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Abstract In this paper we propose the use of a hybrid PSO-

GA optimization method for automatic design of fuzzy logic

controllers (FLC) to minimize the steady state error of a

plant’s response. We test the optimal FLC obtained by the

hybrid PSO-GA method using benchmark control plants. The

bio-inspired and the evolutionary methods are used to find the

parameters of the membership functions of the FLC to obtain

the optimal controller. Simulation results are obtained to show

the feasibility of the proposed approach. A comparison is also

made among the proposed Hybrid PSO-GA, GA and PSO to

determine if there is a significant difference in the results.

Keywords Fuzzy logic controllers � Genetic algorithms �
Particle swarm optimization

1 Introduction

Optimization is a term used to refer to a branch of com-

putational science concerned with finding the ‘‘best’’

solution to a problem. Here, ‘‘best’’ refers to an acceptable

(or satisfactory) solution to a problem, which may be the

absolute best over a set of candidate solutions, or a good

alternative of the candidate solutions. The characteristics

and requirements of the problem determine whether the

overall best solution can be found [10]. Bio-inspired opti-

mization algorithms are search methods, where the goal is

to find a solution to an optimization problem, such that a

given objective function is optimized, possibly subject to a

set of constraints [10, 23–25, 30]. Some optimization

methods are based on populations of solutions [30]. Unlike

the classic methods of optimization, in this case, each

iteration of the algorithm maintains a set of solutions.

These methods are based on generating, selecting, com-

bining and replacing a set of solutions. Since they maintain

and they manipulate a set, instead of a unique solution

throughout the entire search process, they use more com-

puter time than other meta-heuristic methods. This fact can

be aggravated because the ‘‘convergence’’ of the popula-

tion requires a great number of iterations. For this reason a

concerted effort has been dedicated to obtaining methods

that are more aggressive and manage to obtain solutions of

quality in a nearer horizon.

This paper is concerned with bio-inspired optimization

methods, and in particular the hybrid PSO-GA approach

that is proposed. In this case, we combine each individual

method in order to obtain the best features to design an

optimal fuzzy logic controller (FLC) applied to the

benchmark problems. Better results are expected of the

hybrid PSO-GA method than those of traditional methods,

like GA and PSO, because of the mixing of the best

characteristics of both individual methods. We are also

comparing the proposed method with genetic algorithms

and particle swarm optimization used separately. The bio-

inspired methods are used to find the parameters of the
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membership functions to obtain the optimal fuzzy con-

troller to stabilize the plant, in particular for the Type-2

fuzzy controller, which is more difficult to design [21].

1.1 Related work

Up to date there are several research papers using genetic

algorithms and particle swarm optimization for different

optimization problems, like mathematical functions [1, 14,

32], fuzzy controllers [17, 33–35] control parameters [31],

the vehicle trajectories [22], scheduling problems [28] and

many more. However, in this paper we used the hybrid

PSO-GA approach to generate an optimal fuzzy logic

controller finding the best parameters of the membership

functions to control stable and unstable linear systems and

this is the difference between our method and the methods

of the following authors. For example, Valdez et al. [32]

uses fuzzy logic to integrate the results obtained by PSO

and GA applied to benchmark functions. Muhammad et al.

[27] proposed a hybrid method that optimizes the rule base

of the k-means method that is used to detect an impostor in

a call on the Smartphones. Marinakis et al. [22] proposed a

hybrid Genetic-PSO to help in the offspring of the indi-

viduals to be transmitted to all the population to get the

best solution that in this case was applied to vehicle rout-

ing. Niu et al. [28] proposed a hybrid PSO using genetic

operators inside the PSO to help to optimize the fuzzy

ranking numbers for job scheduling.

This paper is organized as follows: Section 2 presents

the theoretical basis and problem statement. Section 3

introduces the controller design where a Hybrid PSO-GA is

used to select the parameters of the membership functions

of the FLC, and the GA and PSO are also applied

for comparison purposes. Robustness properties of the

Fig. 1 Gaussian and triangular membership functions and Table 1

show the fuzzy rules

Table 1 Fuzzy rules of the FLC

Negative Zero Positive

Negative N N Z

Zero N Z P

Positive Z P P

Table 2 Parameters of the membership functions

b

a

b

a

a

b

c

Plant 1 Plant 2

MF

type

Point Min

value

Max

value

MF

type

Point Min

value

Max

value

Gauss a 0.3 0.6 Gauss a 1.8 2.8

b -1.2 -0.8 b -6 -4

Triang a -0.8 -0.3 Triang a -3 -0.5

b 0 0 b 0 0

c 0.3 0.8 c 0.5 3

Gauss a 0.3 0.6 Gauss a 1.8 2.8

b 0.8 1.2 b 4 6

Table 3 Results of the Type-1

FLC obtained with PSO for

Plant 1

Bold values indicate best result

No. Particle (swarm) Iterations C1 C2 Inertia PSO time exec Average error

1 200 70 0.4542 0.5052 0.9038 0:26:26 0.081179

2 200 70 0.9667 0.3883 0.8501 0:44:46 0.086795

3 200 70 0.183 0.8722 0.9289 0:09:23 0.087324

4 200 70 0.6798 0.7371 0.6119 0:54:22 0.089289

5 200 70 0.0016 0.8994 0.6983 0:45:59 0.090177

6 200 70 0.484 0.704 0.7194 0:49:16 0.092952

7 200 70 0.7046 0.9151 0.9988 0:05:59 0.09528

8 200 70 0.1344 0.3959 0.2534 0:58:29 0.096134

9 200 70 0.1223 0.5346 0.0681 0:57:48 0.103938

10 200 70 0.1589 0.0366 0.6223 1:04:45 0.109765
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closed-loop system are achieved with a fuzzy logic control

system using a Takagi–Sugeno model where the error and

the change of error, are considered as the linguistic vari-

ables. Section 4 provides a simulation study of the plants

using the controllers described in Sect. 3. Finally, Sect. 5

presents the conclusions.

2 Theoretical basis and problem statement

2.1 Particle swarm optimization (PSO)

PSO is a population based stochastic optimization tech-

nique developed by Eberhart and Kennedy [11], inspired

Fig. 2 a Input 1 and input 2

membership functions of the

Type-1 FLC, b particles

behavior of the PSO method and

c closed-loop response of Plant

1 with the optimized FLC
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by social behavior of bird flocking or fish schooling. PSO

shares many similarities with evolutionary computation

techniques, such as genetic algorithms (GA) [12]. The

system is initialized with a population of random solutions

and searches for optima by updating generations. However,

unlike the GA, the PSO has no evolution operators such as

Table 4 Results of the Type-2

FLC obtained by PSO for

Plant 1

Bold values indicate best result

No Particle (swarm) Iterations C1 C2 Inertia PSO time exec Average error

1 200 90 0.5149 0.3317 0.6808 7:05:20 0.08028

2 200 70 0.8149 0.9059 0.1706 12:44:19 0.08794

3 200 70 0.8129 0.8159 0.1906 10:52:09 0.08894

4 200 70 0.7646 0.9229 0.1096 9:50:45 0.12521

5 200 70 0.8168 0.9359 0.4806 11:05:43 0.1263

Fig. 3 a Input 1 and input 2

membership functions of the

Type-2 FLC, b particles

behavior of the PSO method and

c closed-loop response of Plant

1 with the optimized FLC
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crossover and mutation. In the PSO, the potential solutions,

called particles, fly through the problem space by following

the current optimum particles [5]. Each particle keeps track

of its coordinates in the problem space, which are associ-

ated with the best solution (fitness) it has achieved so far

(the fitness value is also stored). This value is called pbest.

Another ‘‘best’’ value that is tracked by the particle swarm

optimizer is the best value, obtained so far by any particle

in the neighbors of the particle. This location is called

lbest. When a particle takes all the population as its topo-

logical neighbors, the best value is a global best and is

called gbest [15].

The particle swarm optimization concept consists of, at

each time step, changing the velocity of (accelerating) each

particle toward its pbest and lbest locations (local version

of PSO). Acceleration is weighted by a random term, with

separate random numbers being generated for acceleration

toward pbest and lbest locations [5]. In the past several

years, PSO has been successfully applied in many research

and application areas. It has been demonstrated that PSO

gets better results in a faster, cheaper way compared with

other methods [16, 4, 36–38]. Another reason that PSO is

attractive is that there are few parameters to adjust. One

version, with slight variations, works well in a wide variety

of applications. Particle swarm optimization has been used

for problems across a wide range of applications, as well as

for the particular case of designing fuzzy controllers [16].

2.2 Genetic algorithms (GAs)

Genetic algorithms (GAs) are adaptive heuristic search

algorithms based on the evolutionary ideas of natural

selection and genetic processes [2]. The basic principles of

GAs were first proposed by John Holland in 1975, inspired

by the mechanism of natural selection where stronger

individuals are likely the winners in a competing envi-

ronment [3, 6, 8]. The GA assumes that the potential

solution to any problem is an individual and can be rep-

resented by a set of parameters. These parameters are

regarded as the genes of a chromosome and can be struc-

tured by a string of values in binary form. A positive value,

generally know as a fitness value, is used to reflect the

degree of ‘‘goodness’’ of the chromosome for solving the

problem, which is highly related with its objective value.

The GA works as follows:

1. Start with a randomly generated population of n

chromosomes (candidate solutions to a problem).

2. Calculate the fitness of each chromosome in the

population.

3. Repeat the following steps until n offspring have been

created:

a. Select a pair of parent chromosomes from the

current population, the probability of selection

being an increasing function of fitness. Selection is

done with replacement, meaning that the same

chromosome can be selected more than once to

become a parent.

b. With a particular probability (crossover rate),

perform crossover to the pair at a randomly

chosen point to a form two offspring.

c. Mutate the two offspring at each locus with

probability (mutation rate), and place the resulting

chromosomes in the new population.

4. Replace the current population with the new

population.

5. Go to step 2.

The simple procedure just described above is the basis

for most applications of GAs.

2.3 Hybrid PSO-GA

We propose a hybrid method using particle swarm opti-

mization and genetic algorithms to find an optimal FLC to

control the benchmark plants. The hybrid method uses the

same population/swarm in the two methods in the same

iteration obtaining the best individual/particle. PSO and

Table 5 Results of the Type-1

FLC obtained by PSO for

Plant 2

Bold values indicate best result

No Particle (swarm) Iterations C1 C2 Inertia PSO Time exec Average error

1 200 70 0.0429 0.6746 0.8477 0:34:32 0.131933

2 200 70 0.7580 0.1716 0.5573 0:49:17 0.136293

3 200 70 0.7488 0.0884 0.9051 0:39:05 0.141524

4 200 70 0.8149 0.9059 0.1706 0:49:38 0.148655

5 200 70 0.0660 0.7696 0.5558 0:44:32 0.150427

6 200 70 0.8660 0.1036 0.5554 1:05:25 0.151731

7 200 70 0.5543 0.6067 0.4974 0:50:25 0.152046

8 200 70 0.7154 0.2479 0.5130 0:55:45 0.154302

9 200 70 0.0158 0.0882 0.2155 1:02:43 0.160239

10 200 70 0.4458 0.9566 0.3233 0:51:22 0.164745
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GA communicate with each other; every four iterations the

best individual/particle is inserted into the population of the

worst method and vice versa. We used the maximum

number of iteration/generations to stop the method, keep-

ing only the best FLC obtained [27]. The proposed method

works as follows:

Fig. 4 a Input 1 and input 2

membership functions of the

Type-1 FLC, b particles

behavior of the PSO method and

c closed-loop response of Plant

2 with the optimized FLC

180 Int. J. Mach. Learn. & Cyber. (2015) 6:175–196

123



Table 6 Results of the Type-2

FLC obtained by PSO for

Plant 2

Bold values indicate best result

No Particle (swarm) Iterations C1 C2 Inertia PSO time exec Average error

1 200 70 0.3179 0.5411 0.7012 8:51:28 0.083388

2 200 70 0.7690 0.2082 0.8755 8:09:51 0.090310

3 200 70 0.3889 0.6394 0.7304 8:50:16 0.096099

4 200 70 0.9512 0.8014 0.6141 9:15:29 0.101980

5 200 70 0.7870 0.6322 0.5724 10:00:28 0.102010

Fig. 5 a Input 1 and input 2

membership functions of the

Type-2 FLC, b particles

behavior of the PSO method and

c closed-loop response of Plant

2 with the optimized FLC
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1. Start with a randomly generated particles/population

(candidate solutions to a problem).

2. Assign to the variables S and Chrom the particles/

population generated.

3. Repeat the following steps until max number of

iteration/generations

3.1 Start PSO method.

3.1.1 For each particle do.

3.1.1.1 Calculate fitness value.

3.1.1.2 If the fitness value is better than the best fitness

value (pBest) in history then, set the current

value as the new pBest.

3.1.1.3 Choose the particle with the best fitness value of

all particles as the gBest.

3.1.1.4 Update all particle velocities.

3.1.1.5 Update all particle positions.

3.1.1.6 Until ‘‘n’’ particles.

3.1.1.7 Save the best particle information in variable

BM.

3.2 Terminate PSO.

3.3 Start GA method.

3.3.1 Calculate the fitness of each chromosome in the

population.

3.3.2 Repeat the following steps until n offspring have

been created:

3.3.2.1 Select a pair of parent chromosomes from the

current population, the probability of selection

being an increasing function of fitness. Selection

is done with replacement, meaning that the

same chromosome can be selected more than

once to become a parent.

3.3.2.2 With probability (crossover rate), perform cross-

overto the pair at a randomly chosen point to a

form two offspring.

3.3.2.3 Mutate the two offspring at each locus with

probability (mutation rate), and place the

resulting chromosomes in the new population.

3.3.3 Replace the current population with the new

population.

3.3.4 Go to step 5.

3.3.5 Save the best individual information in variable

BM

3.4 Terminate GA.

4. if counter = 4

4.1 Obtain the minimum result of the BM variable

4.2 if minimum value was obtained by PSO methodthen

4.3 reinsert the information of the particle in the GA

population (Chrom) 4.3 else

4.4 reinsert the information of the best individual of GA

in the Swarm of the PSO

5. Terminate the validation.

6. Terminate the hybrid method until maximum number

of iterations/generations.

The procedure described above is used to find an opti-

mal fuzzy logic controller combining the PSO and GA to

exploit more completely the space of solutions.

2.4 Problem statement

To test the optimized FLCs obtained with the bio-inspired

methods; we used two different benchmark plants. We

consider two benchmark problems called Plant 1 and Plant

2 with different levels of complexity. We used this kind of

applications to observe the behavior of the proposed

method with respect to the GA and PSO methods [21].

Plant 1 is given by the following stable second order

transfer function:

Table 7 Results of the Type-1

FLC obtained by GA for Plant 1

Bold values indicate best result

No Individuals Generations Percentage

replace

Cross Mut Selection

method

GA time

exec

Average

error

1 90 35 0.7 0.6 0.3 Ruleta 0:18:06 0.05087

2 150 80 0.7 0.5 0.2 Ruleta 1:19:13 0.04431

3 80 50 0.7 0.5 0.2 Ruleta 0:23:01 0.071366

4 45 60 0.7 0.6 0.3 Ruleta 0:16:03 0.068477

5 75 50 0.7 0.6 0.1 Ruleta 0:21:37 0.068158

6 100 40 0.7 0.6 0.1 Ruleta 0:24:08 0.067052

7 65 35 0.7 0.7 0.2 Ruleta 0:15:35 0.069994

8 200 70 0.7 0.4 0.1 Ruleta 1:30:02 0.072356

9 25 15 0.7 0.8 0.3 Ruleta 0:02:58 0.129872

10 50 45 0.7 0.5 0.2 Ruleta 0:13:25 0.068855
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Fig. 6 a Input 1 and input 2

membership functions of the

Type-1 FLC, b evolution of the

GA method and c closed-loop

response of Plant 1 with the

optimized FLC

Table 8 Results of the Type-2 FLC obtained by PSO for Plant 1

No Individuals Generations Percentage replace Cross Mut Selection method GA time exec Average error

1 55 75 0.7 0.8 0.3 Ruleta 5:56:25 0.067651

2 90 65 0.7 0.7 0.2 Ruleta 8:33:15 0.067995

3 50 80 0.7 0.8 0.2 Ruleta 5:41:16 0.068208

4 90 85 0.7 0.7 0.2 Ruleta 11:18:23 0.068311

5 120 85 0.7 0.7 0.2 Ruleta 14:42:40 0.068749

6 30 55 0.7 0.8 0.3 Ruleta 2:21:10 0.069307
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Table 8 continued

No Individuals Generations Percentage replace Cross Mut Selection method GA time exec Average error

7 60 40 0.7 0.7 0.2 Ruleta 3:18:27 0.069967

8 45 40 0.7 0.9 0.3 Ruleta 2:26:12 0.073498

9 40 25 0.7 0.8 0.3 Ruleta 1:26:55 0.095847

10 65 35 0.7 0.8 0.2 Ruleta 3:08:03 0.745350

Bold values indicate best result

Fig. 7 a Input 1 and input 2

membership functions of the

Type-2 FLC, b evolution of the

GA method and c closed-loop

response of Plant 1 with the

optimized FLC
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gðsÞ ¼ w2
n

s2 þ 2ewnsþ w2
n

e ¼ 0:5; wn ¼ 2 ð1Þ

where wn is the natural frequency and eis the coefficient

damping.

Plant 2 is given by the following transfer function:

gðsÞ ¼ 1

s2 þ 4
ð2Þ

The behavior of Plant 2 is more complex as will be seen

later. The main idea in using these two plants is to illustrate

the proposed hybrid approach in designing the fuzzy

controllers, especially for Type-2 fuzzy logic, which are

more complex to design than Type-1. Of course, it is well

known that even for designing Type-1 fuzzy controllers the

problem could be challenging, but this is even more critical

for designing optimal Type-2 fuzzy controllers.

3 Fuzzy logic control design

In this section we show the design of a fuzzy logic con-

troller (FLC), where the optimal controller was found using

the proposed hybrid PSO-GA, GAs and the PSO. For the

FLC a Takagi–Sugeno type of fuzzy system is used with

two inputs (a) error, and (b) error change, with three

membership functions for each input, ‘‘negative, zero and

positive’’ (Gaussian and triangular), and one output,

defined with constant values [7, 9, 13, 18–21, 26, 29].

Figure 1 shows the FLC membership functions for the

plant control and Table 1 shows the Fuzzy Rules.

Once we obtained the FLC design, we set the

parameters of both methods: the GA chromosome has 17

genes of real values that represent the two inputs, error

and error change and one output with constant values

and using different values in the genetic operator’s;

mutation and single point crossover and roulette wheel

selection method. For PSO method we use different

values for the cognitive and social parameters also an

inertial value to balance the swarm. For the hybrid PSO-

GA method we apply the same parameter configuration

used in GA and PSO; from an initial space search we

generate two subpopulations to work inside of the hybrid

method. The three bio-inspired methods use the same

space of solutions (population) that we consider to find

the optimal values of the parameters of the membership

functions. Table 2 shows the parameters of the mem-

bership functions, the minimal and the maximum values

in the search range for the Hybrid PSO-GA, GA and

PSO to find the best fuzzy controller system for the

benchmark plants.

4 Simulation results

In this section we present the simulation results for each

bio-inspired method applied to Plant 1 and Plant 2. We

organized the presentation of the simulation results as

follows:

4.1 Optimal FLC results obtained with the PSO method

for Plant 1

The simulation results for the Type-1 FLC obtained with

the PSO method applied to Plant 1 are presented in this

section. Table 3 contains the configuration values of the

PSO method, the execution time of PSO and the average

error for each configuration. The first row shows the best

controller obtained by PSO.

Table 9 Results of the Type-1

FLC obtained by GA for Plant 2

Bold values indicate best result

No Individuals Generations Percentage

replace

Cross Mut Selection

method

GA time

exec

Average

error

1 85 65 0.5 0.5 0.1 Ruleta 0:29:11 0.066594

2 80 50 0.5 0.6 0.1 Ruleta 0:22:18 0.076842

3 55 45 0.5 0.6 0.1 Ruleta 0:39:01 0.077597

4 100 40 0.5 0.3 0.1 Ruleta 0:20:41 0.078355

5 65 35 0.5 0.4 0.2 Ruleta 0:11:53 0.076711

6 200 90 0.5 0.4 0.1 Ruleta 1:33:19 0.065268

7 25 15 0.5 0.8 0.3 Ruleta 0:02:15 0.261787

8 90 35 0.5 0.5 0.2 Ruleta 0:16:26 0.074058

9 40 25 0.5 0.7 0.1 Ruleta 0:05:12 0.134507

10 120 85 0.5 0.4 0.1 Ruleta 0:52:13 0.070636
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Fig. 8 a Input 1 and input 2

membership functions of the

Type-1 FLC, b evolution of the

GA method and c closed-loop

response of Plant 2 with the

optimized FLC

Table 10 Results of the Type-2 FLC obtained by PSO for Plant 2

No Individuals Generations Percentage replace Cross Mut Selection method GA time exec Average error

1 90 85 0.5 0.7 0.2 Ruleta 7:59:16 0.071904

2 90 65 0.5 0.7 0.2 Ruleta 5:48:37 0.072523

3 120 85 0.5 0.7 0.2 Ruleta 11:07:54 0.073215

4 45 40 0.5 0.9 0.3 Ruleta 1:51:16 0.076852

5 50 80 0.5 0.6 0.1 Ruleta 4:08:36 0.07786

6 30 55 0.5 0.8 0.3 Ruleta 1:26:11 0.079192

186 Int. J. Mach. Learn. & Cyber. (2015) 6:175–196

123



Table 10 continued

No Individuals Generations Percentage replace Cross Mut Selection method GA time exec Average error

7 55 75 0.5 0.8 0.3 Ruleta 3:35:16 0.079204

8 40 25 0.5 0.7 0.3 Ruleta 1:04:20 0.079878

9 65 35 0.5 0.6 0.1 Ruleta 2:29:15 0.082048

10 60 40 0.5 0.7 0.2 Ruleta 2:08:08 0.089937

Bold values indicate best result

Fig. 9 a Input 1 and input 2

membership functions of the

Type-2 FLC, b evolution of the

GA method and c closed-loop

response of Plant 2 with the

optimized FLC
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Figure 2a shows the membership functions of input 1

and input 2 of the optimal FLC, Fig. 2b shows the par-

ticles behavior of the PSO method giving the best FLC to

control the Plant 1 and Fig. 2c shows FLC Type-1 result

for Plant 1 obtaining the control before the 10 s on stable

manner.

Continuing with the simulation results using the PSO

method for Plant 1 we present the optimal Type-2 FLC,

showing in Table 4 the configuration values of the PSO

method, the execution time and the average error of each

configuration. The first row shows the best Type-2 con-

troller obtained by PSO.

Figure 3a shows the membership functions of input 1

and input 2 of the optimal FLC, Fig. 3b shows the particles

behavior of the PSO method giving the best FLC to control

the Plant 1 and Fig. 3c shows FLC Type-2 result for Plant 1

obtaining the control before of the 10 s with a little

overshoot.

4.2 Optimal FLC results obtained by the PSO method

for Plant 2

In this section we present the simulation results for the

Type-1 FLC obtained by the PSO method applied to Plant

2. Table 5 contains the configuration values of the PSO

method, the execution time of PSO and the average error

for each configuration. The first row shows the best con-

troller obtained by PSO.

Figure 4a shows the membership functions of input 1

and input 2 of the optimal FLC, Fig. 4b shows the particles

behavior of the PSO method giving the best FLC to control

the Plant 2 and Fig. 4c shows FLC Type-1 result for Plant 2

obtaining the control before of the 5 s on stable manner.

Continuing with the simulation results using the PSO

method for Plant 2 we present the optimal Type-2 FLC,

showing in Table 6 the configuration values of the PSO

method, the execution time and the average error of each

configuration. The first row shows the best Type-2 con-

troller obtained by PSO.

Figure 5a shows the membership functions of input 1

and input 2 of the optimal FLC, Fig. 5b shows the particles

behavior of the PSO method giving the best FLC to control

the Plant 1 and Fig. 5c shows FLC Type-2 result for Plant 1

obtaining the control before of the 5 s but with an

overshoot.

4.3 Optimal FLC results obtained by the GA method

for Plant 1

This section presents the simulation results for the Type-1

FLC obtained by the GA method applied to Plant 1.

Table 7 contains the configuration values of the GA

method, the execution time of GA and the average error for

each configuration. The third row shows the best controller

obtained by GA.

Figure 6a shows the membership functions of input 1

and input 2 of the optimal FLC, Fig. 6b shows the

evolution of the GA method giving the best FLC to

control the Plant 1 and Fig. 6c shows FLC Type-1 result

for Plant 1 obtaining the control before the 10 s on

stable manner.

Continuing with the simulation results using the GA

method for Plant 1 we present the optimal Type-2 FLC,

showing in Table 8 the configuration values of the PSO

method, the execution time and the average error of each

Table 11 Results of the Type-1 FLC obtained by hybrid PSO-GA method for Plant 1

No Individuals/

particles

Iterations/

generations

C1 C2 Inertia Percentage

remp

Cross Mut Time

execution

Average

error

1 70 200 0.2706 0.0403 0.3254 0.7 0.7 0.2 1:46:07 0.10956

2 200 70 0.1780 0.4863 0.5381 0.7 0.5 0.2 1:20:14 0.11375

3 200 70 0.8963 0.3534 0.6738 0.7 0.7 0.1 1:18:21 0.11517

4 200 70 0.4743 0.5077 0.5163 0.7 0.6 0.2 1:28:50 0.11559

5 200 70 0.4587 0.6339 0.1024 0.7 0.5 0.5 1:42:23 0.11584

6 150 80 0.7293 0.1387 0.8532 0.7 0.7 0.1 1:15:23 0.11971

7 90 75 0.2521 0.3490 0.9708 0.7 0.5 0.2 0:25:14 0.12240

8 200 70 0.8149 0.9059 0.1314 0.7 0.5 0.1 1:33:46 0.12325

9 80 100 0.5159 0.0732 0.1455 0.7 0.6 0.1 0:48:21 0.12488

10 90 35 0.2110 0.9645 0.1126 0.7 0.5 0.2 0:17:52 0.12853

Bold values indicate best result
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Table 12 Results of the Type-2 FLC obtained by hybrid method for Plant 1

No. Individuals/

particles

Iterations/

generations

C1 C2 Inertia Percentage

remp

Cross Mut Time

execution

Average

error

1 25 50 0.8149 0.9059 0.1706 0.7 0.8 0.3 11:46:36 0.132233

2 25 50 0.0873 0.4457 0.6676 0.7 0.8 0.3 16:08:47 0.140007

3 45 30 0.9118 0.6906 0.7163 0.7 0.6 0.1 19:08:49 0.147934

4 25 50 0.4928 0.1730 0.7160 0.7 0.8 0.3 20:36:40 0.148900

Fig. 10 a Input 1 and input 2

membership functions of the

Type-1 FLC, b behavior of the

individuals/particles of the

hybrid PSO-GA method and

c closed-loop response of Plant

1 with the optimized FLC
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Table 12 continued

No. Individuals/

particles

Iterations/

generations

C1 C2 Inertia Percentage

remp

Cross Mut Time

execution

Average

error

5 20 15 0.9458 0.3435 0.6244 0.7 0.8 0.3 7:18:33 0.151596

6 40 25 0.8149 0.9059 0.1706 0.7 0.7 0.4 1:19:48 0.157026

7 20 15 0.0910 0.2991 0.8237 0.9 0.8 0.3 2:46:26 0.159745

8 40 25 0.8149 0.9059 0.1706 0.7 0.7 0.4 14:28:04 0.163500

9 15 60 0.8149 0.9059 0.1706 0.7 0.7 0.1 14:05:55 0.178253

10 25 50 0.8149 0.9059 0.1706 0.7 0.8 0.3 11:31:26 0.179500

Bold values indicate best result

Fig. 11 a Input 1 and input 2

membership functions of the

Type-2 FLC, b individuals/

particles behavior of the hybrid

PSO-GA method and c closed-

loop response of Plant 1 with

the optimized FLC
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configuration. The first row shows the best Type-2 con-

troller obtained by PSO.

Figure 7a shows the membership functions of input 1

and input 2 of the optimal FLC, Fig. 7b shows the evolu-

tion of the GA method giving the best FLC to control the

Plant 1 and Fig. 7c shows FLC Type-2 result for Plant 1

obtaining the control before of the 5 s with a small

overshoot.

4.4 Optimal FLC results obtained by the GA method

for Plant 2

This section presents the simulation results for the Type-1

FLC obtained by the GA method applied to Plant 2.

Table 9 contains the configuration values of the GA

method, the execution time of GA and the average error for

each configuration. The tenth row shows the best controller

obtained by GA.

Figure 8a shows the membership functions of input 1

and input 2 of the optimal FLC, Fig. 8b shows the evolu-

tion of the GA method giving the best FLC to control the

Plant 2 and Fig. 8c shows FLC Type-1 result for Plant 2

obtaining the control before the 5 s with a small overshoot

and undershoot.

Continuing with the simulation results using the GA

method for Plant 2 we present the optimal Type-2 FLC,

showing in Table 10 the configuration values of the PSO

method, the execution time and the average error of each

configuration. The sixth row shows the best Type-2 con-

troller obtained by PSO.

Figure 9a shows the membership functions of input 1

and input 2 of the optimal FLC, Fig. 9b shows the evolu-

tion of the GA method giving the best FLC to control the

Plant 2 and Fig. 9c shows FLC Type-2 result for Plant 2

obtaining the control before of the 5 s with a large over-

shoot and a small undershoot.

4.5 Optimal FLC results obtained by the hybrid PSO-

GA method for Plant 1

This section presents the simulation results of the proposed

method called hybrid PSO-GA to obtain the Type-1 FLC

applied to Plant 1. Table 11 contains the configuration

values of the hybrid method, the execution time of hybrid

PSO-GA and the average error for each configuration. The

first row shows the best controller obtained by the proposed

method.

Figure 10a shows the membership functions of input 1

and input 2 of the optimal FLC, Fig. 10b shows the

behavior of the individuals/particles of the hybrid method

giving the best FLC to control Plant 1 and Fig. 10c shows

FLC Type-1 result for Plant 1 obtaining the control before

10 s in a stable manner.

Continuing with the simulation results using the hybrid

method for Plant 1 we present the optimal Type-2 FLC,

showing in Table 12 the configuration values of the hybrid

PSO-GA method, the execution time and the average error

of each configuration. The first row shows the best Type-2

controller obtained by the hybrid PSO-GA.

Figure 11a shows the membership functions of input 1

and input 2 of the optimal FLC, Fig. 11b shows the

individuals/particles behavior of the hybrid PSO-GA

method giving the best FLC to control the Plant 1 and

Fig. 11c shows FLC Type-2 result for Plant 1 obtaining

the control before 5 s with a large overshoot and a small

undershoot.

Table 13 Results of the Type-1 FLC obtained by hybrid PSO-GA method for Plant 2

No. Individuals/

particles

Iterations/

generations

C1 C2 Inertia Percentage

remp

Cross Mut Time

execution

Average

error

1 200 70 0.05 0.05 1 0.7 0.5 0.2 1:10:15 0.045568

2 200 70 1 1 1 0.7 0.5 0.1 0:50:02 0.045656

3 150 80 0.5171 0.5210 0.8254 0.7 0.7 0.1 1:11:57 0.046050

4 80 120 0.7372 0.8160 0.7541 0.7 0.5 0.2 1:00:36 0.046147

5 100 150 0.6608 0.1696 0.8976 0.7 0.5 0.2 1:41:48 0.046674

6 200 70 0.25 0.25 1 0.7 0.7 0.1 1:53:35 0.054476

7 200 70 0.8149 0.9059 0.1706 0.7 0.8 0.3 1:32:57 0.055365

8 50 45 0.8192 0.0754 0.8559 0.7 0.7 0.1 0:13:43 0.055597

9 50 150 0.1934 0.4693 0.7081 0.7 0.6 0.2 0:55:20 0.057434

10 30 80 0.3163 0.2037 0.5234 0.7 0.8 0.3 0:16:05 0.057775

Bold values indicate best result
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4.6 Optimal FLC results obtained by the hybrid PSO-

GA method for Plant 2

This section presents the simulation results of the proposed

method called hybrid PSO-GA to obtain the Type-1 FLC

applied to Plant 2. Table 13 contains the configuration

values of the hybrid method, the execution time of hybrid

PSO-GA and the average error for each configuration. The

second row shows the best controller obtained by the

proposed method.

Figure 12a shows the membership functions of input 1

and input 2 of the optimal FLC, Fig. 12b shows the

behavior of the individuals/particles of the hybrid method

giving the best FLC to control the Plant 1 and Fig. 12c

Fig. 12 a Input 1 and input 2

membership functions of the

Type-1 FLC, b behavior of

the individuals/particles of

the hybrid PSO-GA method and

c closed-loop response of Plant

2 with the optimized FLC
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shows the FLC Type-1 result for Plant 2 obtaining the

control before 5 s in a stable manner.

Continuing with the simulation results using the

hybrid method for Plant 2 we present the optimal Type-2

FLC, showing in Table 14 the configuration values of

the hybrid PSO-GA method, the execution time and the

average error of each configuration. The first row shows

the best Type-2 controller obtained by the hybrid PSO-

GA.

Figure 13a shows the membership functions of input 1

and input 2 of the optimal FLC, Fig. 13b shows the indi-

viduals/particles behavior of the hybrid PSO-GA method

giving the best FLC to control the Plant 2 and Fig. 13c

shows the FLC Type-2 result for Plant 1 obtaining the

control before 10 s with a small overshoot.

4.7 Comparison of results of the optimization methods

In this section we present a comparison of results among

bio-inspired methods, based on the average error obtained

for the simulations. Table 12 show the comparison of

results of the Best FLC obtained with the GA, PSO

and the hybrid PSO-GA method applied to Plant 1 and

Plant 2.

In Table 12 we show the comparison of the optimization

methods and we can observe that the FLCs of Type-1 and

Type-2 show the best results with the PSO and Hybrid

PSO-GA, however the Hybrid PSO-GA shows a significant

difference in the results with respect to the GA and PSO

results obtained separately in Plant 2, which is more

complex to solve (Table 15).

5 Conclusions

We described in this paper the application of bio-

inspired methods to design optimized fuzzy logic

controllers using genetic algorithms, particle swarm

optimization and the proposed hybrid PSO-GA method.

To test these optimized FLCs we use two different

plants. In particular we presented results of a genetic

algorithm (GA), particle swarm optimization (PSO) and

a hybrid PSO-GA, using two benchmark problems with

different levels of complexity. The main result shows

that the optimal FLC gets stability in less than 10 s. On

the other hand, the FLCs obtained by GA are better than

the FLCs obtained by the PSO because the controller

obtained with the GA shows more stability and less

steady state error with respect to the reference, the plots

of the results shows this difference. We can observe that

the Type-1 FLCs obtained by GA and PSO show lower

steady state errors than the FLCs obtained by the hybridT
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PSO-GA due to the simplicity of the problem. However

the Type-1 and Type-2 FLCs obtained by the proposed

hybrid method applied to Plant 2 improved with respect

of the FLCs obtained by GA and PSO obtaining lower

steady state error and better stability, that we can

observe in the simulation results. Based in this fact we

expect that the hybrid method will obtain better results

when used in more complex problems.

We have achieved satisfactory results with the GA, PSO

and the hybrid PSO-GA; the next step is to solve the

problem in a perturbed environment and considering mul-

tiple objective optimization to obtain better results in more

Fig. 13 a Input 1 and input 2

membership functions of the

Type-2 FLC, b individuals/

particles behavior of the hybrid

PSO-GA method and c closed-

loop response of Plant 2 with

the optimized FLC
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complex problems. Moreover, in the future we will extend

the results for nonlinear systems.
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