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Abstract This paper introduces the directional derivative

to fractional derivative and proposes a new mathematical

method, fractional directional derivative (FDD), and gives

the corresponding numerical calculation. Compared with

the traditional fractional derivative, the coefficients of FDD

along the eight directions in the image plane are not the

same, which can reflect different fractional change rates

along different directions and is benefit to enlarge the

differences among the image textures. Experiments show

that the capability of nonlinearly enhancing texture details

by FDD is more obvious than those by the traditional

fractional derivative and integer-order differentiation

operators Laplacian, Butterworth high-pass filter.

Keywords FDD � Image enhancement � DV/BV �
Average gradient

1 Introduction

Fractional derivative, also called non-integer derivative, is

not a new concept: it dates back to Cauchy, Riemann,

Liouville and Letnikov in the 19th century [1]. In compar-

ison with integer-order differential, the fractional differential

of direct current or low-frequency signal is often nonzero. In

the last two decades, fractional differentiation has played a

very important role in various physical sciences fields, such

as mechanics, electricity, chemistry, biology, economics,

time and frequency domains system identification, notably

control theory, mechatronics and robotics [2–4]. Recently,

fractal theory is already used in fractal image processing [5–

12]. In general, the corresponding coefficients of traditional

fractional differentiation (TFD) operator along the eight

directions are 1, �v,
�vð�vþ1Þ

2
, . . ., Cð�vþ1Þ

ðn�1Þ!ðCð�vþnÞÞ respectively

in image processing [5, 13, 14]. The coefficients along the

eight directions in the image plane are the same, which is not

conducive to reflect the different change rates of the image

along different directions and is not benefit to enlarge the

differences among textures. Based on this, we give the

concept of fractional directional derivative (FDD) and its

coefficients along the eight directions are not the same,

which can reflect different fractional change rates along

different directions and is benefit to enlarge the differences

among the image textures.

2 Theory and numerical calculation of FDD

Assume that z ¼ f ðx; yÞ has definition in some neighbor-

hood D. Find the line which passes through M0ðx0; y0Þ and

parallels to l as follows:

x� x0

cos a
¼ y� y0

sin a
¼ t; l ¼ ðcos a; sin aÞ; ð1Þ

where a is the directional angle. Let Mðx0 þ Dx; y0 þ DyÞ
satisfy (1) and h ¼ sgnðtÞ �M0M: If the direction of vector

M0M is the same as l, then t [ 0; h [ 0; otherwise,
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t\0; h\0, that is to say , h changes along the positive or

negative direction of l. If the limit

lim
h!0

f ðMÞ � f ðM0Þ
h

ð2Þ

exists, then (2) is called the directional derivative of f ðx; yÞ
at M0 along the direction l, write

of ðM0Þ
ol

, which denotes the

slope of tangent line at M0 for the plane curve

z ¼ f ðx; yÞ
x� x0

cos a
¼ y� y0

sin a

(

and its geometric meaning is the same as general

derivative.

It is well-known, the sufficient condition which (2)

exists is that f ðx; yÞ has continuous partial derivatives of

first order in some neighborhood D at the point M0 and

of ðM0Þ
ol

¼ of ðM0Þ
ox

cos aþ of ðM0Þ
oy

sin a: ð3Þ

Clearly,of
ol

is the function with respect to x; y in D:

of ðx; yÞ
ol

¼ of ðx; yÞ
ox

cos aþ of ðx; yÞ
oy

sin a: ð4Þ

If f ðx; yÞ exists continuous partial derivatives of second

order in some neighborhood D, making the direction l fixed

and by (4), we obtain:

o2f

ol2
¼ o2f

ox2
cos2 aþ 2

o2f

oxoy
sin a cos a

þ o2f

oy2
sin2 a, cos a

o

ox
þ sin a

o

oy

� �2

f ðx; yÞ; ð5Þ

thus (5) is called the second order directional derivative of

f ðx; yÞ at M0 along the direction l.

Similarly, if f ðx; yÞ exists nþ 1 order continuous partial

derivatives in D, we can define the k-order directional

derivative of f ðx; yÞ at M0 along the direction l as follows.

okf

olk
¼ cos a

o

ox
þ sin a

o

oy

� �k

f ðx; yÞ; k ¼ 1; 2; . . .; n; nþ 1:

ð6Þ

Thus, we can define the FDD of f ðx; yÞ at M0 along the

direction l as follows:

ovf

olv
¼ cos a

o

ox
þ sin a

o

oy

� �v

f ðx; yÞ; ð7Þ

where v is any real number. From (7), in [15], the

authors derived the directional derivative expression of

Taylor formula for two-variable function and proposed

fractional directional differentiation (also called FDD).

Further, the authors discussed the construction of frac-

tional directional differentiation mask in the four

quadrants, respectively, for digital image. The differ-

ential coefficients of every direction are not the same

along the eight directions in the four quadrants. While,

in this paper, note that we will develop FDD of f ðx; yÞ at

M0 along the direction l instead of fractional directional

differentiation (also called FDD) in [15]. Thus, we will

obtain a new fractional operator whose coefficients are

different from fractional directional differentiation

operator in [15]. By (7), we have

ovf

olv
¼
X1
k¼0

ð�1Þk
v

k

� �
ov�kf

oxv�k

okf

oyk
cosv�k a sink a

¼
X1
k¼0

ð�1Þk v

1
� v� 1

2
� � � v� k þ 1

k

� �
ov�kf

oxv�k

okf

oyk
cosv�k a sink a

¼ ovf

oxv
cosv a� v � o

v�1f

oxv�1

of

oy
cosv�1 a sin a

þ vðv� 1Þ
2

ov�2f

oxv�2

o2f

oy2
cosv�2 a sin2 aþ � � �

ð8Þ

In the same way,

ovf

olv
¼ sin a

o

oy
þ cos a

o

ox

� �v

f ðx; yÞ

¼
X1
k¼0

ð�1Þk
v

k

� �
ov�kf

oyv�k

okf

oxk
sinv�k a cosk a

¼
X1
k¼0

ð�1Þk v

1
� v� 1

2
� � � v� k þ 1

k

� �
ov�kf

oyv�k

okf

oxk
sinv�k a cosk a

¼ ovf

oyv
sinv a� v

ov�1f

oyv�1

of

ox
sinv�1 a cos a

þ vðv� 1Þ
2

ov�2f

oyv�2

o2f

ox2
sinv�2 a cos2 aþ � � � :

ð9Þ

Taking the average of (8) and (9), we obtain

ovf

olv
¼ 1

2

ovf

oxv
cosv aþ ovf

oyv
sinv a

� �

� v

2

ov�1f

oxv�1

of

oy
cosv�1 a sin aþ ov�1f

oyv�1

of

ox
sinv�1 a cos a

� �

þ vðv� 1Þ
4

ov�2f

oxv�2

o2f

oy2
cosv�2 a sin2 a

�

þ ov�2f

oyv�2

o2f

ox2
sinv�2 a cos2 a

�
þ � � � :

ð10Þ

In order to simplify the calculation, we only take the top

three terms in (10), and the differences of fractional partial

derivative are expressed as respectively in (10) [5–7]:

ovf ðx; yÞ
oxv

� f ðx; yÞ þ ð�vÞf ðx� 1; yÞ þ � � �

þ Cðn� vþ 1Þ
ðn� 1Þ!Cð�vÞ f ðx� nþ 1; yÞ;

ð11Þ
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ovf ðx; yÞ
oyv

� f ðx; yÞ þ ð�vÞf ðx; y� 1Þ þ � � �

þ Cðn� vþ 1Þ
ðn� 1Þ!Cð�vÞ f ðx; y� nþ 1Þ:

ð12Þ

And the differences of of
ox

, of
oy

, o2f
ox2,

o2f
oy2 in (10) can be expressed

as

of ðx; yÞ
ox

� f ðx; yÞ � f ðx� 1; yÞ ð13Þ

of ðx; yÞ
oy

� f ðx; yÞ � f ðx; y� 1Þ; ð14Þ

o2f ðx; yÞ
ox2

� f ðx; yÞ � 2f ðx� 1; yÞ þ f ðx� 2; yÞ ð15Þ

o2f ðx; yÞ
oy2

� f ðx; yÞ � 2f ðx; y� 1Þ þ f ðx; y� 2Þ; ð16Þ

thus, by the top three terms of (11)–(12), and (13)–(16),

(10) becomes

ovf

olv
� 1

2

ovf

oxv
cosv aþ ovf

oyv
sinv a

� �

� v

2

ov�1f

oxv�1

of

oy
cosv�1 a sin aþ ov�1f

oyv�1

of

ox
sinv�1 a cos a

� �

þ vðv� 1Þ
4

ov�2f

oxv�2

o2f

oy2
cosv�2 a sin2 aþ ov�2f

oyv�2

o2f

ox2
sinv�2 a cos2 a

� �

¼ 1

2
f ðx; yÞ � vf ðx� 1; yÞ þ vðv� 1Þ

2
f ðx� 2; yÞ

� �
cosv a

�

þ f ðx; yÞ � vf ðx; y� 1Þ þ vðv� 1Þ
2

f ðx; y� 2Þ
� �

sinv a

�

� v

2
f ðx; yÞ � ðv� 1Þf ðx� 1; yÞ þ ðv� 1Þðv� 2Þ

2
f ðx� 2; yÞ

� ��
� f ðx; yÞ � f ðx; y� 1Þð Þ cosv�1 a sin a

�
� v

2
f ðx; yÞ � ðv� 1Þf ðx; y� 1Þ þ ðv� 1Þðv� 2Þ

2
f ðx; y� 2Þ

� ��
� f ðx; yÞ � f ðx� 1; yÞð Þ sinv�1 a cos a

�
þ vðv� 1Þ

4
f ðx; yÞ � ðv� 2Þf ðx� 1; yÞ þ ðv� 2Þðv� 3Þ

2
f ðx� 2; yÞ

� ��
� f ðx; yÞ � 2f ðx; y� 1Þ þ f ðx; y� 2Þð Þ cosv�2 a sin2 a

�
þ vðv� 1Þ

4
f ðx; yÞ � ðv� 2Þf ðx; y� 1Þ þ ðv� 2Þðv� 3Þ

2
f ðx; y� 2Þ

� ��
� f ðx; yÞ � 2f ðx� 1; yÞ þ f ðx� 2; yÞð Þ sinv�2 a cos2 a

�
:

ð17Þ

For the digital image, the shortest neighborhood distance

between pixels is only one pixel. Therefore, the measurement

for duration on x-coordinate or y-coordinate must take pixel

as unit, and the minimum division must be Dx ¼ 1;Dy ¼ 1.

To obtain the new FDD filter along eight directions, take the

directional angles a ¼ 0; p
4
; p

2
; 3p

4
; p; 5p

4
; 3p

2
; 7p

4
, see Fig. 1.

(a) When a ¼ 0, l ¼ ðcos a; sin aÞ ¼ ð1; 0Þ, that is,

cos a ¼ 1; sin a ¼ 0, we obtain

ovf

olv
¼ 1

2

ovf

oxv
� 1

2
f ðx; yÞ � vf ðx� 1; yÞð

þ vðv� 1Þ
2

f ðx� 2; yÞ
�
:

ð18Þ

(b) When a ¼ p
4
,l ¼ ðcos a; sin aÞ ¼ ð

ffiffi
2
p

2
;
ffiffi
2
p

2
Þ, that is,

cos a ¼
ffiffi
2
p

2
; sin a ¼

ffiffi
2
p

2
, we obtain

ovf

olv
� 1

2

ffiffiffi
2
p

2

� �v
ovf

oxv
þ ovf

oyv

� �

� v

2

ffiffiffi
2
p

2

� �v
ov�1f

oxv�1

of

oy
þ ov�1f

oyv�1

of

ox

� �

þ vðv� 1Þ
4

ffiffiffi
2
p

2

� �v
ov�2f

oxv�2

o2f

oy2
þ ov�2f

oyv�2

o2f

ox2

� �
:

ð19Þ

(c) When a ¼ p
2
, l ¼ ðcos a; sin aÞ ¼ ð0; 1Þ, that is,

cos a ¼ 0; sin a ¼ 1, we have

ovf

olv
¼ 1

2

ovf

oyv
� 1

2
f ðx; yÞ � vf ðx; y� 1Þð

þ vðv� 1Þ
2

f ðx; y� 2Þ
�
:

ð20Þ

(d) When a ¼ 3p
4

, l ¼ ðcos a; sin aÞ ¼ ð�
ffiffi
2
p

2
;
ffiffi
2
p

2
Þ, that is,

cos a ¼ �
ffiffi
2
p

2
; sin a ¼

ffiffi
2
p

2
, we have

Fig. 1 The eight directions of FDD
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ovf

olv
� 1

2

ovf

oxv
�

ffiffiffi
2
p

2

� �v

þ ovf

oyv

ffiffiffi
2
p

2

� �v
 !

� v

2

ov�1f

oxv�1

of

oy
�

ffiffiffi
2
p

2

� �v�1 ffiffiffi
2
p

2

 

þ ov�1f

oyv�1

of

ox

ffiffiffi
2
p

2

� �v�1

�
ffiffiffi
2
p

2

� �!

þ vðv� 1Þ
4

ov�2f

oxv�2

o2f

oy2
�

ffiffiffi
2
p

2

� �v�2 ffiffiffi
2
p

2

� �2
 

þ ov�2f

oyv�2

o2f

ox2

ffiffiffi
2
p

2

� �v�2

�
ffiffiffi
2
p

2

� �2
!

¼ 1

2

ffiffiffi
2
p

2

� �v

ð�1Þv ovf

oxv
þ ovf

oyv

� �

� v

2

ffiffiffi
2
p

2

� �v

ð�1Þv�1 ov�1f

oxv�1

of

oy
� ov�1f

oyv�1

of

ox

� �

þ vðv� 1Þ
4

ffiffiffi
2
p

2

� �v

ð�1Þv�2 ov�2f

oxv�2

o2f

oy2
þ ov�2f

oyv�2

o2f

ox2

� �
:

ð21Þ

(e) When a ¼ p,l ¼ ðcos a; sin aÞ ¼ ð�1; 0Þ, that is,

cos a ¼ �1; sin a ¼ 0, we have

ovf

olv
¼ ð�1Þv

2

ovf

oxv
� ð�1Þv

2
f ðx; yÞ � vf ðx� 1; yÞð

þ vðv� 1Þ
2

f ðx� 2; yÞ
�
: ð22Þ

(f) When a ¼ 5p
4

,l ¼ ðcos a; sin aÞ ¼ ð�
ffiffi
2
p

2
;�

ffiffi
2
p

2
Þ, that

is, cos a ¼ �
ffiffi
2
p

2
; sin a ¼ �

ffiffi
2
p

2
, we have

ovf

olv
� 1

2
�

ffiffiffi
2
p

2

� �v
ovf

oxv
þ ovf

oyv

� �

� v

2
�

ffiffiffi
2
p

2

� �v
ov�1f

oxv�1

of

oy
þ ov�1f

oyv�1

of

ox

� �

þ vðv� 1Þ
4

�
ffiffiffi
2
p

2

� �v
ov�2f

oxv�2

o2f

oy2
þ ov�2f

oyv�2

o2f

ox2

� �
:

ð23Þ

(g) When a ¼ 3p
2

,l ¼ ðcos a; sin aÞ ¼ ð0;�1Þ, that is,

cos a ¼ 0; sin a ¼ �1, we have

ovf

olv
¼ ð�1Þv

2

ovf

oyv
� ð�1Þv

2
f ðx; yÞ � vf ðx; y� 1Þð

þ vðv� 1Þ
2

f ðx; y� 2Þ
�
:

ð24Þ

(h) When a ¼ 7p
4

,l ¼ cos a; sin aÞ ¼ ð
ffiffi
2
p

2
;�

ffiffi
2
p

2
Þ, that is,

cos a ¼
ffiffi
2
p

2
; sin a ¼ �

ffiffi
2
p

2
, we have

ovf

olv
� 1

2

ffiffiffi
2
p

2

� �v
ovf

oxv
þ ð�1Þv ovf

oyv

� �

� v

2

ffiffiffi
2
p

2

� �v

� ov�1f

oxv�1

of

oy
þ ð�1Þv�1 ov�1f

oyv�1

of

ox

� �

þ vðv� 1Þ
4

ffiffiffi
2
p

2

� �v
ov�2f

oxv�2

o2f

oy2
þ ð�1Þv�2 ov�2f

oyv�2

o2f

ox2

� �
:

ð25Þ

Only taking (11)–(16) into (18)–(25) correspondingly, we

can achieve the numerical calculation of FDD. From (18)–

(25), we see that the coefficients of FDD along the eight

directions are not the same, which can reflect different

fractional change rates along different directions and is

benefit to enlarge the differences among textures. This is

also the biggest difference with the traditional fractional

derivative. Therefore, FDD not only can nonlinearly

enhance the contour feature in the smooth area, but also

can enhance evidently high-frequency edge feature in those

areas where gray changes remarkably. In order to simplify

the operation, by comparing the absolute value outputs of

the eight directions, the biggest one is taken as FDD

grayscale of image.

3 Experiments and result analysis

This section aims at demonstrating that FDD operator has

better capability in image enhancement [6, 7, 16, 17]. We

Fig. 2 The comparison of Laplacian operator, Butterworth high-pass filter and FDD. a Original image, b Laplacian operator, c Butterworth high-

pass filter, d FDD v ¼ 0:03.
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first need to do FDD for an image sðx; yÞ by (18)–(25)

respectively. And then we select the maximum absolute

value of the eight directions as grayscale of the point. In

order to validate the performance of FDD, we compare

with traditional integer order differential operator Lapla-

cian, Butterworth high-pass filter and TFD operator.

Compared with integer-order differential operator Lapla-

cian and Butterworth high-pass filter, the results are shown

in Fig. 2.

Figure 2 shows that the original image is more blurred

and Laplacian operator enhances detail information. It is

also obvious that enhanced image by Butterworth high-pass

filter becomes dark and loses some texture detail infor-

mation. While FDD operator achieves best visual effects

and is better than Laplacian operator and Butterworth high-

pass filter. To explain this phenomenon in Fig. 2, the grey

level histogram is given in Fig. 3.

It is easy to see that the envelope curve of grey level

histogram by Laplacian operator almost has no significant

difference with that of the origin image, but when the grey

value is 255, the number of pixel points increases suddenly,

which leads to a large number of light spot and is respected

as noise. Consequently, the enhance effect is not obvious.

For Butterworth high-pass filter, the grey range of the grey

level histogram becomes smaller than that of the original

image, which implies the increase of low grey value, so the

whole image becomes dark. The grey level histogram of

FDD almost keeps the density function (envelope curve)

with a normal distribution and the whole graph shifts, so

FDD has best visual effects.

Secondly, we compare FDD with TFD operator. The

parts of enhanced effects are shown in Fig. 4.

Since both FDD and TFD can enhance image in detail.

In order to quantify enhanced effect in detail, the paper

adopts DV and BV [18] to evaluate the enhanced image.

DV and BV can divide image into detail region and

background region by a threshold. DV is the average local

variance of the detail region, BV is the average local var-

iance of the background region, and the threshold is the

local variance that corresponds to the peak of local vari-

ance’s grey level histogram for the original image. ForFig. 3 The grey level histogram in Fig. 2

Fig. 4 The comparison of FDD and TFD with different order. a Original image, b TFD v ¼ 0:05, c TFD v ¼ 0:2, d TFD v ¼ 0:4, e TFD v ¼ 0:6,

f FDD v ¼ 0:05, g FDD v ¼ 0:1, h FDD v ¼ 0:2.
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enhanced images, the larger DV is and the smaller BV is,

the better enhanced effect is achieved in general. For the

sake of convenience, DV/BV is used as the enhancement

evaluation criterion. The results of images in Fig. 4 are

shown in Table 1.

Table 1 gives the fact that the DV/BV values of FDD

and TFD are both greater than that of the original image,

and DV/BV of FDD changes obviously with the increase of

the fractional order.

To further compare FDD with Laplacian operator,

Butterworth high-pass filter and TFD, we do the following

some experiments. The results are shown in Fig. 5.

In order to further illustrate the performance of FDD, the

average gradient [19–22] of enhanced images in Fig. 5 are

given. See Table 2.

As shown in Table 2, the values of DV/BV with La-

placian operator, Butterworth high-pass filter and FDD are

greater than that of the origin image. Although Butterworth

high-pass filter has the greatest DV/BV value, the enhanced

image becomes dark, so extraneous noise is introduced.

Although Laplacian operator has the greatest average gra-

dient value, the enhanced image is over sharp. Comparing

with TFD, both the average gradient and DV/BV by FDD

are greater than that by TFD, which means FDD can

enhance both the margins and the textures. Therefore, FDD

could nonlinearly preserve the low-frequency contour

feature in the smooth area to the furthest degree, and as

well as, nonlinearly enhance high-frequency marginal

information in those areas where gray scale changes fre-

quently. FDD could nonlinearly enhance the comprehen-

sive texture details.

4 Conclusion

The paper introduces the concept and theory of FDD. The

coefficients of FDD along the eight directions in the image

plane are not the same, which can reflect different frac-

tional change rates along different directions and is benefit

to enlarge the differences among textures. Compared with

Laplacian operator, Butterworth high-pass filter and TFD,

the experiments indicate that Laplacian operator makes

enhanced image over sharp and introduces extraneous

noise; the grey range of enhanced images by Butterworth

Table 1 Comparison of

DV/BV in Fig. 4
Image (a) (b) (c) (d) (e) (f) (g) (h)

DV/BV 3.7058 4.1557 4.2848 4.6895 5.1663 6.5547 8.5827 9.0326

Fig. 5 The comparison of different methods. a Original image, b Laplacian operator, c Butterworth high-pass filter, d TFD v ¼ 0:3, e FDD

v ¼ 0:05, f original image, g Laplacian operator, h Butterworth high-pass filter, i TFD v ¼ 0:2, j FDD v ¼ 0:05.

Table 2 DV/BV and average

gradient in Fig. 5
Image (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

DV/BV 3.821 3.957 3.949 4.124 4.803 4.096 3.822 3.847 4.002 4.701

Ave.grad. 4.289 5.754 6.334 7.916 3.872 4.949 3.272 4.739 4.994 7.114
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high-pass filter becomes narrower, so some detail infor-

mation lose. Although TFD can enhance image non-line-

arly, the amplitude is smaller than FDD. Therefore, FDD

achieves better enhanced effect than the above three

operators. Therefore, FDD is a new method and technology

for image enhancement.
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