; yÞ ¼ minfr�ðxÞ; r�ðyÞg and lþðx; yÞ ¼
minfrþðxÞ; rþðyÞg for all x; y 2 V .

Let P1;P2; � � � ;Pk be the points of intersections between

the edges in n, k being an integer. For any edge ða; bÞ in a

complete IVFG, I�ða;bÞ ¼
l�ða; bÞ

minfrþðaÞ; rþðbÞg � 1 and

Iþða;bÞ ¼
lþða; bÞ

minfrþðaÞ; rþðbÞg ¼ 1. Therefore, for the point

P1, the point of intersection between the edges ða; bÞ and

ðc; dÞ, Iþ
P1

is equals to 1þ1
2

¼ 1 and I�
P1
� 1þ1

2
¼ 1. Hence

Iþ
Pi
¼ 1 and I�

Pi
� 1 for i ¼ 1; 2; � � � ; k.

Now, f� ¼ 1

1þ Iþ
P1

þ Iþ
P2

þ � � � þ Iþ
Pk

¼

1

1þ ð1þ 1þ � � � þ 1Þ ¼
1

1þ Np

and it is obvious that,

where Np is the number of point of intersections between

the edges in n. Therefore, the degree of planarity f is given by

f ¼ ½f�; fþ� where, f� ¼ 1

1þ Np

and
1

1þ Np

� fþ � 1. h

Theorem 2 Let n be an IVFG with f [ ½0:5; 0:5�.The
number of point of intersections between interval-valued

strong edges in n is at most one.

Proof Let n ¼ ðA;BÞ be an IVFG with degree of planarity

f ¼ ½f�; fþ� where, f� [ 0:5 and fþ [ 0:5. Let, if possible,

n has at least two point of intersections P1 and P2 between

two interval-valued strong edges in n.
For any interval-valued strong edge ðða; bÞ; ½l�ða; bÞ;

lþða; bÞ�Þ, I�ða;bÞ � 0:5 and Iþða;bÞ � 0:5. Thus for two intersect-

ing interval-valued strong edges ðða; bÞ, ½l�ða; bÞ, lþða; bÞ�Þ
and ððc; dÞ, ½l�ðc; dÞ, lþðc; dÞ�Þ,

I�ða;bÞþI�ðc;dÞ
2

� 0:5 and
Iþða;bÞþIþðc;dÞ

2
� 0:5, that is, I�

P1
� 0:5 and Iþ

P1
� 0:5. Similarly,

I�
P2
� 0:5 and Iþ

P2
� 0:5. Then, 1þ Iþ

P1
þ Iþ

P2
� 2 and

1þ I�
P1

þ I�
P2
� 2. Therefore, f� ¼ 1

1þ Iþ
P1

þ Iþ
P2

� 0:5

and fþ ¼ 1

1þ I�
P1

þ I�
P2

� 0:5. It contradicts the fact that

f [ ½0:5; 0:5�.
So, the number of points of intersections between

interval-valued strong edges can not be two. It is clear that

if the number of point of intersections of interval-valued

strong fuzzy edges increases, the fuzzy degree of planarity

decreases. Similarly, if the number of point of intersection

of interval-valued strong edges is one, then the degree of

planarity f is given in such a way that f [ ½0:5; 0:5�. Any
IVFG without any crossing between edges has degree of

planarity f [ ½0:5; 0:5�. Thus, we conclude that the max-

imum number of point of intersections between the

interval-valued strong edges in n is one. h

The above theorem is justified by the following

example.

Example 4 Let us consider two IVFPGs shown in Fig. 3.

In Fig. 3a, an IVFPG is considered with one crossing

between two interval-valued strong edges ða; dÞ and ðb; eÞ.
Let r�1 ðaÞ ¼ r�1 ðbÞ ¼ r�1 ðdÞ ¼ r�1 ðeÞ ¼ 0:3 and rþ1 ðaÞ ¼
rþ1 ðbÞ ¼ rþ1 ðdÞ ¼ rþ1 ðeÞ ¼ 1 and l�ða; dÞ ¼ 0:99; l�

ðb; eÞ ¼ 0:99; lþða; dÞ ¼ 1; lþðb; eÞ ¼ 1 (only required

membership values are mentioned). The degree of planarity

of this graph is ½0:5; 0:5025� � ½0:5; 0:5�. Therefore, for this
planar graph f � ½0:5; 0:5� and the number of point of

a([0.2,0.4])

[0.1,0.3]

d([0.8,0.9])c([0.7,0.8])

[0.2,0.05]

[0.5,0.6]

[0.3,0.4]

b([0.4,0.5])

Fig. 2 An example of IVFPG with degree of planarity [0.571, 0.622]
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intersection is 1. In Fig. 3b, an IVFPG is considered with

two crossing between interval-valued strong edges

ða; dÞ; ðb; eÞ and ða; dÞ; ðc; eÞ. For this IVFPG, let r�1 ðaÞ ¼
r�1 ðbÞ ¼ r�1 ðdÞ ¼ r�1 ðeÞ ¼ 1 and rþ1 ðaÞ ¼ rþ1 ðbÞ ¼ rþ1 ðdÞ
¼ rþ1 ðeÞ ¼ 1 and l�1 ða; dÞ ¼ 0:5; l�1 ðb; eÞ ¼ 0:5; l�2
ða; dÞ ¼ 0:5; l�1 ðc; eÞ ¼ 0:5 and lþ1 ða; dÞ ¼ 0:5; lþ1 ðb; eÞ ¼
0:5; lþ2 ða; dÞ ¼ 0:5; lþ1 ðc; eÞ ¼ 0:5 (only required mem-

bership values are mentioned). The degree of planarity of

this graph is ½0:5; 0:5�. Also, it is easy to observe that if

there is no crossing, then the IVFPG must have degree of

planarity greater than ½0:5; 0:5�. This observation and above
two examples support the statement of Theorem 2.

One fundamental theorem of IVFPG is discussed below.

Theorem 3 Let n be an IVFPG with degree of planarity

f. If f � ½0:67; 0:67�, n does not contain any point of

intersection between two interval-valued strong edges.

Proof Let n ¼ ðA;BÞ be an IVFPG with fuzzy degree of

planarity f, where f � ½0:67; 0:67�. Let, if possible, P be a

point of intersection between two interval-valued strong

edges ðða; bÞ; ½l�ða; bÞ; lþða; bÞ�Þ and ððc; dÞ; ½l�ðc; dÞ;
lþðc; dÞ�Þ.
For any interval-valued strong edge

ðða; bÞ; ½l�ða; bÞ; lþða; bÞ�Þ, I�ða;bÞ � 0:5 and Iþða;bÞ � 0:5.

For the minimum value of I�ða;bÞ, I
�
ðc;dÞ, I

þ
ða;bÞ and Iþðc;dÞ, I

�
P ¼

0:5 and Iþ
P ¼ 0:5 then f� ¼ 1

1þ0:5\0:67 and fþ ¼
1

1þ0:5\0:67, a contradiction. Hence, n does not contain

any point of intersection between interval-valued strong

edges. h

Motivated from this theorem, we introduce a special

type of IVFPG called interval-valued strong IVFPG whose

degree of planarity is more than or equal to ½0:67; 0:67�. As
in mentioned earlier, if the degree of planarity is [1, 1],

then the geometrical representation of IVFPG is similar to

the crisp planar graph. It is shown in Theorem 3, if the

degree of planarity is ½0:67; 0:67�, then there is no crossing

between interval-valued strong edges. For this case, if there

is any point of intersection between edges, that is the

crossing between the interval-valued weak edge and any

other edge. Again, the significance of interval-valued weak

edge is less compared to interval-valued strong edges.

Thus, interval-valued strong IVFPG is more significant. If

the degree of planarity increases, then the geometrical

structure of planar graph tends to crisp planar graph.

Here we give the definition of strong IVFPG.

Definition 4 (Strong IVFPG) An IVFPG n is called

strong IVFPG if the degree of planarity is greater than or

equal to ½0:67; 0:67�.

The IVFPG of Example 4 is not strong IVFPG as its

degree of planarity is less than ½0:67; 0:67�.
Thus, depending on the degree of planarity, the IVFPGs

are divided into two groups namely, strong IVFPG and

weak IVFPG.

Strength of an edge plays an important role to model

some types of projects. If the strength of an edge is very

small, the edge should not be considered to design a pro-

ject. So the edges with sufficient strengths are useful to

design such projects. We call these edges as considerable

edges, the formal definition is given below.

Definition 5 (Considerable edge) Let n ¼ ðA;BÞ be an

IVFPG. Let 0\c\0:5 be a rational number. An edge ðx; yÞ

is said to considerable edge if
l�ðx; yÞ

minfrþðxÞ; rþðyÞg

�
,

lþðx; yÞ
minfrþðxÞ; rþðyÞg

�
� ½c; c�. If an edge is not considerable,

it is called non-considerable edge. For IVFMG n ¼ ðA;BÞ,
a multi-edge ðx; yÞ is said to be considerable edge if

Iðx;yÞ � ½c; c� for each ðx; yÞ in n.

Here 0\c\0:5 is a rational number. If

l�ðx; yÞ
minfrþðaÞ; rþðbÞg � c for all edges ðx; yÞ of an IVFPG,

then the number c is said to be considerable number of the

a

b

c d

e [0.99, 1]

[0.99, 1]

a

b

c d

e [0.5, 0.5]

[0.5, 0.5]

[0.5, 0.5]

[0.5, 0.5]

f > [0.5, 0.5](a) An IVFPG with (b) An IVFPG with f = [0.5, 0.5]

Fig. 3 IVFPGs with one and

two crossings

658 Int. J. Mach. Learn. & Cyber. (2016) 7:653–664

123



IVFPG. Considerable number of an IVFPG may not be

unique.

Obviously, for a specific value of c, a set of considerable

edges is obtained and for different values of c, one can

obtain different sets of considerable edges. Actually, c is a

pre-assigned number for a specific application. For exam-

ple, a social network is viewed as IVFPG, where a social

unit (people, organisation, etc.) is taken as a vertex and the

relation between them is represented by an edge. The

amount of relationship (measure within unit scale) is taken

as membership degree of the edge. Now for this network, if

we choose c = 0.25, then we get a set of considerable

edges, say C. This set gives a group of people who have

some considerable amount of relationship. The number of

point of intersections between considerable edges can be

determined from the following theorem.

Theorem 4 Let n be a strong IVFPG with considerable

number c. The number of point of intersections between

considerable edges in n is at most 0:49
c

� �
(½x� represents

greatest integer not exceeding x).

Proof Let n ¼ ðA;BÞ be a strong IVFPG. Also, let

0\c\0:5 be a considerable number and f be the degree of

planarity. For any considerable edge ðða; bÞ; l�ða; bÞÞ, it is
seen that l�ða; bÞ� c �minfrþðaÞ; rþðbÞg. In this case

I�ða;bÞ � c. Similarly, Iþða;bÞ � c.

Let P1;P2; � � � ;Pk be the k point of intersections

between the considerable edges. Let P1 be the point of

intersection between the considerable edges

ðða; bÞ; ½l�ða; bÞ; lþða; bÞ�Þ and

ððc; dÞ; ½l�ðc; dÞ; lþðc; dÞ�Þ. Then I�
P1

¼
I�ða;bÞ þ I�ðc;dÞ

2
� c.

So
Xk
i¼1

I�
Pi
� kc and

Xk
i¼1

Iþ
Pi
� kc. Hence fþ � 1

1þ kc
and

f� � 1

1þ kc
. As n is a strong IVFPG, then we have,

½0:67; 0:67� � f � 1
1þkc

; 1
1þkc

h i
. Hence 0:67� 1

1þ kc
. This

implies k� 0:49

c
. This inequality will be satisfied for

k ¼ 0:49

c

� �
. h

In the crisp sense, the complete graph with five vertices

K5 and the complete bipartite graph of six vertices K3;3

cannot be drawn without crossings. So any graph con-

taining K5 or K3;3 as subgraph is non-planar, in crisp sense.

Theorem 5 A complete IVFG of five vertices K5 or

complete bipartite IVFG of six vertices K3;3 are not strong

IVFPG.

Proof Let n ¼ ðA;BÞ be a complete IVFG of five vertices

where V ¼ fa; b; c; d; eg and E ¼ fððx; yÞ; ½l�ðx; yÞ; lþ
ðx; yÞ�Þjx; y 2 Vg. For all x; y 2 V ; l�ðx; yÞ ¼ minfr�ðxÞ;
r�ðyÞg and lþðx; yÞ ¼ minfrþðxÞ; rþðyÞg.

From Theorem 1, it is known that the degree of planarity

of a complete IVFG is f ¼ ½f�; fþ� where, f� ¼ 1

1þ Np

, Np

is the number of point of intersections of the edges in n. We

know that the geometric representation of the underlying

crisp graph of a fuzzy complete graph of five vertices is

non-planar and one point of intersection can not be avoided

for any representation. So f� ¼ 0:5. Hence n is not strong

IVFPG.

Similarly, it can be shown that a complete bipartite

interval-valued fuzzy graph K3;3 is not a strong IVFPG.h

An IVFPG with five vertices and each pair of vertices

connected by an edge may or may not be strong IVFPG. In

Fig. 4, there is one point of intersection between two edges

ððv2; v4Þ; ½0:15; 0:5�Þ, ððv1; v3Þ; ½0:45; 0:5�Þ. This is an

example of strong IVFPG with degree of planarity

½0:52; 0:63�, which has five vertices and each pair of ver-

tices are connected by an edge. Again from Theorem 5,

v1[0.5, 0.5]

v2[0.6, 0.6]

v3[0.7, 0.7]

v5[0.9, 0.9]

v4[0.8, 0.8]

μ−
1 (v1, v2) = 0.4 μ+

1 (v1, v2) = 0.5
μ−
1 (v1, v3) = 0.45 μ+

1 (v1, v3) = 0.5
μ−
1 (v1, v4) = 0.35 μ+

1 (v1, v4) = 0.5
μ−
1 (v1, v5) = 0.5 μ+

1 (v1, v5) = 0.5
μ−
1 (v2, v3) = 0.45 μ+

1 (v2, v3) = 0.5
μ−
1 (v2, v4) = 0.15 μ+

1 (v2, v4) = 0.5
μ−
1 (v3, v4) = 0.55 μ+

1 (v3, v4) = 0.6
μ−
1 (v4, v5) = 0.7 μ+

1 (v4, v5) = 0.7

Fig. 4 Example of a strong

IVFPG
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one can say that a complete IVFPG of five vertices is not a

strong IVFPG.

A bipartite IVFPG of six vertices partitioned in two

subsets containing three vertices each and all pairs of

vertices between two partitioned sets are connected by

edges may or may not be a strong IVFPG. The graph of

Fig. 5, contains only one point of intersection between two

edges ðða; f Þ; ½0:5; 0:7�Þ and ððc; dÞ; ½0:2; 0:3�Þ and it is a

strong IVFPG with degree of planarity ½0:59; 0:64�. Now
from Theorem 5, we know that a complete IVFPG of six

vertices is not a strong IVFPG. Hence this conclusion is

true.

6 Face of IVFPG

Face of a planar graph is an important parameter. In this

section, we consider an IVFPG with degree of planarity [1,

1] to define face. That is, the IVFPG does not contain any

pair of intersecting edges.

Face in an IVFPG is a region bounded by edges. Every

face is characterized by edges in its boundary. If the

membership values of all the edges in the boundary of a

face are [1,1], it becomes crisp face. If one of such edges is

removed or if we assign membership value of any edge to

[0,0] then, the face does not exist. So the existence of a face

depends on the minimum strength of the edges in its

boundary.

A face and its strength are defined below.

Definition 6 Let n ¼ ðA;BÞ be a strong IVFPG, whose

degree of planarity is [1,1] on V. A face of n is a region,

bounded by the set of edges E0 � V � V , of a geometric

representation of n. The strength of the face is

minfI�ðx;yÞg;minfIþðx;yÞg
h i

jðx; yÞ 2 E0
n o

:

A face is called interval-valued strong fuzzy face if its

strength is greater than [0.5,0.5], and interval-valued weak

fuzzy face otherwise. Every interval-valued strong IVFPG

has an infinite region which is called outer face. Other

faces are called inner faces.

Example 5 In Fig. 6, we consider an IVFPG with degree

of planarity [1,1]. Here F1;F2 and F3 are three fuzzy faces.

F1 is bounded by the edges ððv1; v2Þ; ½0:5; 0:55�Þ, ððv2; v3Þ,
½0:6; 0:7�Þ, ððv1; v3Þ, ½0:55; 0:6�Þ with strength ½0:833;
0:917�. Similarly, F3 is a face bounded by the edges

ððv1; v2Þ, ½0:5; 0:55�Þ, ððv2; v4Þ, ½0:6; 0:65�Þ, ððv1; v4Þ,
½0:2; 0:5�Þ with strength ½0:333; 0:833�. F2 is the outer face

with strength ½0:857; 0:928�. So F1;F2 are interval-valued

strong fuzzy faces while F3 is an interval-valued weak

fuzzy face.

Every interval-valued strong fuzzy face has membership

value greater than [0.5,0.5]. So every edge of an interval-

valued strong fuzzy face is an interval-valued fuzzy strong

edge.

Any IVFPG without any point of intersection of edges is

an IVFPG with degree of planarity [1, 1]. Therefore, it is a

strong IVFPG.

7 Interval-valued fuzzy dual graph

We now introduce the dual of IVFPG whose degree of

planarity is [1, 1]. In interval-valued fuzzy dual graph

a[0.6, 0.9] b[0.45, 0.45] c[0.8, 0.8]

d[0.7, 0.7] e[0.7, 0.7] f [0.75, 0.75]

μ−(a, d) = 0.5; μ+(a, d) = 0.5;
μ−(a, e) = 0.5; μ+(a, e) = 0.5;
μ−(a, f) = 0.5; μ+(a, f) = 0.7;
μ−(b, d) = 0.5; μ+(b, d) = 0.5;
μ−(b, e) = 0.5; μ+(b, e) = 0.5;
μ−(b, f) = 0.5; μ+(b, f) = 0.5;
μ−(c, d) = 0.2; μ−(c, d) = 0.3;
μ−(c, e) = 0.5; μ+(c, e) = 0.7;
μ−(c, f) = 0.5; μ+(c, f) = 0.7.

Fig. 5 An example of strong IVFPG with fuzzy degree of planarity

[0.59,0.64]

v1[0.6, 0.6] v2[0.7, 0.7]

v3[0.8, 0.8] v4[0.7, 0.7]

F2

F1

F3

μ−(v1, v2) = 0.5; μ+(v1, v2) = 0.55;
μ−(v1, v3) = 0.55; μ+(v1, v3) = 0.6;
μ−(v1, v4) = 0.2; μ+(v1, v4) = 0.5;
μ−(v2, v3) = 0.6; μ+(v2, v3) = 0.7;
μ−(v2, v4) = 0.6; μ+(v2, v4) = 0.65;

Fig. 6 An example of IVFPG with three faces
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(IVFDG), vertices are corresponding to the interval-valued

strong faces and each edge in dual graph between two

vertices is corresponding to each edge in the boundary

between two interval-valued fuzzy faces. The formal def-

inition is given below.

Definition 7 (Interval-valued fuzzy dual graph). Let n ¼
ðA;BÞ be an IVFPG whose degree of planarity is [1,1]. Let

F1;F2; � � � ;Fk be the interval-valued strong faces of n. The
IVFDG of n is an IVFPG n1 ¼ ðA1;B1Þ, where

A1 ¼ fðV1; ½s�; sþ�Þ, B1 ¼ fðV1 � V1; ½m�l ; mþl �Þ and

V1 ¼ fxi; i ¼ 1; 2; � � � ; kg, the vertex xi of n1 is correspond
to the face Fi of n.

The membership values of vertices are given by the

mappings s� : V1 ! ½0; 1� such that s�ðxiÞ ¼
maxfl�ðu; vÞjðu; vÞ is an edge of the boundary of the

interval-valued fuzzy face Fig. Also, sþ : V1 ! ½0; 1� such
that sþðxiÞ ¼ maxflþðu; vÞjðu; vÞ is an edge of the bound-

ary of the interval-valued fuzzy face Fig.

Between two interval-valued fuzzy faces Fi and Fj of n,
there may exist more than one common edges. Thus

between two vertices xi and xj in IVFDG n1, there may be

more than one edges. We denote ½m�l ðxi; xjÞ, mþl ðxi; xjÞ� be
the membership degree of the lth edge between xi and xj.

The membership degrees of the edges of the IVFDG are

given by m�l ðxi; xjÞ ¼ l�ðu; vÞ and mþl ðxi; xjÞ ¼ lþðu; vÞ
where ðu; vÞ is a common edge between two interval-val-

ued fuzzy faces Fi and Fj and l ¼ 1; 2; � � � ; s, where s is the
number of common edges in the boundary between Fi and

Fj or the number of edges between xi and xj.

If there be any interval-valued strong pendant edge in

the strong IVFDG, then there exists a self loop in n1 cor-

responding to this pendant edge. The edge membership

degree of the self loop is equal to the membership degree of

the pendant edge. IVFDG of strong IVFPG with degree of

planarity [1, 1] does not contain any point of intersection of

edges for a certain representation, so it is an IVFPG with

degree of planarity [1, 1].

Here we give an example of IVFDG of an IVFPG which

are shown in Fig. 7. Filled circles represents the vertices of

IVFPG and lines represents the edges of that graph whereas

the empty circles represents the vertices of IVFDG and

dotted lines represent the edges of IVFDG corresponding to

the IVFPG of Fig. 7.

Example 6 In Fig. 7, a strong IVFPG n ¼ ðA;BÞ where

V ¼ fa; b; c; dg is given. For this graph, let r�ðaÞ
¼ 0:6; rþðaÞ ¼ 0:8, r�ðbÞ ¼ 0:7; rþðbÞ ¼ 0:9, r�ðcÞ ¼
0:8; rþðcÞ ¼ 0:9, r�ðdÞ ¼ 0:9; rþðdÞ ¼ 0:95 and B ¼
fðða; bÞ, ½0:5; 0:55�Þ, ðða; cÞ; ½0:4; 0:5�Þ, ðða; dÞ; ½0:55; 0:6�Þ,
ððb; dÞ; ½0:45; 0:5�Þ,

ððb; dÞ; ½0:6; 0:65�Þ, ððc; dÞ; ½0:7; 0:75�Þg. Thus, the

strong IVFPG has the following faces:

1. F1 is bounded by ðða; bÞ; ½0:5; 0:55�Þ, ðða; dÞ;
½0:55; 0:6�Þ, ððb; dÞ; ½0:45; 0:5�Þ,

2. F2 is bounded by ðða; dÞ, ½0:55; 0:6�Þ, ððc; dÞ,
½0:7; 0:75�Þ, ðða; cÞ, ½0:4; 0:5�ÞÞ,

3. F3 is bounded by ððb; dÞ; ½0:45; 0:5�Þ, ððb; dÞ;
½0:6; 0:65�ÞÞ and outer fuzzy face

4. F4 is surrounded by ðða; bÞ, ½0:5; 0:55�Þ, ððb; dÞ,
½0:6; 0:65�Þ, ððc; dÞ, ½0:7; 0:75�Þ, ðða; cÞ, ½0:4; 0:5�Þ.

Since all the faces are interval-valued strong faces, for each

interval-valued strong fuzzy face, we consider a vertex for

the IVFDG. Thus the vertex set V1 ¼ fx1; x2; x3; x4g where

each vertex xi corresponds to the interval-valued strong

fuzzy face Fi, i ¼ 1; 2; 3; 4. So s�ðx1Þ ¼ maxf0:5; 0:55;
0:45g ¼ 0:55, sþðx1Þ ¼ maxf0:55; 0:6; 0:5g ¼ 0:6, s�ðx2Þ
¼ maxf0:55; 0:7; 0:4g ¼ 0:7, sþðx2Þ ¼ maxf0:6; 0:75; 0:5g
¼ 0:75, s�ðx3Þ ¼ maxf0:45; 0:6g ¼ 0:6, sþðx3Þ ¼ max

f0:5; 0:65g ¼ 0:65 and s�ðx4Þ ¼ maxf0:5; 0:6; 0:7; 0:4g ¼
0:7, sþðx4Þ ¼ maxf0:55; 0:65; 0:75; 0:5g ¼ 0:75.

There are two common edges ða; cÞ and ðc; dÞ between
the faces F2 and F4 in n. Hence, between the vertices x2
and x4, there are two edges in the IVFDG. Here the

membership degrees of these edges are given by

m�1 ðx2; x4Þ ¼ l�1 ðc; dÞ ¼ 0:7, mþ1 ðx2; x4Þ ¼ lþ1 ðc; dÞ ¼ 0:75,

m�2 ðx2; x4Þ ¼ l�1 ða; cÞ ¼ 0:4, mþ2 ðx2; x4Þ ¼ lþ1 ða; cÞ ¼ 0:5.

a b

c d

x1

x2

x3

x4

σ−(a) = 0.6; σ+(a) = 0.8
σ−(b) = 0.7; σ+(b) = 0.9
σ−(c) = 0.8; σ+(c) = 0.9
σ−(d) = 0.9; σ+(d) = 0.95.

μ−
1 (a, b) = 0.5; μ+

1 (a, b) = 0.55
μ−
1 (a, c) = 0.4; μ+

1 (a, c) = 0.5
μ−
1 (a, d) = 0.55; μ+

1 (a, d) = 0.6
μ−
1 (b, d) = 0.45; μ+

1 (b, d) = 0.5
μ−
2 (b, d) = 0.6; μ+

2 (b, d) = 0.65
μ−
1 (c, d) = 0.7; μ+

1 (c, d) = 0.75.

Fig. 7 An example of IVFDG
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The membership values of other edges of the IVFDG are

calculated as m�1 ðx1; x3Þ ¼ l�1 ðb; dÞ ¼ 0:45, mþ1 ðx1; x3Þ ¼
lþ1 ðb; dÞ ¼ 0:5, m�1 ðx1; x2Þ ¼ l�1 ða; dÞ ¼ 0:55, mþ1 ðx1; x2Þ ¼
lþ1 ða; dÞ ¼ 0:6, m�1 ðx1; x4Þ ¼ l�1 ða; bÞ ¼ 0:5, mþ1 ðx1; x4Þ ¼
lþ1 ða; bÞ ¼ 0:55, m�1 ðx3; x4Þ ¼ l�2 ðb; dÞ ¼ 0:6, mþ1 ðx3; x4Þ
¼ lþ2 ðb; dÞ ¼ 0:65.

Thus the edge set of IVFDG is B1 ¼ fððx1; x3Þ;
½0:45; 0:5�Þ, ððx1; x2Þ, ½0:55; 0:6�Þ, ððx1; x4Þ, ½0:5; 0:55�Þ,
ððx3; x4Þ, ½0:6; 0:65�Þ, ððx2; x4Þ, ½0:7; 0:75�Þ, ððx2; x4Þ,
½0:4; 0:5�Þg.

In Fig. 7, the edges of IVFDG n0 ¼ ðA1;B1Þ of n are

drawn by dotted line.

Theorem 6 Let n be a strong IVFDG whose number of

vertices, number of edges and number of interval-valued

strong fuzzy faces are denoted by n, p and m respectively.

Also, let n1 be the IVFDG of n. Then

1. the number of vertices of n1 is equal to m,

2. the number of edges of n1 is equal to p and

3. the number of fuzzy faces of n1 is equal to n.

Proof Proof of (i), (ii) and (iii) are obvious from the

definition of fuzzy dual graph. h

The number of interval-valued strong fuzzy faces in

IVFDG of a strong IVFPG is less than or equal to the

number of vertices of IVFPG, as all faces of IVFDG may

not be interval-valued strong fuzzy faces.

Theorem 7 Let n ¼ ðA;BÞ be a strong IVFPG without

interval-valued weak edges and the IVFDG of n be

n1 ¼ ðA1;B1Þ. The membership degrees of edges of n1 are

equal to membership degrees of the IVFPG of n.

Proof Let n ¼ ðA;BÞ be a strong IVFPG without interval-

valued weak edges. The IVFDG of n is n1 ¼ ðA1;B1Þ
which is a strong IVFPG as there is no point of intersection

between any edges. Let fF1;F2; � � � ;Fkg be the set of

strong faces of n.
From the definition of IVFDG, we know that m�l ðu; vÞ ¼

l�l ðu; vÞl and mþl ðu; vÞ ¼ lþl ðu; vÞl, where ðu; vÞl is an edge in
the boundary between two interval-valued strong fuzzy faces

Fi and Fj and l ¼ 1; 2; � � � ; s, where s represents the number

of common edges in the boundary between Fi and Fj.

The numbers of fuzzy edges of two fuzzy graphs n and

n1 are same as n has no interval-valued weak fuzzy edges.

For each fuzzy edge of n there is a fuzzy edge in n1 with

same membership value. h

8 Application of interval-valued fuzzy planar graph

We consider a network consisting of five important cities

(vertices) in a country. They are interconnected by roads

(edges). The network is shown in Fig. 9.

The number adjacent to an edge represents the distance

between the cities (vertices). The above network can be

represented with the help of a classical matrix M ¼
½aij�; i; j ¼ 1; 2; . . .; n where, n is the total number of nodes.

The ijth element aij of M is defined as

aij

¼
0; if i ¼ j

1; the vertices i and j are not directly connected by an edge

wij; wij is the distance of the road connecting i and j:

8><
>:

Since the distance between the two vertices are known,

precisely, so the matrix M is obviously a classical matrix.

Generally, the distance between two cities are crisp value,

so the corresponding matrix is crisp matrix.

Now, we consider the crowdness of the roads connecting

cities. It is clear that the crowdness of a road obviously, is a

fuzzy quantity. The amount of crowdness depends on the

decision makers mentality, habits, natures, etc, i.e., com-

pletely depends on the decision maker. The measurement

of crowdness as a point is a difficult task for the decision

maker. So, here we consider amount of crowdness as an

interval instead of a point (Table 1).

For illustration, we consider the crowdness of the road

ði; jÞ connecting the places i and j as follows:
x1

x2

a

c

b d x3

Fig. 8 An example of a fuzzy dual graph with interval-valued strong

fuzzy face

1

2

3

4

510

70

25

60

40

20

5

P1

P2

Fig. 9 A network
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As the crossing road increases, the possibility of

crowdness increases and kill time, so the travelling cost

increases. Thus, construct the roads in such a way that the

number of crossing decreases, i.e., the degree of planarity

increases. Therefore, the measurement of degree of pla-

narity is important. In the network of Fig. 9, there are only

two crossings, one between the roads (1, 4) and (3, 5) and

other between the roads (2, 4) and (3, 5).

To model up the given network as an interval-valued

fuzzy planar graph we consider the membership values of

each vertices as interval number [1, 1]. Then the following

computations have been made.

I�ð1;4Þ ¼
l�ð1; 4Þ

minfrþð1Þ; rþð4Þg ¼ 0:3

1
¼ 0:3

Similarly,

Iþð1;4Þ ¼
lþð1; 4Þ

minfrþð1Þ; rþð4Þg ¼ 0:6

1
¼ 0:6

I�ð3;5Þ ¼ 0:4; Iþð3;5Þ ¼ 0:5

I�ð2;4Þ ¼ 0:5; Iþð2;4Þ ¼ 0:6.

Therefore, the intersecting number at the point P1, the

intersection between the roads (2, 4) and (3, 5) is

IP1
¼

I�ð2;4Þ þ I�ð3;5Þ
2

;
Iþð2;4Þ þ Iþð3;5Þ

2

" #

¼ 0:5þ 0:4

2
;
0:6þ 0:5

2

� �

¼ ½0:45; 0:55�

and the intersecting number at the point P2, the intersection

between the roads (1,4) and (3,5) is

IP2
¼

I�ð1;4Þ þ I�ð3;5Þ
2

;
Iþð1;4Þ þ Iþð3;5Þ

2

" #

¼ 0:3þ 0:4

2
;
0:6þ 0:5

2

� �

¼ ½0:35; 0:55�

So, the degree of planarity f ¼ ½f�; fþ� is given by

f� ¼ 1

1þ 0:55þ 0:55
¼ 0:48

fþ ¼ 1

1þ 0:35þ 0:45
¼ 0:56:

Therefore, the degree of planarity of the network of Fig. 9

is [0.48, 0.56], which is far from the degree of planarity

[0.67, 0.67] hence it is likely to be crowded. Obviously,

this crowdness occurs due to the crossing of roads.

9 Conclusion

Our study describes the IVFMG, IVFPG, and a very

important consequence of IVFPG is IVFDG. In crisp planar

graph, no edge intersects other. But, the edges of any IVFG

may be interval-valued fuzzy weak or interval-valued

fuzzy strong. Using the concept of interval-valued fuzzy

weak edge, we define IVFPG in such a way that an edge

may intersect other edges. But, this facility violates the

definition of planarity of graph. Since the role of interval-

valued fuzzy weak edge is insignificant, the intersection

between an interval-valued fuzzy weak edge with any edge

is less important. Motivating from this idea, we allow the

intersection of edges in IVFPG. It is well known that if the

membership values of all edges become one, the graph

becomes crisp graph. Keeping this idea in mind, we define

a new term called degree of planarity of an IVFG. If the

degree of planarity of an IVFG is [1,1], then no edge

crosses other. This leads to the crisp planar graph. Thus, the

planarity value measures the degree of planarity of an

IVFG. This is a very interesting concept of interval-valued

fuzzy graph theory. Strong IVFPG has been exemplified.

Another important term of planar graph is ‘face’ which is

redefined in IVFPG. In this paper, new theories have been

investigated for IVFPG. The IVFDG is defined for the

IVFPG whose degree of planarity is [1,1]. These theories

will be helpful to improve algorithms in different fields

including computer vision, image segmentation, etc. This

idea can be extended to the other types of fuzzy graphs

such as intuitionistic fuzzy planar graph, bipolar fuzzy

planar graph, etc. At present we are working on bipolar

fuzzy planar graphs.
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