
ORIGINAL ARTICLE

Parameters optimization of polygonal fuzzy neural networks
based on GA-BP hybrid algorithm

Yongqiang Yang • Guijun Wang • Yang Yang

Received: 16 September 2013 / Accepted: 15 December 2013 / Published online: 7 January 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract Based on the extensive operations of polygonal

fuzzy numbers, a GA-BP hybrid algorithm for polygonal

fuzzy neural network is designed. Firstly, an optimal

solution is obtained by the global searching ability of GA

algorithm for the untrained polygonal fuzzy neural net-

work. Secondly, some parameters for connection weights

and threshold values are appropriately optimized by using

an improved BP algorithm. Finally, through a simulation

example, we demonstrate that the GA-BP hybrid algorithm

based on the polygonal fuzzy neural network can not only

avoid the initial values’ dependence and local convergence

of the original BP algorithm, but also overcome a blindness

problem of the traditional GA algorithm.

Keywords Polygonal fuzzy numbers � Polygonal fuzzy

neural network � GA-BP hybrid algorithm � Parameters

optimization

1 Introduction

In recent years, it is an increasing interest that is combing

artificial neural networks with fuzzy system. Fuzzy neural

networks (FNN), which is made up of artificial neural

networks and fuzzy system, can learn, identify and process

fuzzy information. So FNN is one of the most successful

examples to bring the artificial networks and fuzzy system

together [1, 2]. But FNN based on Zadeh’s extension

principle has not satisfied linearity so that some extensive

applications of FNN can be greatly restricted. Conse-

quently, in order to realize a nonlinear operation between

fuzzy numbers and improve the ability of universal

approximation of fuzzy neural networks, polygonal FNN is

introduced. The polygonal FNN is a new network which

depends on polygonal fuzzy numbers and artificial neural

networks. The connection weights and threshold of

polygonal FNN both take values of polygonal fuzzy

numbers. Furthermore, the topology of polygonal FNN is

intuitive and clear, and operations of polygonal FNN are

simple and satisfy the linearity. So, the polygonal FNN has

a stronger approximation ability than fuzzy neural network

based on Zadeh’s extensive principle [3, 4]. Generally,

when the network is fixed, its performance is determined

by parameters of the network. However, parameters opti-

mization of polygonal FNNs mainly embody in networks’

learning algorithms. Therefore, how to optimize parame-

ters of polygonal FNNs is an important goal of the net-

works’ learning algorithms.

In 2002, Liu [3] first developed a concept of n-sym-

metric polygonal fuzzy numbers and established a polyg-

onal fuzzy neural network. Because the polygonal FNNs

rely on the linear operations of polygonal fuzzy numbers to

design a learning algorithm, learning algorithms of the

polygonal FNNs are more convenient to compute than

those of the FNNs. Next, according to the above charac-

teristic, through presenting a traditional Back Propagation

(BP) algorithm for polygonal FNNs to realize parameters

optimization, Liu [4] verified the polygonal FNNs had a

better performance in the application than FNNs. But ini-

tial values’ dependence and local convergence of the
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traditional BP algorithm has not been resolved. Thus, it is

necessary to design some new and effective learning

algorithms for polygonal FNNs. In 2011, a traditional

genetic algorithm (GA), which is based on natural selection

and genetic principles, was used for optimizing parameters

of polygonal FNNs [5]. However, the traditional GA which

is a kind of global searching algorithm has a blindness

problem to make the optimization ineffective. Besides,

recently, although some learning algorithms were proposed

to optimize the polygonal FNNs [6–9], there were many

aspects to be improved. In fact, through analyzing feature

of the BP and GA algorithms, we can find that the global

searching capability of GA can resolve the traditional BP

algorithm’ deficiencies. And, feasibility and local search-

ing ability of BP algorithm can make the traditional GA get

rid of blindness problem. Thus, now, we present parame-

ters optimization of polygonal FNNs based on GA-BP

hybrid algorithm.

In this paper, we introduce the polygonal FNN based on

the extensive operations of polygonal fuzzy numbers. And

then, according to their extensive operations, we improve

the traditional BP [3, 4] and GA algorithm [5] based on the

polygonal FNN. At the same time, using the improved GA

to search a global optimal solution for the untrained

polygonal FNN, and combining the improved BP algorithm

to optimize the connection weights and threshold values, we

design a GA-BP hybrid algorithm for polygonal FNN.

Finally, through a simulation example, the results show that

a GA-BP hybrid algorithm doesn’t only overcome the initial

values’ dependence and local convergence of the BP algo-

rithms and blindness problem of the traditional GA, but also

improves the convergence rate of the polygonal FNN.

In addition, the paper is organized as follows: After the

introduction, some basic notations for polygonal fuzzy

numbers and its graphical explanation are briefly summa-

rized in Sect. 2. In Sect. 3, the structural model and the

error function of the polygonal fuzzy neural network are

given. Section 4 shows that a new GA-BP hybrid algorithm

and its parameters optimization are designed. In Sect. 5, a

simulation example for the polygonal FNN is realized.

Some conclusions are indicated in the final section.

2 Polygonal fuzzy numbers

It is well known that one of the simplest fuzzy numbers, even

the triangular fuzzy numbers, doesn’t satisfy linear opera-

tion, so the application of fuzzy numbers is a difficult

problem. This also raises an important issue that how to

approximately achieve a nonlinear operation between fuzzy

numbers. And how to construct the appropriate FNN to

approximate a given nonlinear function can be very signifi-

cant. For this, Liu [3] was the first to put forward the concept

of n-symmetric polygonal fuzzy number, and its operations

can be linearized. But this polygonal fuzzy numbers are a

little shortage, and he [6] revised and improved it.

Throughout this paper, we always letRdenote the set of all

real numbers, Rþthe set of non-negative real numbers and N

the family of all natural numbers. Let sign �k k be a Euclid

norm, F0ðRÞ the family of all of fuzzy numbers on R:

Definition 1 [3, 6] Let ~A 2 F0ðRÞ;for given n 2 N,

divide the closed interval ½0; 1� along the y-axis into n

equal-sized closed intervals bounded by points xi ¼
i=n; i ¼ 1; 2; � � � ; n� 1: If there exists a set of ordered real

numbers: a1
0; a

1
1; � � � ; a1

n; a
2
n; � � � ; a2

1; a
2
0 2 R with a1

0� a1
1�

� � � � a1
n� a2

n� � � � � a2
1� a2

0 such that ~Aðaq
i Þ ¼ i=n,

where q ¼ 1; 2 and membership function ~AðxÞ takes straight

lines in ½a1
i�1; a1

i � and ½a2
i ; a2

i�1�, where i ¼ 1; 2; . . .; n (see

Figs. 1, 2).

Then ~A is called an n�polygonal fuzzy number, for

simplicity, it is always denoted as follows

~A ¼ ða1
0; a

1
1; � � � ; a1

n; a
2
n; � � � ; a2

1; a
2
0Þ:

Obviously, an n�polygonal fuzzy number ~A can be

completely determined by the finite ordered points

a1
0; a

1
1; � � � ; a1

n; a
2
n; � � � ; a2

1; a
2
0 on x�axis, where the coordi-

nate of each vertex isðaq
i ; i=nÞ, q ¼ 1; 2; i ¼ 0; 1; � � � ; n:

Fig. 1 Image of n� polygonal fuzzy number eA

O x

y

Fig. 2 Mixed image of eA and its 2- polygonal fuzzy number
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Generally, the value of n determines the size of nodes on

the polyline. Specially, if n ¼ 1, a 1�polygonal fuzzy

number reduces to a trapezoidal or triangle fuzzy number.

For any given fuzzy number and n 2 N, we can get only

one n�polygonal fuzzy number by method in Fig. 1, to

replace the original fuzzy number (see Fig. 2).

Let Ft n
0 ðRÞ denote the set of all n� polygonal fuzzy

numbers on R, and ~A 2 Ft n
0 ðRþÞ , ~AðxÞ ¼ 0; 8x\0. In

addition, extended linear operators of polygonal fuzzy

numbers can be described in papers [6–8], This article will

do not repeat.

3 Polygonal FNN

Polygonal FNN is a kind of new network system, its con-

nection weights and threshold are polygonal fuzzy num-

bers, so its internal processing are based on the extension

operations of polygonal fuzzy numbers. In fact, the net-

work’s expression is a system that contains the arithmetics

of polygonal fuzzy numbers, and the network can process

information by a finite number of real numbers. The

research object of this article is a single input single output

(for short SISO) three-layer forward polygonal FNN.

If the input variable ~X, the connection weights ~Uj and ~Vj,

the threshold ~Hj of the hidden layer are taken values in

Ft n
0 ðRÞ, and let an activation function r be a continuous

monotonic Sigmoidal function, then SISO three-layer for-

ward polygonal FNN can be denoted as follow

~Y ¼ ~Fnnð ~XÞ ¼
Xp

j¼1
~Vj � rð ~Uj � ~X þ ~HjÞ:

For given untrained polygonal fuzzy pattern pairs

ð ~Xð1Þ; ~Oð1ÞÞ; ð ~Xð2Þ; ~Oð2ÞÞ; . . .; ð ~XðLÞ; ~OðLÞÞ, where ~XðlÞ;
~OðlÞ 2 Ft n

0 ðRþÞ, and ~XðlÞ denote network’s input, ~OðlÞ
denote network’s expected output. If the network’s actual

output can be denoted as ~YðlÞ, then ~YðlÞ ¼ ~Fnnð ~XðlÞÞ,
l ¼ 1; 2; � � � ; L. This moment, let

~XðlÞ ¼ ðx1
0ðlÞ; x1

1ðlÞ; � � � ; x1
nðlÞ; x2

nðlÞ; � � � ; x2
1ðlÞ; x2

0ðlÞÞ;
~YðlÞ ¼ ðy1

0ðlÞ; y1
1ðlÞ; � � � ; y1

nðlÞ; y2
nðlÞ; � � � ; y2

1ðlÞ; y2
0ðlÞÞ;

~OðlÞ ¼ ðo1
0ðlÞ; o1

1ðlÞ; � � � ; o1
nðlÞ; o2

nðlÞ; � � � ; o2
1ðlÞ; o2

0ðlÞÞ:

According to the metric D of polygonal fuzzy number

[3], we may define the error function E of polygonal FNN

as follows

E ¼ 1

2

X

L

l¼1

Dð ~OðlÞ; ~YðlÞÞ2

¼ 1

2

X

L

l¼1

X

n

i¼0

ððo1
i ðlÞ � y1

i ðlÞÞ
2 þ ðo2

i ðlÞ � y2
i ðlÞÞ

2Þ
 !

:

ð1Þ

In terms of input variable ~X, the network can gradually

optimized connection weights ~Uj, ~Vj and threshold ~Hj by

learning. And this optimization can make ~OðlÞ approximate

or equal ~YðlÞ. In addition, we can also put all of adjustable

parameters u
q
i ðjÞ, v

q
i ðjÞ, hq

i ðjÞ ði ¼ 0; 1; � � � ; n; j ¼
1; 2; � � � ; p; q ¼ 1; 2Þ together to express a form of param-

eters vector, denoted as w, that is

w ¼ ðw1;w2; � � �wNÞ ¼ ðu1
0ð1Þ; � � � ; u2

0ð1Þ; � � � ;
u1

0ðpÞ; � � � ; u2
0ðpÞ; v1

0ð1Þ; � � � ; v2
0ð1Þ; � � � ; v1

0ðpÞ; � � � ;
v2

0ðpÞ; h
1
0ð1Þ; � � � ; h

2
0ð1Þ; � � � ; h

1
0ðpÞ; � � � ; h

2
0ðpÞÞ ð2Þ

Aim at ð1Þ, the error function E can be denoted as EðwÞ,
and its gradient vector can be denoted as

rEðw ½t�Þ ¼ ðoEðwÞ=ow1; oEðwÞ=ow2; � � � ; oEðwÞ=owNÞ:

Lemma 1 [4] Let EðwÞ denote the error function defined

by formula ð1Þ, then for i ¼ 0; 1; � � � ; n; j ¼ 1; 2; � � � ; p; q ¼
1; 2; EðwÞ is almost everywhere differentiable in R

N , and its

partial derivate formula oE=ou
q
i ðjÞ; oE=ov

q
i ðjÞ; oE=ohq

i ðjÞ
can exist. (Detailed expressions of several partial derivative

can be found.(see [4]))

4 GA-BP hybrid algorithm

An original BP algorithm is one of the common learning

algorithms in neural networks, and it is not only simple and

easy to implement, but also has a strong local search

ability. However, BP algorithm has slower convergence

speed and is easy to fall into minimum. For example, when

there are many extreme points in solution space, and the

initial parameters are not appropriate, BP algorithm can be

easy to fall into local convergence point to result in a bad

situation surely. In addition, a GA algorithm is a global

optimization algorithm. It combines natural selection in

biology with population evolution. The GA algorithm can

code parameters into a space of the individual, and it also

can select the optimal individual in groups by genetic

manipulation, then decode the optimal individual to restore

parameters to achieve optimization. But a traditional GA

algorithm’s iterative process is based on the same original

group, so it maybe can’t select the optimal gene in the

original group. Hence, the traditional GA algorithm can

search for the sub-optimal solution, sometimes it happens

‘‘inbreeding’’ phenomenon (see [10–12]).

Accordingly, this paper combines the advantages of BP

and GA algorithm, and proposes a GA-BP hybrid algo-

rithm based on parameters optimization for polygonal FNN

(see Fig. 3).

From Fig. 3, with GA and BP interacting each other, we

can see that many parameters can be optimized by BP
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algorithm (see [13, 14]). In addition, according to gradient

vector rEðwÞ from the partial derivative formula of

Lemma 1, we can design the GA-BP hybrid algorithm

based on polygonal FNN as follows.

Algorithm 1 (BP algorithm part): Based on polygonal

FNN, we improve the original BP algorithm to make

arithmetics of its neurons meet extensive operations of

polygonal fuzzy numbers. At the same time, we can intro-

duce dynamic learning constant and momentum constant to

accelerate searching rate. Then, parameters of the network

can be optimized to design the following algorithm.

Step 1. For j ¼ 1; 2; � � � ; p, let connection weights ~Uj½t1�,
~Vj½t1� and threshold ~Hj½t1� 2 Ft n

0 ðRþÞ denote

~Uj½t1� ¼ ðu1
0ðjÞ½t1�; u1

1ðjÞ½t1�; � � � ; u1
nðjÞ½t1�; u2

nðjÞ½t1�; � � � ;
u2

1ðjÞ½t1�; u2
0ðjÞ½t1�Þ;

~Vj½t1� ¼ ðv1
0ðjÞ½t1�; v1

1ðjÞ½t1�; � � � ; v1
nðjÞ½t1�; v2

nðjÞ½t1�; � � � ;
v2

1ðjÞ½t1�; v2
0ðjÞ½t1�Þ;

~Hj½t1� ¼ ðh1
0ðjÞ½t1�; h1

1ðjÞ½t1�; � � � ; h1
nðjÞ½t1�; h2

nðjÞ½t1�; � � � ;
h2

1ðjÞ½t1�; h2
0ðjÞ½t1�Þ:

We make the number of iteration step t1 ¼ 0, and randomly

select initial values ~Uj½0�; ~Vj½0�; ~Hj½0� ðj ¼ 1; 2; � � � ; pÞ, and

for given error accuracy e [ 0:

Step 2. For l ¼ 1; 2; � � � ; L; j ¼ 1; 2; � � � ; p; i ¼ 0; 1; � � � ;
n; q ¼ 1; 2, according to Lemma 1, we calculate the partial

derivatives oE=ou
q
i ðjÞ; oE=ov

q
i ðjÞ; oE=ohq

i ðjÞ, where the

iterative formula of the connection weights’ component

u
q
i ðjÞ; v

q
i ðjÞ and threshold’s component hq

i ðjÞ can be deno-

ted as

u
q
i ðjÞ½t þ 1� ¼ u

q
i ðjÞ½t� þ g � oE

ou
q
i ðjÞ½t�

þ a � Du
q
i ðjÞ½t�;

v
q
i ðjÞ½t þ 1� ¼ v

q
i ðjÞ½t� þ g � oE

ov
q
i ðjÞ½t�

þ a � Dv
q
i ðjÞ½t�;

hq
i ðjÞ½t þ 1� ¼ hq

i ðjÞ½t� þ g � oE

ohq
i ðjÞ½t�

þ a � Dhq
i ðjÞ½t�:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

where differentials Du
q
i ðjÞ½t1� ¼ u

q
i ðjÞ½t1� � u

q
i ðjÞ½t1 � 1�;

Dv
q
i ðjÞ ½t1� ¼ v

q
i ðjÞ½t1� � v

q
i ðjÞ ½t1 � 1�; Dhq

i ðjÞ½t1� ¼ hq
i ðjÞ

½t1� � hq
i ðjÞ½t1 � 1�, this g; a denote learning constant and

momentum constant.

Step 3. Through the above iteration formulas, we can

calculate components u
q
i ðjÞ½t1þ1�;vq

i ðjÞ½t1þ1�; hq
i ðjÞ ½t1þ1�

ðq ¼ 1; 2; i ¼ 0; 1; � � � ; n; j ¼ 1; 2; � � � ; pÞ: According to

incrementally reorder, the new order relation of polygonal

fuzzy numbers are obtained as follows:

u001 ðjÞ½t1 þ 1� � u011 ðjÞ½t1 þ 1� � � � � � u01n ðjÞ½t1 þ 1�
� u02n ðjÞ½t1 þ 1� � � � � � u021 ðjÞ½t1 þ 1� � u020 ðjÞ½t1 þ 1�;

v010 ðjÞ½t1 þ 1� � v011 ðjÞ½t1 þ 1� � � � � � v01n ðjÞ½t1 þ 1�
� v02n ðjÞ½t1 þ 1� � � � � � v021 ðjÞ½t1 þ 1� � v020 ðjÞ½t1 þ 1�;

h010 ðjÞ½t1 þ 1� � h011 ðjÞ½t1 þ 1� � � � � � h01n ðjÞ½t1 þ 1�
� h02n ðjÞ½t1 þ 1� � � � � � h021 ðjÞ½t1 þ 1� � h020 ðjÞ½t1 þ 1�:

Step 4. For e [ 0 and l ¼ 1; 2; � � � ; L, whether Dð~YðlÞ;
~OðlÞÞ\e: If they fulfill, then output ~Uj½t1�; ~Vj½t1�;
~Hj½t1� ðj ¼ 1; 2; � � � ; pÞ and ~OðlÞ ðl ¼ 1; 2; � � � ; LÞ; other-

wise, let t1 ¼ t1 þ 1, and turn to Algorithm 2.

Note 1. According to [15–17], based on extensive

operations of polygonal fuzzy numbers, we can improve

GA 
BP 

Output N

Input 

Calculate partial derivatives 

Iteration and sequence 

Y  Suitable error? 

Determine an initial group 

Coding 

Calculate fitness 

Inheriting to 
new group 

Decoding to select 
optimal parameters 

Y 

Sequence 

N 

 Order’s right? 

 Optimal fitness? N 

Fig. 3 Schematic diagram of

GA-BP hybrid algorithm
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learning constant g and momentum constant a in Step 3 to

make them become functions about iteration step t1: Let

g ¼ g½t1� ¼
q0 � Eðw ½t1�Þ
rEðw ½t1�Þk k2

;

a ¼ a½t1� ¼
DEðw ½t1�Þj j

Pt1�1
k¼1 DEðw ½k�Þj j

;

where, DEðw ½t1�Þ ¼ Eðw ½t1�Þ � Eðw ½t1 � 1�Þ; w ½t1� denote

the parameter’s vector of t1 step. Clearly, when t1 ¼ 0,

Eðw ½0�Þ is usually a large number, i.e. Eðw ½0�Þ ¼ 100. And

q0is a small constant, i.e. 0:01.rEðw ½t1�Þ can be denoted as

gradient vector of E in step t1, so we can get that

rEðw½t1�Þ ¼ ðoEðwÞ=ow1; oEðwÞ=ow2; . . .; oEðwÞ=owNÞ:

Algorithm 2 (GA algorithm part): Based on polygonal

FNN, we can use network’s parameters as an initial group

of GA algorithm. The original single group can be denoted

as multiple groups, and we can also adjust crossover and

mutation probability dynamically. This improved GA

algorithm is not only easy to combine with BP algorithm,

but also avoids the above disadvantages. And it can search

for the global optimal solution to optimize parameters

better than the traditional GA algorithm.

Step 1. Given searching accuracy c [ 0, and the number

of iteration step t2 ¼ 0, for j ¼ 1; 2; � � � ; p, let

aj½t2� ¼ min
0� i � n; q¼1;2

u
q
i ðjÞ½t1�

ajþp½t2� ¼ min
0� i � n; q¼1;2

v
q
i ðjÞ½t1�

ajþ2p½t2� ¼ min
0� i � n; q¼1;2

hq
i ðjÞ½t1�

;

8

>

>

>

<

>

>

>

:

bj½t2� ¼ max
0� i � n; q¼1;2

u
q
i ðjÞ½t1�

bjþp½t2� ¼ max
0� i � n; q¼1;2

v
q
i ðjÞ½t1�

bjþ2p½t2� ¼ max
0� i � n; q¼1;2

hq
i ðjÞ½t1�

8

>

>

>

<

>

>

>

:

;

Step 2. For eachj ¼ 1; 2; � � � ; 3p, let each parameter’s

vector of binary string length denote lj ¼ log2ððaj½t2�
�bj½t2�Þ=cÞ In addition, l denotes a group’s gene pool of

binary string length, i.e. l ¼ maxfl1; l2; . . .; l3pg. According

to (2), we let w ½t2� ¼ ðw1½t2�;w2½t2�; . . .;wN ½t2�Þ, and for all

i ¼ 1; 2; . . .;N, and approximately, each parameter’s com-

ponent can be expressed as a binary number bi½t2� 2
-nnðwi½t2� ! bi½t2�Þ.

Step 3. Based on Algorithm 1, we randomly generate m0

groups of N individuals. (Total of groups expands as m0:)

To calculate easily, we introduce fitness function JðwÞ ¼
1=ð1þ EðwÞÞ, and for biðkÞ½t2�ði ¼ 1; 2; . . .;N;

k ¼ 1; 2; . . .;m0Þ, decode to transform w0ðkÞ ½t2� ¼ ðw01ðkÞ
½t2�;w02ðkÞ½t2�; . . .;w0NðkÞ½t2�Þ, then calculate Jðw0ðkÞ½t2�Þ:

Step 4. According to the roulette wheel selection (see

[9]), for k ¼ 1; 2; . . .;m0, let survival probability of each

individual biðkÞ½t2� denote pk ¼ Jðw0ðkÞ½t2�Þ=
Pm0

k0¼1

Jðw0ðk0Þ½t2�Þ: Let single-point crossover operator

p : -2
nn ! -2

nn, randomly select two-to-two individuals

ðbiðk1Þ½t2�; biðk2Þ½t2�Þ from m0 groups, then based on

crossover probability pðbiðk1Þ½t2�; biðk2Þ½t2�Þ, we can get

two new individuals ðbiðk
0
1Þ½t2 þ 1�; biðk

0
2Þ½t2 þ 1�Þ: In

addition, the group of new individuals can be denoted as

b0iðkÞ½t2 þ 1�ði ¼ 1; 2; . . .;N; k ¼ 1; 2; . . .;m0Þ:
Step 5. For all i ¼ 1; 2; . . .;N; k ¼ 1; 2; . . .;m0, decode

component b0iðkÞ½t2�, then transform w0ðkÞ½t2 þ 1� ¼
ðw01ðkÞ½t2 þ 1�; w02ðkÞ½t2 þ 1�; . . .;w0NðkÞ½t2 þ 1�Þ, so we

need to recalculate Jðw0ðkÞ½t2 þ 1�Þ, and let

wbest½t2 þ 1� ¼ maxfJðw0ðkÞ½t2 þ 1�Þ j k ¼ 1; 2; . . .;m0g:

Step 6. Judge k ¼ k0, for each i ¼ 0; 1; 2; . . .; n;

j ¼ 1; 2; . . .; p, whether wbest½t2 þ 1� satisfies the following

formula.

w
01
i ðjÞðk0Þ½t2 þ 1� �w

01
iþ1ðjÞðk0Þ½t2 þ 1� �w

02
iþ1ðjÞðk0Þ½t2

þ 1� �w
02
i ðjÞðk0Þ½t2 þ 1�:

If the above expression is established, then turn to step

7; otherwise, for all j ¼ 1; 2; . . .; p, sort with selection

method from small to big, and turn to step 7.

Step 7. Judge whether Jðw0ðk0Þ½t2 þ 1�Þ � Jðw0ðk0Þ½t2�Þ.
If they fulfill, let t1 ¼ t1 þ 1, and turn to step 2 in Algo-

rithm 1; otherwise, let t2 ¼ t2 þ 1, and turn to step 1 in

Algorithm 2.

Note 2. The problem in this paper is a discrete optimi-

zation problem, so in the section of GA algorithm, we can use

the binary to represent each individual’s gene. This method

can make encoding and decoding operations easy, and sim-

plify crossover and mutation evolutionary processes.

Note 3. In Algorithm 2, to maintain the diversity of

population and parameters optimization, and prevent pre-

mature phenomenon, we can use dynamic crossover and

mutation probability. Let the number of evolution step

k¼ 100, for k ¼ 1; 2; . . .; m0, and crossover probability

denotes nk½t2�, mutation probability denotes fk½t2�, then

their formulas are that

nk½t2� ¼
nmax

1þt2=k
; nk½t2�[ nmin

nmin; nk½t2� � nmin

;

�

fk½t2� ¼
fmax � e�lt2=k; fk½t2�[ fmin

fmin; fk½t2� � fmin

�

:

Generally, crossover probability nk½t2� is taken values in

0.4–0.99, and mutation probability fk½t2� is taken values in

0.001–0.1. So we can let minimum of crossover probability

nmin ¼ 0:4, maximum of crossover probability nmax ¼
0:99, minimum of mutation probability fmin ¼ 0:001, and

maximum of mutation probability fmax ¼ 0:1, and l ¼ 0:1:

Note 4.The decoding process in step 3 and step 5 of

Algorithm 2 is the following process. Firstly, we can cal-

culate the decimal number diðjÞ based on the corresponding
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binary number. Then, according to the following formula,

we can get the actual network’s parameters wiðjÞ½t2� :
wiðjÞ½t2� ¼
diðjÞ � c0 þ aj½t2� ði ¼ 1; 2; . . .; 2nþ 2; j ¼ 1; 2; . . .; pÞ,
where c0 denotes actual searching accuracy after encoding,

and the computing formula of c0 is that

c0 ¼ ðbj½t2� � aj½t2�Þ=ð2l � 1Þ:

5 A simulation example

To discuss parameters optimization’s influence of polygo-

nal FNN based on a GA-BP hybrid algorithm, this paper

can apply the optimization to the simulation model of

boiler drum water level control (see [18, 19]). We can see

the structure of model system as follows (see Fig. 4).

Generally, boiler drum water level control model can be

expressed as GðsÞ ¼ k=sðTsþ 1Þ, where s denotes level, k

denotes rate of water level, and T denotes time (see [20,

21]). According to the actual parameters of the boiler drum

water level, the transfer function of the water flow about

water level can be denoted as GðsÞ ¼ 0:0037
�

ð30s2 þsÞ:
Based on a SISO network, traditional PID controller can be

denoted as u½t� ¼ K � Dh½t� þ C: In fact, when a boiler is

working, the rating of water level must be maintained

between �0:08 and 0:08 m: So, to the error of water level

Dh, the range should be ½�0:08 m;þ0:08 m�: This paper

takes the interval ½�3; 3� as range of the level’s error Dh

and the direct voltage u, then the coefficient

K ¼ 3=0:08 ¼ 37:5:

Then we can design the controller of polygonal FNN,

and the number of fuzzy inference rules L ¼ 7: Antecedent

polygonal number ~XðlÞ can be denoted as water level’s

error, and consequent polygonal number ~OðlÞ can be

denoted as direct voltage. We can use the single–input–

single–output relationship as the above polygonal numbers,

then we can get fuzzy pattern pairs of polygonal FNN

ð ~XðlÞ; ~OðlÞÞ; l ¼ 1; 2; . . .; 7: To simplify, let n ¼ 4, and

randomly select actual input ~XðlÞ and expected output ~OðlÞ

corresponding to 4-polygonal fuzzy pattern pairs (see

Tables 1, 2).

From the above Tables 1, 2 showed two 4-polygonal

fuzzy pattern pairs, we can draw the membership func-

tions’ curves of the actual input ~XðlÞ and expected output
~OðlÞ ðl ¼ 1; 2; . . .; 7Þ with Mathematica software in Figs. 5,

6.

We can apply the original BP algorithm, the traditional

GA algorithm and the GA-BP hybrid algorithm to

Fig. 4 Structure of boiler drums water level control system

Table 1 Trained 4-polygonal fuzzy pattern pairs

l Actual input ~XðlÞ

l ¼ 1 (-3.00, -3.00, -3.00, -3.00, -3.00, -2.85, -2.70, -2.60,

-2.50, -2.35)

l ¼ 2 (-2.65, -2.50, -2.40, -2.30, -2.15, -1.85, -1.70, -1.60,

-1.50, -1.35)

l ¼ 3 (-1.65, -1.50, -1.40, -1.30, -1.15, -0.85, -0.70, -0.60,

-0.50, -0.35)

l ¼ 4 (-0.65, -0.50, -0.40, -0.30, -0.15, 0.15, 0.30, 0.40, 0.50,

0.65)

l ¼ 5 (0.35, 0.50, 0.60, 0.70, 0.85, 1.15, 1.30, 1.40, 1.50, 1.65)

l ¼ 6 (1.65, 1.50, 1.60, 1.70, 1.85, 2.15, 2.30, 2.40, 2.50, 2.65)

l ¼ 7 (2.65, 2.50, 2.60, 2.70, 2.85, 3.00, 3.00, 3.00, 3.00, 3.00)

Table 2 Trained 4-polygonal fuzzy pattern pairs

l Expected output ~OðlÞ

l ¼ 1 (-3.00, -3.00, -3.00, -3.00, -3.00, -2.90, -2.85, -2.70,

-2.65, -2.40)

l ¼ 2 (-2.60, -2.35, -2.30, -2.15, -2.10, -1.90, -1.85, -1.70,

-1.65, -1.40)

l ¼ 3 (-1.60, -1.35, -1.30, -1.15, -1.10, -0.90, -0.85, -0.70,

-0.65, -0.40)

l ¼ 4 (-0.60, -0.35, -0.30, -0.15, -0.10, 0.10, 0.15, 0.30, 0.35,

0.60)

l ¼ 5 (0.40, 0.65, 0.70, 0.85, 0.90, 1.10, 1.15, 1.30, 1.35, 1.60)

l ¼ 6 (1.40, 1.65, 1.70, 1.85, 1.90, 2.10, 2.15, 2.30, 2.35, 2.60)

l ¼ 7 (2.40, 2.65, 2.70, 2.85, 2.90, 3.00, 3.00, 3.00, 3.00, 3.00)
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parameters optimization based on polygonal FNN. Let

transfer function rðxÞ ¼ 0; x\0; rðxÞ ¼ x=ð1þ x2Þ; x� 0,

and error accuracy e ¼ 10�3, searching accuracy c ¼ 10�6,

total of groups m0 ¼ 40, where the number of hidden layers

is 14. If error function EðwÞ satisfies the condition or the

algorithm’s iteration is stopped, we can get the following

optimization results (see Table 3).

From Table 3, we can see that the GA-BP hybrid

algorithm can reduce the number of iterations to 174, and

greatly reduce the number of local minimum. This algo-

rithm doesn’t only overcome slow convergence of the

original BP algorithm which is easy to fall into local

minimum, but also enhances the ability of the GA algo-

rithm’s global searching to improve the rate of polygonal

FNN’s parameters optimization. The optimized parameters

of the above three algorithms are applied to polygonal

FNN’s controller in the boiler drum water level control

system, and we can get the system’s simulation results by

comparing PID controller (see Fig. 7).

Clearly, from Fig. 7, we can get that the system of the

simulation curve’s amplitude is small, and the system

responses fast, control accuracy is high, and it has the best

optimization result by parameters optimization of the GA-

BP hybrid algorithm based on the polygonal FNN’s con-

troller. In addition, comparing with the original BP and the

traditional GA algorithm, parameters optimization is

improved, and reduces the system’s overshoot and

responding time greatly by the GA-BP hybrid algorithm.

Then the system can be adjusted to a steady state in short

period of time, and also improved its stability. The result

shows that parameters optimization of the GA-BP hybrid

algorithm for polygonal FNN is better than others. And the

optimization doesn’t only get rid of the dependence of the

original BP algorithm’s initial points and local conver-

gence, but also overcomes the random and probabilistic

problem of the traditional GA algorithm. Therefore, the

optimization can lay the foundation to study the good

performance of polygonal FNN in the future.

( )X l

3 2 1 1 2 3
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Fig. 5 Antecedent 4-polygonal fuzzy numbers

( )O l  
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Fig. 6 Consequent 2-polygonal fuzzy numbers
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6 Conclusion

In this article, based on the expansive operations of

polygonal fuzzy numbers, we combine the BP algorithm

with the GA algorithm, and design a GA-BP hybrid

learning algorithm for polygonal FNN. Finally, we prove

the effectiveness of the GA-BP hybrid algorithm by sim-

ulation examples. In fact, because the algorithm is com-

plex, it results in its convergence’s time to be slightly

longer than the BP algorithm. In addition, we don’t add the

other convergence criteria to solve the global optimal

value, and the GA algorithm has blindness and probabi-

listic problem. Hence, the algorithm maybe doesn’t reach

the optimal solution, but just approximate the optimal

value. So how to design simple and practical algorithm for

polygonal FNN is a further research. For example, join

A-G criteria of the dynamic convergence condition to solve

the global optimal value. In addition, it is worth studying

further to improve the parameters’ iteration formula of the

BP algorithm appropriately.
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Table 3 Comparison of parameters optimization results among three

algorithms

Algorithm Iterations Convergence Number of local minimum

BP 532 392 s 9

GA 403 565 s 2

GA-BP 174 430 s 1

Fig. 7 The simulation curve of boiler drum water level control

system
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