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Abstract In this paper, the recently proposed extreme

learning machine in the aspect of optimization method by

Huang et al. (Neurocomputing, 74: 155–163, 2010) has

been considered in its primal form whose solution is

obtained by solving an absolute value equation problem by

a simple, functional iterative algorithm. It has been proved

under sufficient conditions that the algorithm converges

linearly. The pseudo codes of the algorithm for regression

and classification are given and they can be easily imple-

mented in MATLAB. Experiments were performed on a

number of real-world datasets using additive and radial

basis function hidden nodes. Similar or better generaliza-

tion performance of the proposed method in comparison to

support vector machine (SVM), extreme learning machine

(ELM), optimally pruned extreme learning machine

(OP-ELM) and optimization based extreme learning

machine (OB-ELM) methods with faster learning speed

than SVM and OB-ELM demonstrates its effectiveness and

usefulness.

Keywords Extreme learning machine � Single hidden

layer feedforward neural networks � Functional iterative

method � Support vector machine

1 Introduction

Recently, a new learning algorithm for single hidden layer

feedforward neural networks (SLFNs) architecture called

extreme learning machine (ELM) method has been pro-

posed in [21] to overcome many of the problems of tra-

ditional feedforward neural network learning algorithms

such as the presence of local minima, imprecise learning

rate, over fitting and slow rate of convergence. Once the

input weights and hidden layer biases have been chosen

randomly, ELM determines the unknown output weight

vector of the network having the smallest norm by solving

a system of linear equations. ELM is a simple unified

algorithm for regression, binary and multiclass problems

and it has been successfully tested on benchmark problems

of practical importance. It was initially proposed for

SLFNs and later extended to ‘‘generalized’’ SLFNs which

may not neuron alike [15, 16]. The essence of ELM is that

there is no need of tuning the hidden layer of SLFNs. The

growing popularity of ELM [3, 4, 10, 14, 22, 27, 28, 33, 34,

38, 39, 42] is because of its better generalization perfor-

mance with much faster learning speed in comparison to

traditional computational intelligence techniques [19].

The main problem with ELM is the stochastic nature of

the hidden layer output matrix which in practice may lower

its learning accuracy [6]. Further, it was observed that to

achieve an acceptable level of performance a large number

of hidden nodes might be required [23, 44] which implies

increase in problem size and therefore computational cost.

This suggests to look for compact networks having the

ability to achieve good generalization performance [23, 41,

44]. The other issue with ELM is that the number of hidden

nodes is a parameter and is often chosen by trial and error

method. Two heuristic approaches namely constructive

[12, 15–17] and pruning methods [26] have been proposed
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in the literature to address this problem. In fact, the opti-

mally pruned ELM (OP-ELM) method proposed in [26]

selects the hidden neurons by applying 1-norm for the

outputs and then computes their weights using the classical

least squares method. For an interesting study of ELM in

1-norm resulting in a sparse model representation, see [1].

By applying ELM kernels in the SVM formulation [7,

37] instead of support vector machine (SVM) kernels, it was

shown in [13, 24] that better generalization can be achieved.

In [18], optimization based ELMs (OB-ELMs) for classi-

fication were proposed as an extension to support vector

networks in which as in SVM the training error and the

norm of the output weight vector were minimized. Further it

was observed that the proposed method tends to achieve

better generalization performance than SVM and is less

sensitive to the input parameters. For an interesting study on

an extension of ELM to least squares SVM (LS-SVM) and

proximal SVM (PSVM) as a learning algorithm providing a

unified solution, see the work of Huang et al. [20]. Finally,

for an excellent survey on ELM, we refer the reader to [19].

Motivated by the works of [18, 20], an enhanced opti-

mization based ELM is proposed in its primal whose solution

is obtained by solving an absolute value equation using a

simple, functional iterative method. Our formulation directly

finds the approximate optimal solution in the primal space

rather than finding in its dual space. The effectiveness of the

proposed method for regression and binary classification

problems is demonstrated by performing numerical experi-

ments on a number of real-world datasets and comparing

their results with SVM, ELM, OP-ELM and OB-ELM.

The paper is organized as follows. Section 2 dwells

briefly SVM for regression and classification. In Sect. 3, a

short introduction to ELM is given. The OB-ELMs for

regression and classification are introduced in Sect. 4. The

proposed optimization based ELM formulation whose

solution is obtained by applying a functional iterative

method, is described in Sect. 5. Numerical experiments

were performed on a number of benchmark real-world

datasets and their results with additive and radial basis

function (RBF) hidden nodes are compared with that of

SVM, ELM, OP-ELM and OB-ELM in Sect. 6 and we

conclude our work in Sect. 7.

Throughout in this paper, all vectors are taken as column

vectors. For any two vectors x,y in Rn, we denote their

inner product by xty where xt is the transpose of the vector

x. The 2-norm of a vector x will be denoted by xk k. For any

vector x ¼ ðx1; . . .; xnÞt 2 Rn, let x? be a vector in Rn

defined by setting all the negative components of x to zero

and further let j x j ¼ ð jx1j; . . .; jxnj Þt 2 Rn. The zero

vector and the column vector of ones of dimension m are

denoted by 0 and e respectively. For any real matrix

H 2 Rm�‘, its transpose is denoted by Ht. For any

symmetric matrix A, let its maximum eigenvalue be

kmaxðAÞ. The identity matrix of appropriate size is denoted

by I. Further, diag(x) means a diagonal matrix of order n

whose diagonal elements being the components of the

vector x 2 Rn. If f is a real valued function of the variable

x ¼ ðx1; . . .; xnÞt 2 Rn, we denote its gradient by

rf ¼ ðof=ox1; . . .; of=oxnÞÞt.

2 Support vector machines for regression

and classification

In this section, we briefly describe the standard support

vector machines for regression and binary classification

problems.

2.1 Regression formulation

Assume that a set of training examples fðxi; yiÞgi¼1;...;m

is given such that for each input example xi ¼
ðxi1; . . .; xinÞt 2 Rn, let its corresponding observed value be

yi 2 R. By mapping the input examples xi 2 Rn into a

higher dimensional feature space via a nonlinear map uð:Þ,
the linear regression model f ð:Þ of the following form is

fitted in the feature space

f ðxÞ ¼ wtuðxÞ þ b: ð1Þ

The goal of nonlinear SVR is in determining the

unknowns w and b of (1) as the solution of the constrained

minimization problem [7, 37]

min
w;b;n1;n2

1

2
wtwþ Cðetn1 þ etn2Þ

subject to

yi � wtuðxiÞ � b� eþ n1i;

wtuðxiÞ þ b� yi � eþ n2i;

n1i � 0 and n2i � 0 for i ¼ 1; 2; . . .;m;

ð2Þ

where C[ 0, e[ 0 are input parameters and n1 ¼
ðn11; . . .; n1mÞt,n2 ¼ ðn21; . . .; n2mÞt 2 Rm are vectors of

slack variables.

Instead of solving the primal problem (2), by introduc-

ing Lagrange multipliers a1 ¼ ða11; . . .; a1mÞt, a2 ¼
ða21; . . .; a2mÞt2 Rm and applying the kernel trick, its dual

problem of the following form is solved [7, 37]

min
a1;a2

1

2

Xm

i;j¼1

ða1i � a2iÞkðxi; xjÞða1j � a2jÞþe
Xm

i¼1

ða1i þ a2iÞ

�
Xm

i¼1

yiða1i � a2iÞ

subject to
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Xm

i¼1

ða1i � a2iÞ ¼ 0 and 0� a1; a2 �C e;

where k(xi, xj) is a kernel function that replaces the term

uðxiÞtuðxjÞ.
Finally, for any x 2 Rn its prediction by the fitted

regression function f(.) is given by [7, 37]

f ðxÞ ¼
Xm

i¼1

ða1i � a2iÞÞkðx; xiÞ þ b:

2.2 Classification formulation

Let fðxi; yiÞgi¼1;...;m be a set of training examples given in

which for each input point xi ¼ ðxi1; . . .; xinÞt 2 Rn, let

yi = ±1 be its corresponding class label. It is well known

that SVM constructs a hyperplane of the form wtuðxÞ þ b,

by maximizing the margin between the input points of the

positive and negative classes in the feature space and at the

same time minimizing the sum of the training errors. In

fact, the unknowns w and b will be obtained as the solution

of the following constrained minimization problem [7, 37]

min
w;b;n

1

2
wtwþ Cetn

subject to

yiðwtuðxiÞ þ bÞ� 1 � ni;

ni � 0 for i ¼ 1; 2; . . .;m;
ð3Þ

where C[ 0 is the regularization parameter and n ¼
ðn1; . . .; nmÞt in Rm is a vector of slack variables. Its dual

can be written of the form [7, 37]

min
a2Rm

1

2

Xm

i;j¼1

aiajyiyjkðxi; xjÞ �
Xm

i¼1

ai

subject to

Xm

i¼1

aiyi ¼ 0 and 0� a�C e;

where k(.,.) is a kernel function and a ¼ ða1; . . .; amÞt 2 Rm

is the Lagrange multiplier vector. In this case, the decision

function f(.) will become

f ðxÞ ¼ signð
Xm

j¼1

ajyjkðx; xjÞ þ bÞ for x 2 Rn:

3 Extreme learning machine method

ELM is a unified learning approach for regression and

classification problems proposed for training SLFNs. It is

based on least squares solution having the ability to achieve

comparable generalization performance at much faster

learning speed in accordance with the traditional SVM.

Assume that a set of training examples fðxi; yiÞgi¼1;...;m

is given such that for each input example

xi ¼ ðxi1; . . .xinÞt 2 Rn, let yi 2 R be its corresponding tar-

get value. For the randomly assigned values for the

learning parameters as ¼ ðas1; . . .; asnÞt 2 Rn and bs 2 R of

the hidden nodes, ELM determines its output function f(.)

such that

f ðxiÞ ¼
X‘

s¼1

wsGðas; bs; xiÞ ¼ yi for i ¼ 1; . . .;m; ð4Þ

where the hidden layer output function G(a,b,x) is a non-

linear piecewise continuous function satisfying the condi-

tions of the universal approximation capability theorems

[17] and w ¼ ðw1; . . .;w‘Þt 2 R‘ is the unknown output

weight vector connecting the hidden layer of ‘ nodes with

the output node. The above condition (4) can be written in

matrix form as

Hw ¼ y; ð5Þ

where

H ¼
Gða1; b1; x1Þ � � � Gða‘; b‘; x1Þ

: � � � :
Gða1; b1; xmÞ � � � Gða‘; b‘; xmÞ

2
4

3
5

m�‘

is the hidden layer output matrix of the network and y ¼
ðy1; . . .; ymÞt 2 Rm is the vector of observed values.

Some of the well-known hidden layer output functions

are

a) Sigmoid function : Gða; b; xÞ ¼ 1
1þexpð�ðatxþbÞÞ ;

b) Multiquadric function:

Gða; b; xÞ ¼ x� ak k2þb2
� �1=2

;

c) Gaussian function: Gða; b; xÞ ¼ exp �b x� ak k2
� �

:

Clearly, for the randomly assigned values for the

parameters as 2 Rn; bs 2 R and the predefined hidden layer

output function Gða; b; xÞ, training the SLFN is equivalent

to obtaining a least squares solution w 2 R‘ of the rectan-

gular linear system (5). In fact, w 2 R‘ can be explicitly

obtained as the smallest norm least squares solution of (5)

[21]: w ¼ Hyy, where Hy is the Moore–Penrose general-

ized inverse [32] of the matrix H.

Finally, with the solution w 2 R‘ obtained, the fitted

model f(.) for ELM regression is taken as

f ðxÞ ¼
X‘

s¼1

wsGðas; bs; xÞ: ð6aÞ
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For binary classification problems, the ELM decision

function is, however, defined by

f ðxÞ ¼ sign
X‘

s¼1

wsGðas; bs; xÞ
 !

: ð6bÞ

Note that, once the values of the weight vector as 2 Rn

and the bias bs 2 R are randomly assigned at the beginning

of the learning algorithm they remain fixed and therefore

the matrix H remains unchanged.

4 Optimization method based ELM

Recently, Huang et al. [18] studied ELM for classification

in the aspect of optimization method by extending ELM to

support vector network model and showing that the mini-

mum norm property of ELM and the maximum margin

between classes in SVM are in fact consistent.

In this section, we briefly summarize the formulations

for optimization method based ELM (OB-ELM) for

regression and classification problems.

The mathematical formulation of the optimization

method based e�ELM for regression can be stated as a

minimization problem

min
w; n1; n2

1

2
wtwþ Cetðn1 þ n2Þ

subject to

Hw� y� e eþ n1;

y�Hw� e eþ n2;

n1; n2 � 0;

ð7Þ

where C[ 0; e[ 0 are input parameters and n1; n2 2 Rm

are vectors of slack variables.

By introducing Lagrange multipliers a1; a2 2 Rm, the

dual of (7) can be constructed as a minimization problem of

the form

min
a1; a22Rm

1

2
ða1 � a2ÞtKELM

ða1 � a2Þ þ e etða1 þ a2Þ � yt ða1 � a2Þ

subject to

0� a1; a2 �C e; ð8Þ

where ðKELM Þij ¼ KELMðxi; xjÞ ¼ ðGða1; b1; xiÞ; . . .;
Gðas; bs; xiÞ Þ ðGða1; b1; xjÞ; . . .;Gðas; bs; xjÞ Þtis the ij-th

coefficient of the matrix KELM:With its solution

a1; a2 2 Rm, the regression estimation function (6a)

becomes

f ðxÞ ¼ ðKELMðx; x1Þ ; . . .; KELMðx; xmÞ Þ ða1 � a2Þ: ð9Þ

Note that, e�ELM problem (8) has less number of

constraints than SVR problem in its dual form and the

decision function (9) is similar to the estimation function of

SVR but without bias b.

For the purpose of separating the training data with

acceptable minimum training error rather than zero training

error, OB-ELM for classification can be formulated as

min
w; n

1

2
wtwþ Cetn

subject to

DHw� e� n;

n� 0;
ð10Þ

where D ¼ diagðyÞ is a diagonal matrix of order m whose

diagonal elements become the components of the output

vector y 2 Rm of class labels. Since the separating ELM

hyperplane tends to pass through the origin in the feature

space with probability one [18], the bias term ‘‘b’’ is not

included in (10).

Recall that the aim of ELM is to obtain an output weight

vector w 2 R‘ with smallest training error and further jjwjj
is minimum. However, since the distance between the

separating boundaries of the two classes in the ELM fea-

ture will be: 2=jjwjj, minimizing the regularization term in

(10) is equivalent to maximizing the margin between the

boundaries in the ELM feature space.

The solution of the primal problem (10) will be obtained

by solving its dual optimization problem

min
a 2Rm

1

2
atDK

ELM
D a� eta

subject to

0� a�C e;

where a is the vector of Lagrange multipliers.

In this case, the decision function f ð:Þ is given by

f ðxÞ ¼ signð ðKELMðx; x1Þ ; . . .; KELMðx; xmÞ Þ D aÞ:

5 Proposed functional iterative extreme learning

machine

In this section, we propose the extension of the study of

optimization method based ELM learning approach for

classification problems [18] to both regression and classi-

fication problems by formulating their primal problems as

unconstrained minimization problems and solving them by

a simple functional iterative method.

5.1 e–ELM for regression

The ELM for regression in 2-norm with e–insensitive error

loss function having input parameters C[ 0 and e[ 0 can

be formulated as a constrained minimization problem of

the following form [2, 18]

710 Int. J. Mach. Learn. & Cyber. (2016) 7:707–728

123



min
w; n1;n2

1

2
wtwþ C

2
ðnt1n1 þ nt2n2Þ

subject to

Hw� y� e eþ n1;

y�Hw� e eþ n2

ð11Þ

where n1; n2 2 Rm are vectors of slack variables. Using its

solution w 2 R‘, the regression estimation function f(.)

defined by (6a) is obtained. The non-negativity constraints on

the components of the vectors n1; n2 2 Rm have been drop-

ped in the formulation (11) since none of their components

will be negative at optimality. Note that adding the regulari-

zation term 1
2
wtw in the objective function of (11) leads to a

stable solution having better generalization performance.

One can easily verify that the constrained primal prob-

lem (11) can be formulated into an equivalent uncon-

strained minimization problem as given below [25]

min
w2R‘

LRðwÞ ¼
1

2
wtwþ C

2
ð ðHw� ðyþ e eÞÞþ
�� ��2

þ ðy� ee�HwÞþ
�� ��2Þ: ð12Þ

In this subsection, we solve the problem (12) by com-

puting its critical point. For this purpose, consider the

problem of solving the system of non-linear equations

rLRðwÞ ¼ 0;

i.e. solve for w 2 R‘ such that

wþ CHtððHw� y� e eÞþ � ðy� e e�HwÞþÞ ¼ 0:

ð13Þ

Now, using the identity uþ ¼ uþjuj
2

, for any vector

u 2 R‘, the condition (13) can be written in the following

equivalent form

wþ CHt ðHw� y� e eÞ þ jHw� y� e ej
2

�

� ðy� e e�HwÞ þ jy� ee�Hwj
2

�
¼ 0

and from which we get

I

C
þHtH

� �
w ¼ Ht yþ jy� e e�Hwj � jHw� y� e ej

2

� �
:

ð14Þ

This leads to the following simple iterative scheme

which will be our functional iterative ELM algorithm for

regression (FELMR)

wiþ1 ¼ I

C
þHtH

� ��1

Ht yþ jy� ee�Hwij � jHwi � y� eej
2

� �

for i ¼ 0; 1; 2; . . .

ð15Þ

The iterative algorithm (15) for solving the regression

problem (12) is summarized below.

Algorithm 1 (FELMR).

Input.

• Parameter values C[ 0 and e[ 0

• tol = tolerance value for learning accuracy,

imax = maximum number of iterations

Step 1.

• Set i ¼ 0 and the initial vector w ¼ w0 in R‘

Step 2.

• Compute the vectors ym ¼ y� e e and yp ¼ yþ e e,

and the matrix G ¼ I
C
þHtH

	 
�1Ht

• Compute w1 ¼ G y þ j ym�Hw0j � jHw0 �yp j
2

� �

Step 3.

• While ( jjwiþ1 � wijj [ tol & i \ imax)

i ¼ iþ 1

wiþ1 ¼ G y þ j ym � Hwij � jHwi � yp j
2

� �

end while

•

w ¼ wiþ1

Now we show the convergence of the proposed FELMR

algorithm in the next theorem.

Theorem 1 Assume that the following condition holds:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðHHtÞkmaxðHtHÞ

q
\

1

C
:

Then, for any starting vector w0 in R‘, the sequence of

iterates {wi} by the FELMR iterative step (15) converges

to the unique solution w of (12) at the linear rate.

Proof Since w is the solution of (12), it satisfies (14).

Therefore, using (14) and (15), we get
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w� wiþ1 ¼ I

C
þHtH

� ��1

Ht

jy� e e�Hwj � jy� e e�Hwij
2

þ jHwi � y� e ej � jHw� y� e ej
2

2
664

3
775

But,

jy� e e�Hwj � jy� e e�Hwij � jHðw� wiÞj

and similarly

jHwi � y� e ej � jHw� y� e ej � jHðw� wiÞj

hold. Thus, we have

w� wiþ1
�� ��� jj I

C
þHtH

� ��1

Htjj Hðw� wiÞ
�� ��

� jj I

C
þHtH

� ��1

jj jjHtjj jjHjj ðw� wiÞ
�� ��:

Since jj I
C
þHtH

	 
�1jj �C [43] and

Hk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðHtHÞ

p
, we get

w� wiþ1
�� ���C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðHHtÞkmaxðHtHÞ

q
w� wi
�� ��

and the result follows by our assumption.

5.2 ELM for binary classification

Instead of taking zero training error condition, one may

train ELM by allowing acceptable minimum training error.

In this case, the ELM in 2-norm can be formulated as a

minimization problem in primal of the form [18]

min
w; n

1

2
wtwþ C

2
ntn

subject to

DHw� e� n; ð16Þ

which is very much similar to the conventional SVM for-

mulation (3) but without the bias term. Here n 2 Rm is a

vector of slack variables and D ¼ diagðy1; . . .; ymÞ is a

diagonal matrix whose i-th diagonal element is yi.

Since at the solution of the above problem (16), the

condition

n ¼ ðe�DHwÞþ ð17Þ

will be satisfied [25] and therefore using (17), the original

ELM classification problem in 2-norm can be written as an

unconstrained minimization of the following form

min
w

LCðwÞ ¼
1

2
wtwþ C

2
ðe�DHwÞþ
�� ��2

: ð18Þ

Consider the problem in solving for w 2 R‘ such that

rLCðwÞ ¼ 0. Since rLCðwÞ ¼ w� CHtDðe�DHwÞþ,

using the identity uþ ¼ uþjuj
2

for any u 2 R‘, and proceed-

ing as in the regression case, we get the following condi-

tion to be satisfied by w 2 R‘

I

ðC=2Þ þ HtH
� �

w ¼ HtDðeþ je�DHwjÞ:

This leads to the following simple iterative scheme

which will be our functional iterative ELM algorithm for

classification (FELMC)

wiþ1 ¼ I

ðC=2Þ þ HtH
� ��1

HtDðeþ je�DHwijÞ

for i ¼ 0; 1; 2; . . .

ð19Þ

We summarize below the pseudo code of the iterative

method (19) applied for solving the classification problem

(18).

Algorithm 2 (FELMC).

Input.

• Parameter value C[ 0

• tol = tolerance value for learning accuracy,

imax = maximum number of iterations

Step 1.

• Set i ¼ 0 and the initial vector w ¼ w0 in R‘

Step 2.

• Compute the matrix G ¼ I
C=2

þHtH
� ��1

HtD
• Compute w1 ¼ G e þ je�DHw0jð Þ

Step 3.

• While (jjwiþ1 � wijj [ tol & i \ imax)

i ¼ iþ 1

wiþ1 ¼ G e þ je�DHwij
	 


end while

•

w ¼ wiþ1

Following the steps of the proof of Theorem 1, the

convergence of the proposed FELMC algorithm can be

easily verified.

Theorem 2 Assume that the following condition holds:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðHHtÞkmaxðHtHÞ

q
\

2

C
:
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Then, for any starting vector w0 in R‘, the sequence of

iterates {wi} by the FELMC iterative step (19) converges

to the unique solution w of (18) at the linear rate.

Finally, for any test data x 2 Rm, its class label is pre-

dicted using the decision function (6b).

6 Numerical experiments and comparison of results

In this section, the performance of the proposed optimi-

zation method based ELM for regression and classification

in primal solved by functional iterative methods were

compared with SVM, ELM, OP-ELM and OB-ELM on

interesting real-world benchmark datasets.

All experiments were carried-out on MATLAB R2008a

environment on a PC running on Windows XP OS with 64

bit, 3.20 GHz Intel(R) core (TM) 2 Duo processor having

4 GB of RAM.

The standard SVM and OB-ELM formulations were

solved by MOSEK optimization toolbox for MATLAB

available at http://www.mosek.com and OP-ELM by the

toolbox for OP-ELM [26]. However, no external optimizer

was assumed for solving ELM and the proposed FELMR

and FELMC.

The performance of the proposed formulation has been

tested on additive and RBF hidden nodes. In fact, the

activation function Gða; b; xÞ was chosen as the sigmoid

function for additive nodes whereas both multiquadric and

Gaussian functions were considered for RBF hidden nodes.

In case of sigmoid and multiquadric activation functions,

the hidden node parameters were chosen randomly with

uniform distribution in [-0.5, 0.5] and for Gaussian

function, however, they were chosen randomly from [0, 1].

Note that the input weights and biases of the hidden nodes

were selected randomly at the beginning of the algorithm

and they remain fixed in each trial of simulation.

All the numerical experiments on regression and clas-

sification datasets were performed after normalizing the

original data by taking: �xij ¼
xij�xmin

j

xmax
j

�xmin
j

, where xmin
j ¼

min
i¼1;���;m

ðxijÞ and xmax
j ¼ max

i¼1;���;m
ðxijÞ denote the minimum and

maximum values, respectively, of the j-th attribute over all

the input examples xi and �xij is the normalized value cor-

responding to xij.

6.1 Regression

In this sub-section, we demonstrate the effectiveness of the

proposed FELMR for regression in comparison to SVR,

ELM, OP-ELM and OB-ELM by performing experiments

nonlinearly on a number of benchmark datasets. They

include: the inverse dynamics of a flexible robot arm from

http://homes.esat.kuleuven.be/*smc/daisy/daisydata.html;

Box and Jenkins gas furnace dataset [5]; Servo, Auto-

MPG, Machine CPU, Concrete CS, Wine-quality red,

Wine-quality white, Abalone and Parkinson datasets from

UCI repository [31]; Pollen grains, Bodyfat and Space_ga

from the Statlib collection http://lib.stat.cmu.edu/datasets;

Sunspots and SantaFeA from http://www.bme.ogi.edu/

*ericwan/data.html; the financial time series datasets:

Citigroup, Intel, Microsoft, RedHat and Standard & Poor

500 (SNP500) from http://finance.yahoo.com; hydraulic

actuator [11, 35] and, NO2, Bank-32fth, Demo and Kin-

32fh from [8].

The 2-norm root mean square error (RMSE) was

selected as the measure of prediction performance and it

was calculated using the following formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

i¼1

ðyi � ~yiÞ2

s

, where yi and ~yi are the observed

and its corresponding predicted values respectively, and

N is the number of test samples.

As the first example, the inverse dynamics of a flexible

robot arm is estimated [36] as an interesting example of

inverse system identification. It is assumed that the

dynamics of the robot arm is a function of the measured

values of the reaction torque of the structure u(t) whose

output y(t) is its corresponding acceleration. Like in [36],

by setting xðtÞ ¼ ðu t � 1ð Þ; . . .; u t � 5ð Þ; y t � 1ð Þ; . . .;
y t � 4ð ÞÞt and xout tð Þ ¼ u tð Þ, the inverse identification

problem was trained. The first 500 samples of the form:

x tð Þ; xout tð Þð Þ were used for training and the remaining 519

samples for testing. Prediction errors corresponding to

sigmoid, multiquadric and Gaussian functions on the test

dataset were shown in Fig. 1a, b and c respectively.

As the next practical example, the Box and Jenkins gas

furnace dataset [5] was chosen. It consists of 296 pair of

values of the form: u tð Þ; y tð Þð Þ where u tð Þ is the flow rate of

the input gas and its output y tð Þ is the CO2 concentration

from the gas furnace. Assume that the output y tð Þ is pre-

dicted based on six attributes taken to be of the form:

xðtÞ ¼ y t � 1ð Þ; y t � 2ð Þ;ð y t � 3ð Þ; u t � 1ð Þ; u t � 2ð Þ;
u t � 3ð ÞÞ [40]. Among the total of 293 samples x tð Þ; y tð Þð Þ
the first 100 samples were taken for training and the

remaining samples for testing.

As an important study, the problem of time series pre-

diction was considered. Along with the popular Sunspots

and SantaFeA time series datasets, the stock index of:

Citigroup, Intel, Microsoft, RedHat and SNP500 were

further considered as examples of financial time series

datasets. 755 closing stock prices starting from 01-01-2006

to 31-12-2008 were selected. Assuming that the current

stock index is predicted using its previous five values, we
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Fig. 1 Prediction error over the

test data for flexible robot arm

dataset
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get 750 samples, in total. The first 200 were taken for

training and the rest 550 for testing.

Assuming different sampling rates s = 0.05 and

s = 0.20 with parameter values q = 10, r = 28 and

b = 8/3, two time series datasets Lorenz0.05 and Lorenz0.20

were generated as time series values corresponding to the

variable x of the Lorenz differential equation [29, 30]: _x ¼
qðy� xÞ; _y ¼ rx� y� xz and _z ¼ xy� bz, using fourth-

order Runge–Kutta method. After discarding the first 1,000

values to avoid initial transients, the next 3,000 values were

considered for our experiment. For predicting the current

value, five previous values were used. The first 400 sam-

ples were taken for training and the rest for testing.

Finally, experiments were conducted on two more time

series datasets, denoted by MG17 and MG30 generated

using the Mackey–Glass time delay differential equation

[29, 30]:
dxðtÞ
dt

¼ �0:1xðtÞ þ 0:2xðt�sÞ
1þxðt�sÞ10 ; corresponding to the

time delay s = 17 and 30, respectively. As before, five

previous values were used to predict the current value.

Among the total of 1,495 samples obtained, the first 500

were considered for training and the rest for testing.

Also we considered the hydraulic actuator dataset, a

benchmark dataset for nonlinear systems identification [11,

35]. It assumes 1,024 pair of values u tð Þ; y tð Þð Þwhere

u tð Þdenotes the size of the valve through which oil flows

into the actuator and y tð Þ is the oil pressure. By considering

the same multi-dimensional regression model as in [11,

35], the output y tð Þ ¼ f ðx tð ÞÞ is predicted by setting xðtÞ ¼
ðy t � 1ð Þ; y t � 2ð Þ; y t � 3ð Þ; u t � 1ð Þ; u t � 2ð ÞÞt From the

total of 1,021 samples of the form: x tð Þ; y tð Þð Þ, the first 511

samples were chosen for training and the remaining 510

samples for testing.

In the implementation of SVR, e = 0.01 is assumed.

The Gaussian nonlinear kernel function, kðxi; xjÞ ¼

exp �l xi � xj
�� ��2

� �
for i, j = 1,…,m was taken where

l[ 0 is a parameter. The optimal values of the regulari-

zation parameter C and the kernel parameter l were chosen

by varying their values over the pre-defined sets:

f2�10; . . .; 210g and f2�5; . . .; 25g respectively and applying

the tenfold cross-validation methodology on the training

dataset. In case of ELM, the optimal value of the single

parameter ‘ was chosen from the set:

f 10; 20; 50; 100; 200 g and for OP-ELM it was selected,

however, from the set f 10; 20; 50; 80; 100 g: For OB-

ELM, the optimal values of C and ‘ were chosen from

f 2�15; . . .; 220 g and f 10; 20; 50; 100; 200 g respec-

tively. Finally using these optimal parameter values,

RMSE on the test set was calculated.

Fig. 2 Insensitivity

performance of FELMR for

regression to the user specified

parameters (C, ‘) on machine

CPU dataset
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In case of FELMR, it was observed from experiments

that better generalization performance could be achieved

for small/moderate values of ‘. Further, since large value of

‘ will result in increase in computational time we assumed

‘ 2 f10; 20; 50; 100; 200g. Again, by varying the parameter

C from f2�10; . . .; 220g, the optimal values of C and ‘ were

obtained using tenfold cross-validation. Using the optimal

values, the average test accuracy for each dataset was

computed by performing 30 independent trials. As the

proposed FELMR is an iterative method, the termination

condition was chosen to be: jjwiþ1 � wijj\ 10�6 and the

maximum number of iterations was taken as 20.

Though the performance of SVR is sensitive to its

parameters C and l, it is known that ELM is not sensitive

to the choice of the parameter ‘ [20]. After extensive

simulations, it was found that FELMR is also not very

sensitive to the user specified parameters. To illustrate this

result, the performance of FELMR with sigmoid additive

hidden node and, multiquadratic and Gaussian RBF hidden

nodes on Machine CPU and Bank-32fh datasets was shown

in Figs. 2 and 3, respectively. Also from the figures, note

that better accuracy could be achieved for small/moderate

values of ‘ but with medium/large values of C.

In order to test the convergence of the proposed FELMR

algorithm empherically for both the additive and RBF

hidden nodes in terms of the number of iterations, the

values of jjwiþ1 � wijjwere computed as the error of con-

vergence and their results were plotted for Kin-32fh and

Wine-quality white datasets in Fig. 6a and b respectively.

One can observe from the figures that the rate of conver-

gence of FELMR is impressively faster.

For all the regression datasets considered: the number of

training and test samples chosen, the number of attributes, the

optimal parameter values determined using tenfold cross-

validation and the accuracies obtained by FELMR, OB-

ELM, OP-ELM, ELM and SVR on test sets were summa-

rized in Table 1. One can observe from the table that the

training time of FELMR is very close to that of ELM and OP-

ELM, and much superior to SVR and OB-ELM. The number

of times the best accuracy obtained by SVR, ELM, OP-ELM,

OB-ELM and FELMR becomes 5, 3, 7, 5 and 12 respectively

indicates the possible effectiveness of FELMR.

To further analyze the comparative performance of

FELMR with SVR, ELM, OP-ELM and OB-ELM, the

average ranks of all the algorithms on RMSE values were

computed and listed in Table 2. One can clearly observe

Fig. 3 Insensitivity

performance of FELMR for

regression to the user specified

parameters (C, ‘) on bank-32fh

dataset
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Table 2 Average ranks of SVR, ELM, OP-ELM, OB-ELM and FELMR on RMSE values for regression

Datasets SVR ELM OP-ELM

Sigmoid Multiquadric Gaussian Sigmoid

Flexible robot arm 5 4 11 10 3

Gas furnace 4 2 6 10.5 1

Servo 2 5 6.5 11 1

Auto-MPG 4 2 9 7 11

Machine CPU 5 8 10 11 3

Pollen grains 1.5 5 6.5 10 11

Bodyfat 1.5 7 11 9 3

NO2 4 5 7 2 1

Concrete CS 10 11 9 6 7

Sunspots 4 10 8.5 3 11

Citigroup 6 1.5 8 9 11

Intel 7 3 9 8 11

Microsoft 1 2 9 7 11

RedHat 1 3 10 7 11

SNP500 2 6 7 8 11

Lorenz0.05 1 3.5 8 5.5 11

Lorenz0.2 6 1 2 3 11

MG17 4 2 3 6 1

MG30 1 3 4 11 2

SantaFeA 5 11 8 10 4

Hydraulic actuator 8 5 3.5 6.5 10

Bank-32fh 9 4 11 3 5

Kin-32fh 5.5 8 11 4 3

Wine-quality red 6 2 8.5 10 1

Wine-quality white 2 6 9 4 3

Demo 2 8 5 10 11

Space_ga 10 1 4 5 6

Abalone 6 2 11 3 1

Parkinson 2 7 11 6 1

Average Rank 4.3276 4.7586 7.8103 7.0862 6.1036

Datasets OB-ELM FELMR

Sigmoid Multiquadric Gaussian Sigmoid Multiquadric Gaussian

Flexible robot arm 1.5 7 8.5 1.5 6 8.5

Gas furnace 8 9 5 3 10.5 7

Servo 6.5 9 3 8 10 4

Auto-MPG 8 6 10 3 5 1

Machine CPU 4 9 2 1 7 6

Pollen grains 3 4 8 6.5 1.5 9

Bodyfat 1.5 5 8 4 6 10

NO2 10 9 11 8 3 6

Concrete CS 4 8 1 2 5 3

Sunspots 7 2 8.5 6 1 5

Citigroup 4 3 10 7 1.5 5

Intel 1 4 6 2 5 10

Microsoft 3.5 8 5 3.5 6 10

RedHat 2 5 8 4 6 9
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that the performance in terms of average rank for either the

case of ELM, OB-ELM or FELMR using additive hidden

nodes is better than RBF hidden nodes.

For the statistical comparison on the performance of the

11 algorithms where experiments were conducted on 29

datasets, we use the Friedman test with the corresponding

Table 2 continued

Datasets OB-ELM FELMR

Sigmoid Multiquadric Gaussian Sigmoid Multiquadric Gaussian

SNP500 3 5 10 1 4 9

Lorenz0.05 2 8 3.5 5.5 8 10

Lorenz0.2 5 7 4 9 10 8

MG17 11 9 7 10 8 5

MG30 8 10 5 7 9 6

SantaFeA 7 1 2 6 3 9

Hydraulic actuator 9 6.5 11 3.5 1 2

Bank-32fh 8 6 10 2 1 7

Kin-32fh 7 5.5 10 2 1 9

Wine-quality red 3 8.5 11 5 4 7

Wine-quality white 7 11 10 1 5 8

Demo 3.5 7 3.5 6 9 1

Space_ga 11 7 2 8 9 3

Abalone 10 7 8 5 9 4

Parkinson 8 10 4 9 3 5

Average Rank 5.7414 6.7759 6.7241 4.8103 5.4310 6.4310

Fig. 4 Insensitivity

performance of FELMC for

classification to the user

specified parameters (C, ‘) on

breast-cancer dataset
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post hoc test recommended in [9] since it is a simple, yet

safe and robust non-parametric test. Under the null

hypothesis that all the algorithms are equivalent, the

Friedman statistic is computed from Table 2 as

v2
F ¼ 12 � 29

11 � 12
½ð4:32762 þ 4:75862 þ 7:81032

þ 7:08622 þ 6:10362 þ 5:74142 þ 6:77592

þ 6:72412 þ 4:81032 þ 5:43102 þ 6:43102Þ

� 11 � 122

4
� ¼ 31:4356

FF ¼ 28 � 31:4356

29 � 10 � 31:4356
¼ 3:4042:

With 11 algorithms and 29 datasets, FF is distributed

according to the F distribution with ð 11 � 1; ð11 � 1Þ �
ð29 � 1Þ Þ ¼ ð 10; 280 Þ degrees of freedom. The critical

value of Fð10; 280Þ is 1.8646 for a ¼ 0:05: Since

FF [ 1:8646; we reject the null hypothesis. So, we pro-

ceed with Nemenyi test, a post hoc test, for pair wise

comparison of algorithms. According to [9], the critical

difference (CD) at p ¼ 0:10 is 2:9778
ffiffiffiffiffiffiffiffiffiffi
11�12
6�29

q
¼ 2:5936.

i) Since the difference between the worst of

FELMR and SVR ð6:4310 � 4:3276 ¼ 2:1034Þ

is smaller than 2.5936, the post hoc test could

unable to detect any significant difference

between the algorithms.

ii) For the comparison of FELMR with ELM we

proceed as follows

(a) Compare FELMR with ELM using sigmoid

function: The difference between the worst of

FELMR and ELM using sigmoid ð6:4310 �
4:7586 ¼ 1:6724Þ is smaller than 2.5936, the

post hoc test could unable to detect any signif-

icant difference between the algorithms.

(b) Compare FELMR using sigmoid function with

ELM by multiquadric function: Since the differ-

ence between FELMR using sigmoid and ELM

by multiquadric ð7:8103 � 4:8103 ¼ 3:0Þ is

greater than 2.5936, we see that the performance

of FELMR using sigmoid algorithm is better than

ELM using multiquadric algorithm.

(c) Compare FELMR using multiquadric and Gauss-

ian functions with ELM by multiquadric func-

tion: Since the difference between the best of

FELMR using multiquadric and Gaussian and

ELM by multiquadric ð7:8103 � 5:4310 ¼
2:3793Þ is smaller than 2.5936, the post hoc test

Fig. 5 Insensitivity

performance of FELMC for

classification to the user

specified parameters (C, ‘) on

German dataset
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could unable to detect any significant difference

between the algorithms.

(d) Compare FELMR with ELM by Gaussian func-

tion: Since the difference between the best of

FELMR and ELM using Gaussian function

ð7:0862 � 4:8103 ¼ 2:2759Þ is smaller than

2.5936, the post hoc test could unable to detect

any significant difference between the algorithms.

iii) For the comparison of FELMR with OP-ELM

and OB-ELM, the difference between the best

and worst algorithms ð6:7759 � 4:8103 ¼
1:9656Þ is smaller than 2.5936, the post hoc test

could unable to detect any significant difference

between the algorithms.

6.2 Classification

In order to verify the effectiveness of the proposed FELMC

method for classification, its performance was compared

with SVM, ELM, OP-ELM and OB-ELM on 14 binary

classification datasets. All the datasets were taken from

UCI repository [31].

For the implementation of SVM, the Gaussian nonlinear

kernel function with parameter r[ 0 of the form:

kðxi; xjÞ ¼ expð� xi � xj
�� ��2

=ð2r2ÞÞ for i, j = 1,…,m has

been assumed. The optimal values of C and r were chosen

from predefined sets of values by applying tenfold cross

validation methodology. In fact, we assumed C 2
f10�5; . . .; 105g and r 2 f2�5; . . .; 25g. In case of ELM, the

optimal value of the single parameter ‘ was chosen from

the set f10; 50; 100; 200; 500g and for OP-ELM, however,

it was selected from the set f 10; 20; 50; 80; 100 g. By

choosing the optimal parameter values using tenfold cross-

validation, the prediction accuracy was calculated on the

test set.

It was observed for FELMC that good generalization

performance might be achieved, in general, for medium/

large value of ‘. However, since increase in the number of

hidden nodes will result in increase in computational

time, we assumed ‘ 2 f10; 50; 100; 200; 500g in both the

cases of FELMC and OB-ELM. Also by varying the

parameter C from f2�10; . . .; 215g, the optimal values of C

and ‘ were obtained using tenfold cross-validation. The

average test accuracy was computed by performing 30

Fig. 6 Error of convergence versus number of iterations of FELM
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independent trials. Since FELMC is an iterative method,

the termination condition was taken as: jjwiþ1 � wijj\
10�3: The maximum number of iterations was assumed

as 20.

As in the case of regression, it was observed that the

performance of FELMC is not sensitive to the values of its

parameters C and ‘. To verify this result, its performance

with additive and RBF hidden nodes on Breast-cancer and

German credit datasets was illustrated in Figs. 4 and 5.

From the figures, one can observe that better accuracy is

resulted for medium/large values of C.

Like in the case of regression, the convergence of the

proposed FELMC algorithm in terms of the number of

iterations were computed as the error of convergence and

their results were shown for Breast cancer and Cleve

datasets in Fig. 6c and d, respectively. For these classi-

fication datasets, the error of convergence becomes stable

by the 20th iteration. Also observe that, unlike the case

of regression, the rate of convergence of FELMC is

slower.

For all the classification datasets considered, the number

of training and test samples chosen, the number of attri-

butes, the optimal parameter values determined using ten-

fold cross-validation and the accuracies obtained by SVM,

ELM, OP-ELM, OB-ELM and FELMC on test sets were

summarized in Table 3. One can conclude from the table

Table 4 Average ranks of SVR, ELM, OP-ELM, OB-ELM and FELMC on accuracy values for binary classification

Datasets SVM ELM OP-ELM

Sigmoid Multiquadric Gaussian Sigmoid

Breast-cancer 3 5 11 9 4

Wpbc 10 6 1 5 3

Cleve 2 6.5 6.5 10 5

Heart-c 8 11 10 9 6

Haberman 3 5 7 2 6

Heart-statlog 1 9.5 6 9.5 7

Liver-disorders 11 9 7 6 5

Ionosphere 4 10 9 11 3

Tic tac toe 9 3.5 6 3.5 3.5

Votes 10 6.5 3 11 5

Diabetes 9 6 1 4 8

Australian Credit 10 7 3 2 6

German 2 8 5 11 7

CMC 6.5 3 1.5 6.5 10

Average rank 6.3214 6.8571 5.5000 7.1071 5.6071

Datasets OB-ELM FELMC

Sigmoid Multiquadric Gaussian Sigmoid Multiquadric Gaussian

Breast-cancer 2 7 10 1 8 6

Wpbc 8 9 11 4 2 7

Cleve 3 9 11 1 4 8

Heart-c 5 3 4 1 7 2

Haberman 4 11 10 9 1 8

Heart-statlog 2 8 11 4.5 4.5 3

Liver-disorders 1 4 2 10 8 3

Ionosphere 6 7 2 5 8 1

Tic tac toe 11 7 8 10 1 3.5

Votes 9 6.5 8 4 1 2

Diabetes 7 2 5 11 10 3

Australian credit 4 8 11 5 1 9

German 6 3 9 4 1 10

CMC 6.5 6.5 6.5 6.5 1.5 11

Average rank 5.3214 6.5000 7.7500 5.4286 4.1429 5.4643
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that the proposed ELM model trained with functional

iterative method shows comparable generalization perfor-

mance in accordance with the rest of the methods consid-

ered. Again from Table 3, note that the number of times the

best accuracy obtained by SVM, ELM, OP-ELM, OB-ELM

and FELMC becomes 1, 3, 0, 1 and 10 respectively. This

indicates the supremacy of FELMC. In terms of training

time, as expected, ELM and OP-ELM outperform the other

methods considered. Like in the case of regression, the

training time of FELMC is very close to ELM and OP-

ELM and much faster than SVM and OB-ELM. Note that,

in case of FELMC, multiquadrtic shows the best perfor-

mance among the activation functions.

For the statistical comparison on the performance of the

11 algorithms over 14 datasets we use, as in the case of

regression, the Friedman test with post hoc test recom-

mended in [9]. For this purpose, the average ranks of all the

algorithms on the prediction accuracy values were com-

puted and listed in Table 4. Under the null hypothesis that

all the algorithms are equivalent, the Friedman statistic is

computed as

v2
F ¼ 12 � 14

11 � 12
½ð6:32142 þ 6:85712 þ 5:52 þ 7:10712

þ 5:60712 þ 5:32142 þ 6:52

þ 7:752 þ 5:42862 þ 4:14292 þ 5:46432Þ

� 11 � 122

4
� ¼ 13:1117

FF ¼ 13 � 13:1117

14 � 10 � 13:1117
¼ 1:3433:

In this case, FF is distributed according to the F distri-

bution with ð 10; 130 Þ degrees of freedom. The critical

value of Fð10; 130Þ is 1.9042 for a ¼ 0:05: Since the value

of FF is smaller than its corresponding critical value, there

is no significant error between the algorithms.

7 Conclusion

In this work, a simple novel functional iterative method

for the solution of the optimization based ELM in its

primal for regression and classification has been proposed.

The linear convergence of the proposed method is proved.

Numerical experiments have been performed with sigmoid

and RBF hidden nodes on a number of real-world,

benchmark datasets and their results have been compared

with SVM, ELM, OP-ELM and OB-ELM for regression

and classification. Comparable generalization performance

of the proposed approach with the rest of the methods

considered at a faster learning speed than SVM and OB-

ELM indicates its usefulness and applicability. Future

work will be on the study ELM in dual variables and its

applications.
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