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Abstract In this paper, a class of uncertain chaotic sys-

tems preceded by unknown backlash nonlinearity is inves-

tigated. Combining backstepping technique with fuzzy

neural network identifying, an adaptive backstepping fuzzy

neural controller (ABFNC) for uncertain chaotic systems

with unknown backlash is proposed. The proposed ABFNC

system is comprised of a fuzzy neural network identifier

(FNNI) and a robust controller. The FNNI is the principal

controller utilized for online estimation of the unknown

nonlinear function. The robust controller is used to attenu-

ate the effects of the approximation error so that the stability

and control performance of the closed-loop adaptive system

is achieved always. Finally, simulation results show that the

ABFNC can achieve favorable tracking performances.

Keywords Adaptation � Chaos control � Backlash

nonlinearity � Fuzzy neural network � Identifying

1 Introduction

The study of chaotic systems has been rapidly expanded

during the last two decades. Many fundamental

characteristics can be found in a chaotic system, such as

excessive sensitivity to initial conditions, broad spectrums

of Fourier Transform, and fractal properties of the motion

in phase space. Controlling chaotic systems has attracted a

great deal of attention within the engineering society, in

which different techniques have been proposed. For

instance, linear state space feedback [1], Lyapunov func-

tion methods [2], adaptive control [3], and bang–bang

control [4], among many others [5].

In recent years, adaptive control for uncertain nonlinear

systems has received much attention based on universal

function approximation, such as neural networks (NNs) or

fuzzy logic systems [6–13]. Also, the application of neural

networks and fuzzy logic controllers to chaotic systems has

been proposed [14–18], which appears to be quite

promising.

Recently, the concept of incorporation fuzzy logic into a

neural network has grown into a popular research topic

[19]. The integrated fuzzy neural network (FNN) system

possesses the merits of both fuzzy systems [20] and neural

networks [21]. In this way, one can bring the low-level

learning and computational power of neural networks into

fuzzy systems and also high-level humanlike IF-THEN rule

thinking and reasoning of fuzzy systems into neural net-

works. Moreover, adaptive control schemes of chaotic

systems that incorporate the techniques of FNN have also

grown rapidly [22–24]. However, the results motivated

above in [1–24] did not consider the affection of unknown

backlash nonlinearity.

Backlash is one of the most important non-smooth

nonlinearities in a wide range of physical systems and

devices, such as biology optics, electro-magnetism,

mechanical actuators, electronic relay circuits and other

areas. The development of control techniques to mitigate

effects of unknown backlash has been studied for a long
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time. To handle with systems with unknown backlash,

several adaptive control schemes have recently been

proposed, see for examples [25–29]. In [26–28], an

adaptive inverse cascaded with the plant was employed

to cancel the effects of nonlinearity. In [25], a dynamic

backlash model is defined to pattern a backlash rather

than constructing an inverse model to mitigate the effects

of the backlash. However in [25], the term multiplying

the control and the uncertain parameters of the system

must be within known intervals and the ‘disturbance-

like’ term must be bounded by a known bound. Pro-

jection was used to handle the ‘disturbance-like’ term

and unknown parameters. System stability was estab-

lished and the tracking error was shown to converge to a

residual. In [29], the backstepping adaptive control

schemes for uncertain nonlinear systems with unknown

backlash nonlinearity were proposed. However, this

result in [29] required the nonlinear functions of systems

are known.

In this paper, an adaptive backstepping fuzzy neural

controller (ABFNC) is proposed for a class of uncertain

chaotic systems with unknown nonlinear functions and

backlash nonlinearity. The unknown nonlinear functions

are approximated by the FNN. In the design, the term

multiplying the control and the system parameters are not

assumed to be within known intervals. The bound of the

‘disturbance-like’ term is not required. To handle such a

term, an estimator is used to estimate its bound. Based on

the Lyapunov stability theory, the adaptive control law is

derived. The global stability of the chaotic system is

achieved. Finally, simulation results are presented to

demonstrate the effectiveness of the proposed control

scheme.

2 Problem statement

The controlled system consists of a chaos system preceded

by a backlash-like hysteresis actuator, that is, the hysteresis

is present as an input of the chaos system. It is a chal-

lenging task of major practical interests to develop a con-

trol scheme for unknown backlash-like hysteresis. The

development of such a control scheme will now be

pursued.

A backlash-like hysteresis nonlinearity can be denoted

as an operator as follows:

uðtÞ ¼ PðvðtÞÞ; ð1Þ

with vðtÞ as input and uðtÞ as output. The operator PðvðtÞÞ
will be discussed in detail in the next section. The uncertain

chaos system being preceded by the above hysteresis is

described in the canonical form

_x1 ¼ x2

_x2 ¼ x3

..

.

_xn ¼ f Xð Þ þ u tð Þ þ �dðtÞ

8
>>>>><

>>>>>:

; ð2Þ

where X ¼ x1; _x1; . . .; x
n�1ð Þ

1

h iT

¼ x1; x2; . . .; xn½ �T2 Rn is

the state vector, f Xð Þ is unknown nonlinear bounded

function, �d tð Þ denotes bounded external disturbances. The

control objective is to design a control law for vðtÞ in

Eq. (1), to force the uncertain chaotic system (2) state

vector to follow a specified desired trajectory, Xd ¼
xd; _xd; � � �½ x

ðn�1Þ
d �T, i.e., X ! Xd as t!1.

Remark: A class of chaos systems can be described by

the nonlinear system (2), such as Duffing chaotic system,

Van der Pol chaotic system, Jerk systems and so on.

3 Backlash-like hysteresis model and its properties

Traditionally, a backlash hysteresis nonlinearity can be

described by

uðtÞ ¼ PðvðtÞÞ

¼

cðvðtÞ � BÞ; if _vðtÞ[ 0 and uðtÞ ¼ cðvðtÞ � BÞ

cðvðtÞ þ BÞ; if _vðtÞ\0 and uðtÞ ¼ cðvðtÞ þ BÞ

uðt�Þ; otherwise

8
>><

>>:

;

ð3Þ

where c [ 0 is the slope of the lines and B [ 0 is the

backlash distance, uðt�Þis delay input. This mode is itself

discontinuous and may not be amenable to controller

design for the chaotic systems (2).

Instead of using the above model, in this paper we use a

continuous-time dynamic model to describe a class of

backlash-like hysteresis [25], as given by

du

dt
¼ a

dv

dt

�
�
�
�

�
�
�
� cv� uð Þ þ B1

dv

dt
; ð4Þ

where a[ 0 is the switch rate, B1 [ 0 is the backlash

distance, c [ 0 is the slope of the lines satisfying c [ B1.

Remark: This backlash-like hysteresis mode is reported

by Ref. [25], to read conveniently, we give the main results

that from Ref. [25].

Equation (4) can be solved explicitly for v piecewise

monotone,

u tð Þ ¼ cv tð Þ þ d1 vð Þ; ð5Þ

With d1 vð Þ ¼ u0 � cv0½ �e�a v�v0ð Þsign _vð Þ þ e�avsign _vð Þ R v

v0
B1½

�c�eansign _vð Þdn; for _v constant and u v0ð Þ ¼ u0. Analyzing
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Eq. (5), we see that it is composed of a line with the slop c,

together with a term d1 vð Þ. For d1 vð Þ, it can be easily

shown that if u v; v0; u0ð Þ is the solution of Eq. (5) with

initial values v0; u0ð Þ, then, if _v [ 0ð _v\0Þ and

v! þ1 �1ð Þ, one has

lim
v!1

d1 vð Þ ¼ lim
v!1

u v; v0; u0ð Þ � g vð Þ½ � ¼ � c� B1

a
; ð6Þ

lim
v!�1

d1 vð Þ ¼ lim
v!�1

u v; v0; u0ð Þ � g vð Þ½ � ¼ c� B1

a
; ð7Þ

where gðvÞ ¼ cvðtÞ. It should be noted that the above

convergence is exponential at the rate of a. Solution (5) and

properties (6) and (7) show that uðtÞ eventually satisfied the

first and the second conditions of (3). Furthermore, setting

_v ¼ 0 results in _u ¼ 0 which satisfied the last condition of

(3). This implies that the dynamic Equation (4) can be used

to model a class of backlash-like hysteresis and is an

approximation of backlash hysteresis (3).Let us use an

example for specified initial data to show the switching

mechanism for the dynamic model (4) when _v changes

direction. We note that when _v [ 0 on uð0Þ ¼ 0 and

vð0Þ ¼ 0, Eq. (5) gives

uðtÞ ¼ cvðtÞ � c� B1

a
1� e�avðtÞ
� �

for vðtÞ� 0 and _v [ 0

: ð8Þ

Let vs be a positive value of v and consider now a

specimen such that v is increasing along the initial curve

(8) until a time ts at which v reaches the level vs. Suppose

now that from the time ts, the signal v is decreased. In this

case, u is given by

uðtÞ ¼ cvðtÞ
þ c� B1

a
1� 2e�avs � e�2avs

� �
eavðtÞ

h i
for _v\0;

ð9Þ

where v\vs. Eqs. (8) and (9) indeed show that u switches

exponentially from the line cvðtÞ � ððc� B1Þ=aÞ to cvðtÞ þ
ððc� B1Þ=aÞ to generate backlash-like hysteresis curves.

To confirm the above analysis, the solutions of Eq. (4)

can be obtained by numerical integration with v as the

independent variable. Figures 1, 2 shows that model (4)

indeed generates backlash-like hysteresis curves, which

confirms the above analysis. The details are described in

the section of simulation studies. It should be mentioned

that the parameter a determines the rate at which uðtÞ
switches between �ððc� B1Þ=aÞ and ððc� B1Þ=aÞ. The

larger the parameter a is, the faster the transition in uðtÞ is

going to be. However, the backlash distance is determined

by ððc� B1Þ=aÞ and the parameter must satisfy c [ B1.

Therefore, the parameter a cannot be chosen freely. A

compromise should be made in choosing a suitable

parameter set a; c;B1f g to model the required shape of

backlash-like hysteresis.

4 Fuzzy neural network

According to the method of input space partition, fuzzy

neural networks are divided into two categories: grid-based

partitioning and clustering-based partitioning [30]. In this

paper, the grid-based partitioning FNN is used to identify

the unknown nonlinear function f Xð Þ. The structure of the

FNN has four layers of neural network: the input, the

Fig. 1 Hysteresis curves given by (4) with a ¼ 1, c ¼ 3:1635, and

B1 ¼ 0:345 for v tð Þ ¼ ksin 2:3tð Þ with k ¼ 2:5; 3:5; 4:5; 5:5; and 6:5

Fig. 2 Fuzzy partitions of two-dimensional input space. a Grid-type

partitioning. b If-then rules based on grid-type partitioning. c Clus-

tering-type partitioning. d If-then rules based on clustering-type

partitioning
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membership function, the rule and the output layers. The

interactions for those layers are given as follows.

Layer 1: For every node i, in this layer, the net input and

the net output are represented as

net1
i ¼ x1

i ; ð10Þ

y1
i ¼ f 1

i net1
i

� �
¼ net1

i ði ¼ 1; 2; . . .;LÞ; ð11Þ

where x1
i represents the ith input to the node of layer 1, and

L is the total number of input variables.

Layer 2: In this layer, each node performs a membership

function and acts as a unit of memory. The Gaussian

function is adopted as the membership function. For the ith

input, the corresponding net input and output of the jth

node can be expressed as

net2
ij ¼ �

x2
i � m2

ij

� �2

r2
ij

� �2
; ð12Þ

y2
ij ¼ f 2

ij net2
ij

� �
¼ exp net2

ij

� �
ðj ¼ 1; 2; . . .;MÞ; ð13Þ

where m2
ij is the mean, r2

ij is the standard deviation and M is

the total number of membership functions with respect to

the respective input node.

Layer 3: The links in this layer are used to implement

the antecedent matching. The matching operation or the

fuzzy AND aggregation operation is chosen as the simple

PRODUCT operation instead of the MIN operation. Then,

for the kth rule node

net3
k ¼ x3

i � x3
j ; ð14Þ

y3
k ¼ f 3

k net3
k

� �
¼ net3

kP
k net3

k

ðk ¼ 1; 2; . . .;NÞ; ð15Þ

where x3
i and x3

j represent the i, jth input to the kth node of

layer 3 respectively, and N is the total number of fuzzy

rules.

Layer 4: Since the overall net output is a linear com-

bination of the consequences of all rules, the net input and

output are simply defined by

net4
o ¼

X

k

w4
kx4

k ; ð16Þ

y4
o ¼ f 4

o net4
o

� �
¼ net4

o; ð17Þ

where w4
k is the output action strength of the output asso-

ciated with the kth rule, x4
k represents the kth input to the

node of layer 4 and y4
o is the output of SFNN.

According to the gradient descent method [31], we will

give the learning law for each layer in the feedbackward

direction. The derivation is the same as that of the back-

propagation learning law. To describe the algorithm more

clearly, we consider two inputs and one output.

Layer 4: If the cost function to be minimized is defined

as

E ¼ 1

2
ðd � y4

oÞ
2; ð18Þ

where d is the desired output and y4
o is the current output of

FNN, the error term to be propagated is given by

d4 ¼ d � y4
o: ð19Þ

Then, the weight w4
k is updated by the amount

Dw4
k ¼ d4y3

k ðk ¼ 1; . . .;NÞ; ð20Þ

where y3
k denote the output of layer 3, and N is the total

number of fuzzy rules.

Layer 3: Since the weights in this layer are unity, none

of them is to be modified. Only the error term needs to be

calculated and propagated.

d3
k ¼ d4w4

k ðk ¼ 1; . . .;NÞ: ð21Þ

Layer 2: The multiplication operation is done in this

layer. The adaptive rule for mij and rij are as follows. First,

the error term is computed,

d2
1j ¼

XM

i¼1

d3
ky2

2i

 !

y2
1j ðj ¼ 1; . . .;MÞ

d2
2j ¼

XM

i¼1

d3
ky2

1i

 !

y2
2j ðj ¼ 1; . . .;MÞ

8
>>>>><

>>>>>:

; ð22Þ

where the subscript k denotes the rule node in connection

with the ith node in Layer 2, y2
1 denote the membership of

first input, and y2
2 denote the membership of second input.

Then, the adaptive rule of mij is

Dmij ¼ d2
ij

2ðy1
i � mijÞ
r2

ij

ði ¼ 1; 2; j ¼ 1; . . .;MÞ; ð23Þ

and the adaptive rule of rij is

Drij ¼ d2
ij

2ðy1
i � mijÞ2

r3
ij

ði ¼ 1; 2; j ¼ 1; . . .;MÞ: ð24Þ

Remark: This fuzzy neural network is reported by Refs.

[30, 31]. The interesting readers are referred to Refs. [30,

31] for a more detailed explanation of the network.

5 The ABFNC design and stability analysis

From the solution structure (5) of the model (4) we see that

the signal uðtÞ is expressed as a linear function of input

signal vðtÞ plus a bounded term. Using the solution

expression (5), system (2) becomes
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_x1 ¼ x2

_x2 ¼ x3

..

.

_xn ¼ f Xð Þ þ cv tð Þ þ dðtÞ

8
>>>>><

>>>>>:

; ð25Þ

where d tð Þ ¼ d1 v tð Þð Þ þ �d tð Þ. The effect of d tð Þ is due to

both external disturbances and d1 v tð Þð Þ. We call d tð Þ a

‘disturbance-like’ term for simplicity of presentation. The

uncertain parameter c is not assumed inside known inter-

vals, also the bound D for d tð Þ is not assumed to be known

and it will be estimated by our adaptive controllers. Fur-

thermore, fuzzy neural adaptive control techniques can be

utilized for the controller design. In this section, we shall

utilize backstepping technique with fuzzy neural network

identifying, and design the adaptive backstepping fuzzy

neural controller (ABFNC) for uncertain chaotic systems

with unknown backlash.

For the development of control laws, the following

assumption is made.

Assumption 1 The desired trajectory Xd tð Þ and its nth

order derivatives are known and bounded.

Before presenting the adaptive fuzzy neural controller

design using the backstepping technique to achieve the

desired control objectives, the following change of coor-

dinates is made.

e1 ¼ x1 � xd; ð26Þ

ei ¼ xi � x
i�1ð Þ

d � bi�1; i ¼ 2; 3; . . .; n; ð27Þ

where bi�1 is the virtual control at the ith step and will be

determined in later discussion. To illustrate the backstep-

ping procedures, only the last step of the design, i.e. step

n below, is elaborated in details.

Step 1: For i ¼ 2, it follows from Eqs. (25), (26) and

(27) that

_e1 ¼ e2 þ b1: ð28Þ

We design the virtual control law b1 as

b1 ¼ �a1e1; ð29Þ

where a1 is a positive design parameter. From Eqs. (28)

and (29) we have

e1 _e1 ¼ �a1e2
1 þ e1e2: ð30Þ

Step i (i = 2,…,n - 1): Choose virtual control law bi as

bi ¼ �aiei � ei�1 þ _bi�1 x1; . . .; xi�1; xd; . . .; x
i�1ð Þ

d

� �
;

ð31Þ

where ai; i ¼ 2; . . .; n� 1 are positive design parameters.

From Eqs. (27) and (31) we obtain

ei _ei ¼ �ei�1ei � aie
2
i þ eieiþ1: ð32Þ

Step n: From Eqs. (25) and (27) we obtain

_en ¼ cv tð Þ þ f Xð Þ þ d tð Þ � x
nð Þ

d � _bn�1: ð33Þ

In this paper, we use FNN to identify the unknown

function f Xð Þ. Now consider the following optimal

parameter vectors

W4� ¼ arg min sup f̂ XjŴ4
� �

� f Xð Þ
�
�

�
�

� �
; ð34Þ

where nðXÞ denote the layer 4 input vector, W4 is the link

weight vector between layer 3 and layer 4; f̂ XjŴ4
� �

¼
ðŴ4)Tn(X) is the output of FNN, which is used to estimate

the unknown nonlinear function f Xð Þ in system (25).

Defining the minimum approximation error as

e ¼ e X;W4
� �

¼ f̂ XjW4�� �
� f Xð Þ; ð35Þ

and ej j � �e, where �e is positive constant.

We design the adaptive fuzzy neural controller v as

follows:

v ¼ Ĉ�v; ð36Þ

with�v ¼ �anen � en�1 � ðŴ4ÞTn Xð Þ � sign enð ÞD̂þ x
nð Þ

d þ
_bn�1 þ vs;where sign() denote signal function, vs ¼
�signðenÞ�e, the robust controller vs is used to attenuate

the effects of the approximation error so that the stability

and control performance of the closed-loop adaptive

system is achieved always. The parameter adaptive laws

are given by

_W4 ¼ n Xð Þen; ð37Þ
_̂

C ¼ �c�ven; ð38Þ
_̂D ¼ g enj j; ð39Þ

where an, c and g are three positive design parameters, Ĉ,

Ŵ4 and D̂ are estimates of 1=c, W4� and D. Let

~C ¼ C � Ĉ, ~W4 ¼ W4��Ŵ
4

and ~D ¼ D� D̂. Note that

cv tð Þ in Eq. (33) can be expressed as

cv ¼ cĈ�v ¼ �v� c ~C�v: ð40Þ

From Eqs. (33), (35), (37) and (40) we obtain

_en ¼ �anen � en�1 þ ( ~W4ÞTn Xð Þ � sign enð ÞD̂þ d tð Þ
� c ~C�vþ e� sign enð Þ�e ð41Þ

Let Lyapunov function as

V ¼
Xn

i¼1

1

2
e2

i þ
1

2
ð ~W4ÞT ~W4 þ c

2c
~C2 þ 1

2g
~D2 ð42Þ

Then the derivative of V along with Eqs. (25) and (36)-

(39) is given by
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_V ¼
Xn

i¼1

ei _ei þ ð ~W4ÞT_W4 þ c

c
~C _~C þ 1

g
~D _~D

¼ �
Xn

i¼1

aie
2
i þ ð ~W4ÞTn Xð Þen � enj jD̂þ d tð Þen � c ~C�ven

� ð ~W4ÞT_W4 � c

c
~C _̂

C � 1

g
~D _̂

D� ensign enð Þ�eþ ene

� �
Xn

i¼1

aie
2
i þ ð ~W4ÞT n Xð Þen �_W4

� �

� c

c
~C c�ven þ _̂

C
� �

þ 1

g
~D g enj j � _̂

D
� �

� enj j�eþ enj j�e

¼ �
Xn

i¼1

aie
2
i

;

ð43Þ

where we have used Eqs. (30), (32), (41) and end tð Þ� enj jD
to obtain Eq. (43).

We have the following stability theorem based on this

scheme.

Theorem 1 Consider the uncertain chaotic system (25)

satisfying Assumptions 1. With the application of controller

(36), the link weight of FNN update law (37) and param-

eter update laws (38) and (39), the following statements

hold:

(i) The resulting closed loop system is globally stable.(ii)

The asymptotic tracking is achieved, i.e. lim
t!1

X tð Þ½
�Xd tð Þ� ¼ 0.

Proof: From Eq. (43) we established that V is non-

increasing. Hence, ei; i ¼ 1; . . .; n, Ĉ, Ŵ4, D̂ are bounded.

By applying the LaSalle-Yoshizawa theorem to Eq. (43),

it further follows thatei tð Þ ! 0; i ¼ 1; . . .; n as t!1,

which implies that lim
t!1

X tð Þ � Xd tð Þ½ � ¼ 0. This proof

completed. h

The control scheme is shown in Fig. 3.

6 Simulation studies

In this section, we use the proposed ABFNC to control Van

der Pol chaotic system states X ¼ x1; x2½ � to follow Duffing

chaotic system states Xd ¼ xd1; xd2½ �. Duffing chaotic sys-

tem is given by

_xd1 ¼ xd2

_xd2 ¼ �0:15xd2 þ xd1 � ðxd1Þ3 þ 1:75 cos
2

3
t

	 

: ð44Þ

According to Eq. (25), Van der Pol chaotic system with

backlash is described as follows:

_x1 ¼ x2

_x2 ¼ �0:1ð1� x1Þx2 � x3
1 þ 0:3 cos tð Þ þ cv tð Þ þ d tð Þ

;

ð45Þ

where f Xð Þ ¼ �0:1ð1� x1Þx2 � x3
1 þ 0:3 cos tð Þ is

unknown, c ¼ 3:1635, B1 ¼ 0:345, and a ¼ 1.

In the simulation, the adaptive control laws (36)–(39)

were used, taking a1 ¼ a2 ¼ 1, c ¼ g ¼ 0:4, �e ¼ 0:05. The

initial values are chosen to Ĉ 0ð Þ ¼ 0:5, D̂ 0ð Þ ¼ 2,

X 0ð Þ ¼ 1; 1½ �, Y 0ð Þ ¼ 0:1; 0:1½ � and v 0ð Þ ¼ 0. In this paper,

we use a FNN to estimate the unknown function f ðXÞ. The

structure of FNN is 2-6-9-1, i.e. two nodes in layer 1, six

nodes in layer 2, nine nodes in layer 3, one node in layer 4.

The initial FNN parameters are chosen as W4 ¼ 0:6;½
- 3; 6:6; - 8; 3:8; 5:8; 6; - 7; 5:8026�, m1 ¼ - 0:6;½
- 0:58; - 0:5�, m2 ¼ ½1:9; 1:88; 2� r1 ¼ r2 ¼ 1; 1; 1½ �.

Here, W4 represent the link weigh vector, and m1 repre-

sents the mean vector of the Gaussian membership func-

tions of x1, and m2 represents the mean vector of the

Fig. 3 Block of diagram of ABFNC system

0 5 10 15 20 25 30 35 40
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x 1,x
d 1

t(sec)

x1

xd1

Fig. 4 Trajectories of x1, xd1
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Gaussian membership functions of x2;r1 represents the

variance vectors of the Gaussian membership functions of

x1, r2 represents the variance vectors of the Gaussian

membership functions of x2. The simulation results are

shown in Figs. 4, 5, 6, 7 and 8. From Figs 4 and 5, we can

see that X ! Xd completely. From Figs. 6 and 7, we can

see that the tracking errors are very small, and the identi-

fying errors are shown in Fig. 8. The effectiveness of

ABFNC scheme is demonstrated by the fact that the

tracking error is reduced to zero after transient process. To

further illustrate the effectiveness of ABFNC scheme, we

make illustration, and compare with FSMC scheme in Ref.

[16]. The tracking performance is shown in Fig. 9, and we

define average errors as AE ¼ e1j j þ e2j jð Þ=2. From Fig. 9,

we can see that the proposed ABFNC scheme is more

effectively than FSMC scheme.

7 Conclusions

In this paper, we have developed an ABFNC scheme for a

class of uncertain chaotic systems with unknown backlash

nonlinearity. The developed control system does not

require the model parameters with known intervals and the

knowledge on the bound of ‘disturbance-like’ term is not

required. In addition, the online tuning parameters include
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the weighting factors in the consequent part, and the means

and variances of the Gaussian membership functions in the

antecedent part of fuzzy implications.

Finally, this method has been applied to control Van der

Pol chaotic system states to track Duffing chaotic system

states. The computer simulation results show that the

ABFNC can perform successful control and achieved

desired performance.
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