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Abstract Hand gestures are universally adopted means of

communication to convey message in the form of sign

language. Therefore, to communicate with a deaf and dumb

person, a normal human requires to have some knowledge

about the sign language and should be able to make the

sign language gestures. By understanding and animating

hand gestures, we can help in facilitating communication

between computers and the underprivileged. In this paper,

we present a method for synthesizing hand gestures with

the help of a computer which may enable a normal person

to convey massage to a mute person more easily without

any knowledge of sign language. The proposed technique

requires to train the system prior to its operation. But,

gesture animation is computationally complex as it

involves replication of the hand with its 27 degrees of

freedom. Gesture animation also involves gesture recog-

nition. Hence, in this paper, we have implemented a ges-

ture animation framework after recognizing hand gestures.

Computational complexity has been significantly reduced

by summarizing large gesture sequence in the form of key

frames. The animation process includes hand parameter

calculation for every pose in a gesture sequence which is

obtained using information like position of fingers, location

of metacarpophalangeal joints of the fingers and the bent

angles of the fingers. By using these parameters, hand pose

estimation is done by imposing some constraints of the

hand. Subsequently, a gesture sequence is animated using

these models. For this, the hand model for the frames in

between the key frames are obtained by interpolation. In

our experiment, we demonstrate gesture animation with

hand pose exactly same as the real gesture.

Keywords Hand gesture � Gesture animation �
Hand model � Finger pose estimation

1 Introduction

Gestures play an important role in our day to day com-

munications. Hand gestures play the same role for deaf and

dumb people as speech for normal people. They are used

by the deaf and dumb people in the form of sign language.

So, in order to communicate with deaf and dumb people,

normal human should have some knowledge about sign

language. This will require proper training of every normal

person who wishes to communicate with mute person. This

seems to be very much impractical and that is why, we

need an automatic sign language translation system, which

can translate speech into sign language and vice-versa. The

idea is to build up a messenger system which can be used

as a means for interaction between mute and normal per-

son. In this system, computer should be able to recognize

gestures and convert a particular sign to its corresponding

message in the form of speech. This will help a dumb

person to convey message to a normal person. On the other

hand, the system should be able to recognize any spoken

word/sentence or text and create the corresponding sign

(hand gesture) through animation. This will help a normal

being to communicate with a deaf person. So, the system
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will mainly act as an interpreter between a normal being

and a mute person. That is why, automatic interpretation

and animation of hand gestures has become an important

research topic among researchers in virtual reality and

computer animation.

Typical schematic diagram of such system is shown in

Fig. 1. Such system has mainly two modules. One for

translating speech/text to sign language and, the second

module is for translating sign language to speech/text.

Research on gestures is basically concentrated on two

spheres namely gesture recognition and gesture animation.

Both of them aim to facilitate communication between

humans and computers. Gesture animation is simply

opposite of gesture recognition. In the case of recognition,

user has to perform some gestures and system has to rec-

ognize them and perform some actions correspondingly.

Whereas, in the case of gesture animation, system will

perform gestures and user has to recognize and understand

them. In the system shown in Fig. 1, first module deals

with gesture animation. Whereas, the second module deals

with gesture recognition.

As a first step towards gesture animation, configuration

of hand should be measurable by machine. For this step,

some proposals involved the use of glove-based devices.

But, glove-based gestural interface requires the user to

wear a cumbersome glove that carries a load of cables

connecting it to the computer. This hinders the naturalness

with which the user can interact with the computer.

Awkwardness in using gloves is overcome by using

vision-based non-contact interaction techniques. They use

color-based vision segmentation, silhouettes or edges to

track the hand and fingers.

Hand gesture animation is relatively new research topic.

Very few research works have been reported on gesture

animation. Some of the earlier works on extraction of hand

pose information and hand motion animation are given in

[1–6]. They involve the complexity of having large data to

be processed. For gesture synthesis, estimation of human

hand posture is quite important and the research in this area

is not yet advanced enough to provide a flexible and reli-

able solution. Mainly two research papers [7] and [8]

extensively deal with this very specific research topic. In

[7] and [8], a simple approach for finding hand pose from

frontal view was proposed. But, all these methods could

not provide a complete solution to the gesture animation

process. Furthermore, these methods only deal with single-

handed gestures. In view of this, we now propose a scheme

in which the computational cost is highly reduced and the

gestures are animated more efficiently.

In order to reduce computational complexity, large

gesture sequence are summarized by only key few frames.

The key frames are selected on the basis of the amount of

change in hand shape—for a given key frame in the

sequence the next key frame is the one in which the hand

changes its shape significantly. Thus, an entire video clip is

transformed into a small number of representative frames

that are sufficient to represent a gesture sequence. These

frames are the key frames that best represent the content of

the sequence in an abstracted manner. In our method, key

frames are extracted using discrete Fourier transform

Fig. 1 A typical sign language communication system
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(DFT) in combination with vertical projection profile

(VPP). Using these key frames only, entire gesture

sequence has to be reconstructed and animated by

extracting some features from each key frame.

We present a method for separating hand from the arm,

using ‘‘Distance Transform’’ followed by largest circle fit

method. After separating hand from the arm, metacarpo-

phalangeal (MP) joints of the hand are extracted using the

corner detection technique. Finger tips are found by using

contour detection. By using extracted MP joint locations

and finger tips as parameters, hand pose is estimated.

Subsequently, hand pose is estimated using the hand

model with 27 degrees of freedom and by imposing some

constraints of the hand. Thus, the 3D hand model for a

particular gesture in a key frame is obtained. Since, the

estimation of hand pose is only done for key frames, we do

not have any information about the pose of the hand for the

frames between two consecutive key frames. For this, the

hand model for the frames in between the key frames are

obtained by interpolation. Finally, the gesture sequence is

animated using these models and the extracted hand

parameters. Our proposed method is also applied for the

animation of two hands. This is successfully demonstrated

in our experimental results. The proposed system was

implemented using two basic modules:

• The image processing module was implemented in C

with the help of OpenCV library.

• The computer graphics/animation module was imple-

mented in C with the help of OpenGL library.

The final step is the linking and interfacing of the

aforementioned modules.

The organization of the rest of the paper is as follows. In

Sect. 2 we present our proposed animation method. Section

2.6 shows the approach of key frame extraction. Experi-

mental results are shown in Sect. 3 Finally, we draw our

conclusion in Sect. 4.

2 Proposed gesture animation system

The basic block diagram of the proposed hand gesture

animation system is shown in Fig. 2. From the input

gesture video sequence, hand region is extracted by

applying skin color-based segmentation. Next, hand is

separated from the arm. After extracting the key frames,

hand parameters are extracted, which are subsequently

used for construing the hand pose. Finally, the animation

is done by exporting all the hand parameters to the

animation framework which was developed in the

OpenGL platform. The details of all these steps are

discussed in the sections to follow.

2.1 Human hand modeling

Model-based approach for image analysis is common in

computer vision applications. However, computer analysis

of hand posture from actual images involves complex

problems even when employing conventional and simple

models. The human hand is an articulated structure with

about 27 degrees of freedom and hand changes its shape in

various ways by its joint movements. Hand images change

by both finger movements and hand movement as a whole.

However, it is also highly constrained i.e., as the hand is

incapable of making arbitrary gestures. There are many

examples of such constraints [3, 9, 10]. For instance, fin-

gers cannot be bent backwards too much and the pinky

finger cannot be bent without bending the ring finger. The

natural movements of human hands are implicitly caused

by such motion constraints. Analysis of hand constraints

and inter-relationship is essential to avoid unrealistic

motions during hand animation. So, it is important to

implement the 3D model of human hand in accordance

with its constraints in OpenGL. The inputs to this model

are just the joint angels of all the fingers. Inevitably, a

trade-off arises between the degree of constraints contained

Fig. 2 A schematic diagram of our proposed approach
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in a model and its resultant performance. A lack of con-

straints leads to a useless model, whereas too many of them

require complex procedures necessitating expensive com-

putation time. Our hand model, therefore, attempts to

effectively balance these considerations.

2.2 Hand skeletal model and it’s constraints

Human hand consists of 27 bones; consequently there are

27 degrees of freedom (DoF) [9,11]. Each of the four fin-

gers has four DoF. The distal interphalangeal (DIP) joint

and proximal interphalangeal (PIP) joint each has one DoF

and the metacarpophalangeal (MCP) joint has two DoF due

to flexion (F) and abduction (AA). Flexion refers to

bending of fingers with one DoF and abduction refers to

lateral movement of fingers with one DoF. The thumb has a

different structure which has five degrees of freedom, one

for the interphalangeal (IP) joint, and two for each of the

thumb MCP joint and trapeziometacarpal (TM) joint both

due to flexion and abduction. These all add up to 21 DoF.

The remaining 6 degrees of freedom are from the rotational

and translational motion of the palm with 3 DoF each.

These six parameters can be ignored, since we will only

focus on the estimation of the local finger motions rather

than the global motion. In Fig. 3, a skeletal hand model is

shown with DoF.

Hand constraints can be roughly divided into three

types. Type I constraints are the limits of finger motions as

a result of hand anatomy which is usually referred to as

static constraints. Type II constraints are the limits imposed

on joints during motion, which is usually referred to as

dynamic constraints. Type III constraints are applied in

performing natural motion, which have not yet been

explored. In this paper, we have only considered Type I

and Type II constraints.

2.2.1 Type-I constraints

This type of constraint refers to the limits of the range of

finger motions as a result of hand anatomy. We have only

considered the range of motion of each finger that can be

achieved without applying external forces such as bending

of fingers backward using the other hand. This type of

constraints are usually represented using the following

inequalities:

0� � hMP�F � 90�

0� � hPIP�F � 110�

0� � hDIP�F � 90�

�15� � hMCP�AA� 15�

ð1Þ

A commonly adopted constraint states that middle finger

displays little abduction/adduction motions and the

following approximation is made for middle finger:

hMCP�AA ¼ 0� ð2Þ

This will reduce one DoF from the 21 DoF model.

Similarly, the TM joint of thumb also displays limited

abduction motion and will be approximated by 0 as well.

hTM�AA ¼ 0� ð3Þ

2.2.2 Type-II constraints

This type of constraint refers to the limits imposed on joints

during finger motions. These constraints are often called

dynamic constraints and can be subdivided into intra-finger

constraints and inter-finger constraints. The intra-finger

constraints are the constraints between joints of the same

finger. A commonly used constraint which is based on hand

anatomy states that in order to bend the DIP joints, the PIP

joints must also be bend for the index, middle, ring and

little fingers. The relations can be approximated as

following:

hDIP ¼
2

3
� hPIP ð4Þ

If we impose all these constraints, we can reduce the rep-

resentation of our hand model to 15 DoF only.

2.3 Hand modelling

A three-dimensional hand model is constructed using

truncated quadrics as building blocks, approximating the

anatomy of a real human hand.

2.3.1 Quadrics and conics

A quadric Q is a second degree implicit surface in 3D

space. It can be represented in homogeneous coordinates asFig. 3 A skeletal model of hand showing DoF of each joint [9, 11]

610 Int. J. Mach. Learn. & Cyber. (2014) 5:607–623

123



a symmetric 4 9 4 matrix Q. The surface is defined by the

points X, which satisfy the equation

XTQX ¼ 0 ð5Þ

where X ¼ ½x; y; z; 1�T is a homogeneous vector represen-

ting a 3D point. A quadric has 9 degrees of freedom.

Accordingly, Eq. 5 may be expanded as:

q1;1x2 þ q2;2y2 þ q3;3z2 þ 2q1;2xyþ 2q1;3xzþ 2q2;3yz

þ 2q1;4xþ 2q2;4yþ 2q3;4zþ q4;4

¼ 0 ð6Þ

Different families of quadrics are obtained are obtained

from matrices Q of different ranks, as described below.

2.3.2 Ellipsoid

Ellipsoids are represented by matrices Q with full rank.

The normal implicit form of an ellipsoid centered at the

origin and aligned with the coordinate axes is given by

x2

w2
þ y2

h2
þ z2

d2
¼ 1; ð7Þ

and the corresponding matrix is given by

1
w2 0 0 0

0 1
h2 0 0

0 0 1
d2 0

0 0 0 �1

0
BB@

1
CCA ð8Þ

Some other examples of surfaces which can be represented

by matrices with full rank are paraboloids and hyperbo-

loids. If matrix Q is singular, the quadric is said to be

degenerate.

2.3.3 Cones and cylinders

Cones and cylinders are represented by matrix Q with rank

(Q) = 3. The equation of a cone aligned with the y-axis is

given by

x2

w2
� y2

h2
þ z2

d2
¼ 1; ð9Þ

and the corresponding matrix is given by

1
w2 0 0 0

0 �1
h2 0 0

0 0 1
d2 0

0 0 0 0

0
BB@

1
CCA ð10Þ

An elliptic cylinder, aligned with the y-axis, is described

by

x2

w2
þ z2

d2
¼ 1; ð11Þ

and the corresponding matrix is given by

1
w2 0 0 0

0 0 0 0

0 0 1
d2 0

0 0 0 �1

0
BB@

1
CCA ð12Þ

Thus, different shapes can be obtained by using different

matrices. A cylinder and a sphere can be constructed using

above equations are shown in Fig. 4a, b, respectively. In

this paper, we propose to build up the 3D model of the

hand by combining such different shapes in OpenGL.

2.4 Hand region extraction

As a first step towards hand parameter extraction, hand

region should be separated out from the background. Using

skin color-based segmentation, hand region can be sepa-

rated out from the complex background effectively [12].

Skin color is a unique feature, which is also rotation and

scale invariant. Also, skin color is clustered in very small

region in color space [13], it is easy to separate skin regions

by proper thresholding. Although different people have

different skin colors, some studies showed that difference

largely lies in intensity rather than in color itself [14]. So, a

color space should be chosen where chroma (color and

Fig. 4 a, b Cylinder and sphere constructed from quadrics
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hue) and intensity information is separable. In this paper,

HSI and HSV color spaces are used for identifying skin

regions. Mostly skin chroma of Asians is in between red

and yellow. In [15], it is given that mostly their skin color

falls in the range of ½105�; 150��: A pixel is classified as a

skin pixel if the following conditions are satisfied.

HðiÞ\22

30� IðiÞ� 100

105� � hðiÞ� 150�
ð13Þ

where H(i), I(i) represents Hue, intensity at ith pixel. The

parameter hðiÞ is given by,

h ið Þ ¼ tan�1 VðiÞ=UðiÞð Þ

Subsequently, morphological operations are performed

to filter out unwanted small regions.

2.5 Hand arm separation

As the global motions of the hand are not at all considered

for animation, the presence of the arm in the segmented

hand is not important. For this purpose, only the palm

region of the hand is required. So, the arm has to be sep-

arated from the segmented image. ‘‘Largest Circle Fit’’

method is used for separating the the arm [16], [17]. In this

method, the largest circle which can be inscribed com-

pletely in the extracted hand region is found out. Ulti-

mately palm region is the widest part of the hand. So, the

largest circle will definitely be lying inside the palm.

Subsequently, a tangent to that circle is drawn and the

portion of the hand right to that tangent is found out. The

radius and center of the largest circle can also be deter-

mined by using ‘‘Distance Transform’’.

2.5.1 Distance transform

As its name indicates, it is a transform which takes a binary

image, consisting of feature and non-feature pixels as an

input and produces a gray level image as output such that

intensity value at any pixel of the output image corresponds

to the distance to the nearest feature pixel of the input

image [18]. ‘‘Distance Transform’’ gives the skeleton of the

input object. An efficient implementation of distance

transform can be done using Chamfer mask. This algorithm

uses small masks containing integer approximations of

distances in a small neighborhood thereby converting a

binary image to an approximate distance image. This is

called distance transformation (DT). As shown in Fig. 5,

there are two such masks, Chamfer 3–4 and Chamfer 5–7–

11, that are used in the process. The horizontal, vertical and

the diagonal distances in each of these masks are indicated

in the figure. For example, the horizontal and vertical

distances for Chamfer 3–4 are 3 each and the diagonal

distance is 4. This gives a ratio of 1.333 compared to 1.414

for Euclidean (exact) distances.

In our method, we have used Chamfer mask 5–7–11 for

calculating the distance transform. In Fig. 6, distance

transform is shown for different hand images.

2.5.2 Steps for finding largest circle

Following steps are done to find the largest circle.

• Find the edge of the input hand image using Canny

edge detector.

• Find the distance transform of the edge image.

• Normalize the distance transformed image into the

range [0, 255].

• Search for the pixel having an intensity value 255. This

point is the center of the largest circle to be inscribed in

the hand.

• Find the edge pixel of the hand, which is at a smaller

distance from the estimated center of the circle.

• Radius of the largest circle is the distance of the point

obtained in the previous step to the center of the circle.

Because of normalization and geometry of hand, there

may be more than one pixel having an intensity of 255. To

solve this ambiguity, the center of mass of all the pixels

having an intensity of 255 may be considered. This cen-

troid may be considered as the center of largest circle

inscribed in the palm region. Then, the pixels around the

center of the palm will have the intensity value 255 after

normalization.

2.6 Key frame extraction for gesture summarization

In the original gesture video sequence corresponding to a

particular sign, we have a large number of frames. But, a

real time hand gesture made by a signer is generally

composed of slow and gentle movements of different parts

of the hand. This implies that there is very small change in

the hand pose from frame to frame resulting in large

amount of temporal redundancy. Hence, an entire video

sequence/clip can be compressed by a large amount by

discarding frames which do not show much change in the

hand pose and keeping only those frames in which the

change in the hand pose is quite significant/noteable. These

frames are referred to as key frames. So, the whole gesture

sequence is summarized by using the key frames. Subse-

quently, information about hand shape parameters are

extracted from these key frames only. This greatly reduces

the memory requirement for storing gesture description of

every sign in the dictionary. Also, this helps in reducing the

total time required for training.
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In this paper, we have proposed to use discrete Fourier

transform (DFT) in combination with ‘‘Vertical Projection

Profile (VPP)’’ for the purpose of comparing images. This in

turn is used for identifying the key frames. The reason for

choosing DFT is that, it offers specific advantages when

comparing in frequency domain rather than directly com-

paring in spatial domain itself. The magnitude spectrum

does not get affected by rotation and translation, unless there

is a change in the information of image. So, unless there is a

significant change in the pose of the hand, histogram of the

magnitude spectrum of DFT will remain almost same.

Magnitude spectrum of DFT of an input frame is shown in

Fig. 7. Additionally, Figs. 8 and 9 show the magnitude

spectrums of DFT of the translated and rotated versions of

this frame respectively. Images similarity can not be judged

by comparing corresponding points in the magnitude spec-

trum as rotation causes the magnitude spectrum to rotate by

the same amount. Hence, histogram of the magnitude

spectrum is considered for comparison. Distance between

these histograms is a measure of similarity. To reduce

dynamic range of coefficients, the logarithm of the magni-

tude spectrum is considered and the histogram is con-

structed. The histogram of the magnitude spectrum of the

hand image is shown in Fig. 10. Since, we have taken log-

arithmic values of magnitude spectrum on x-axis, it’s

dynamic range is reduced. Fig. 11 also shows the histogram

of the magnitude spectrum of different hand images.

Additionally, vertical projection profile (VPP) as

described in [7] is also used for similarity measurement.

VPP gives the number of object pixels in each column and

two images are compared by using VPP.

By our convention, we start by taking the very first

frame in the gesture sequence as the first key frame. We

2 2

2 2

2 ~
~
~
~

:1 3 : 4 

1 : 1.414 1 : 1.33
~
~
~
~

1 0

1

1

1

Exact  

4 3

434

3 30

4

Chamfer 3 − 4

ApproximationInteger 

11 11

11 7 5 7 11

0 5

11 7 5 7 11

11 11

Chamfer 5 − 7 − 11

ApproximationInteger 

5

5 : 7 : 11

1 : 1.41 : 2.24 1 : 1.4 : 2.2

Distance

:2 51 :

Fig. 5 Chamfer masks used for

computing distance

transformation

Fig. 6 Edge images of hand (column 1); distance transform of edge

images (Column 2); and the normalized distance transform (column 3)

Fig. 7 Input frame (left); magnitude spectrum of it’s DFT (right)
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then calculate the distance between histograms of the

logarithm of magnitude spectrum. The distance is com-

puted between this key frame and the next frame, i.e., the

second frame, in the sequence. Similarly, the VPP of both

of the frames are determined and then, the distance

between these VPPs are computed. If the distance measure

exceeds a predefined threshold, then this candidate frame is

taken as the second key frame. Else, we continue com-

paring all subsequent frames with the first key frame until

we obtain the second key frame. Once a new key frame is

detected, the same procedure is continued to identify the

next key frame in the sequence with the last identified key

frame as the reference frame and its subsequent frames as

the candidate frames.

Again, VPP depends on the spatial position and shape of

the hand. Hence, point to point correspondence between

VPPs should not be done as the VPP is circularly shifted

for the variations in the spatial position of the hand. To

tackle this problem, some key points are selected for

comparison. These key points include center of the hand,

global maximum in VPP, left most non-zero entry in VPP

etc. After selecting some key points, these VPPs are

aligned so that these key points coincide and subsequently,

comparisons are done. The VPP of different frames of the

gesture video sequence are as shown in Fig. 12.

2.7 Hand parameter calculations

2.7.1 MP joint extraction

Once the key frames are extracted, we now proceed with

deriving hand parameters from these key frames. The hand

parameters include information about different angles of

different fingers, thus describing the hand pose and shape

in each key frame. Using these parameters we can estimate

the pose of hand.

As a next step towards hand feature extraction, MP

joints of the hand should be identified. To perform this

task, we use a corner detection technique. To start with, the

distance transform of the palm region is found out. Sub-

sequently, we obtain an image by thresholding, where there

are some sharp points which correspond to MP joints of the

fingers. So, these corner points are to be detected to find the

approximate locations of the MP joints. In this paper, we

propose to use Harris corner detection technique, which is

invariant to translation and rotation. The corner detector is

based on the local auto-correlation function of a signal,

where the local auto correlation function measures the local

changes of the image with patches shifted by a small

amount in different directions. Since, in order a point to be

a corner point, it should be an edge image. We can use

Canny edge detection technique to obtain edge of the hand.

Now, in order to know whether or not a particular point on

the edge is a corner point, observe how the variation is

present at that point in all directions. Given a shift

ð4x;4yÞ and a point (x, y), the auto-correlation function is

defined as,

Fig. 8 Input frame translated (left); magnitude spectrum of it’s DFT

(right)

Fig. 9 Input frame rotated (left); magnitude spectrum of it’s DFT

(right)
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Fig. 10 Input frame (left); histogram of magnitude spectrum of it’s

Fourier transform (right)
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cðx; yÞ ¼
X

W

½Iðxi; yiÞ � Iðxi þ Mx; yi þ MyÞ�2 ð14Þ

where, I(.., ..) denotes the image function and ðxi; yiÞare the

points in the Gaussian window1 W centered at (x, y).

The shifted image is approximated by a Taylor expan-

sion truncated to the first order terms, as given below.

Iðxi þ4x; yi þ4yÞ � Iðxi; yiÞ

þ ðIxðxi; yiÞIyðxi; yiÞÞ
Dx

Dy

� �
ð15Þ

where, Ix(.., ..) and Iy(.., ..) denote the derivatives with

respect to x and y, respectively. Substituting approximation

Eq. (15) in (14) yields

cðx;yÞ¼
X

W

½Iðxi;yiÞ� IðxiþMx;yiþMyÞ�2

¼
X

W

ðIðxi;yiÞ� Iðxi;yiÞ�ðIxðxi;yiÞIyðxi;yiÞÞ
Dx

Dy

� �� �2

¼
X

W

�ðIxðxi;yiÞIyðxi;yiÞÞ
Dx

Dy

� �� �2

¼ðDxDyÞ

P
W

ðIxðxi;yiÞÞ2
P
W

Ixðxi;yiÞIyðxi;yiÞ
P
W

Ixðxi;yiÞIyðxi;yiÞ
P
W

ðIyðxi;yiÞÞ2

0
B@

1
CA Dx

Dy

� �

¼ðDxDyÞCðx;yÞ
Dx

Dy

� �
ð16Þ

where matrix C(x, y) captures the intensity structure of the

local neighborhood. Let k1; k2be the eigenvalues of the

matrix C(x, y). The eigenvalues form a rotationally

invariant description. There are three cases to be consid-

ered, as follow.
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Fig. 11 Input frame (left); magnitude spectrum of it’s Fourier transform (right)

1 For simplicity, the Gaussian weighting factor e�ðx
2þy2Þ=ð2r2Þ is

omitted from the derivation.
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• If both k1; k2 are small, so that the local auto-

correlation function is flat (i.e., little change in

c(x, y) in any direction), the windowed image region

is of approximately constant intensity. This indicates a

flat region.

• If one eigenvalue is high and the other is low, so that the

local auto-correlation function is ridge shaped, then only

local shifts in one direction (along the ridge) cause little

change in c(x, y) and significant change in the orthog-

onal direction. It is an indication of presence of an edge.

• If both eigenvalues are high, so that the local auto-

correlation function is sharply packed, then shifts in any

direction will result in a significant increase in c(x, y).

This indicates a corner.

A measure of corner response can be defined as

R ¼ DetðCÞ � k traceðCÞð Þ2 ð17Þ
where, DetðCÞ ¼ k1; k2 ð18Þ
traceðCÞ ¼ k1 þ k2 ð19Þ

Fig. 12 Column 1 input frames;

column 2 vertical projection

profile
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and k is the empirical constant whose value is between 0.04

to 0.06. Again, R depends on the eigenvalues of C. Finally,

flat, edge or corner regions can be classified based on the

value of R as follow.

• R is large for a corner;

• R is negative with large magnitude for an edge; and

• |R| is small for a flat region.

2.7.2 k-curvature

The corner detection method discussed above detects all the

corner points including the MP joints in the input threshold

image. So, this method gives all such points where there is a

change in the contour direction. Hence, there may be some

extra points in addition to MP joints. To eliminate unnec-

essary points, we have used a method based on ‘‘k-curva-

ture’’. As MP joints correspond to a very sharp point, the

curvature value is very small at the MP joints. Whereas, the

curvature is very high at other corners points. So, we can

eliminate false corners by thresholding the curvature value.

The technique used to eliminate unnecessary corners points

to detect valid MP joints is discussed below.

Let C represents a contour, and C(i) is the ith point on the

contour. The k-curvature at that point is defined as the angle

between the vectors [C(i), C(i - k)] and [C(i), C(i ? k)].

The k-curvature can be computed quite easily, since the angle

between two vectors can be found by using dot product of the

vectors. There will be sharp peaks corresponding to MP

joints. Hence, k-curvature values will be very low at those

points. By keeping proper threshold, we can separate out the

corners points belonging to the MP joints. The performance

of this algorithm depends on the choice of ‘k’.

2.7.3 Finger tips detection

Once, MP joints are located, finger tips can be found easily.

To find the finger tips, the fingers from the palm are sep-

arated out [19]. Next, the contours of the separated fingers

are found out. For each contour, centroid (center of mass)

is estimated and the nearest MP joint from the corre-

sponding centroid for all the contours is found out. Finally,

we can find the point on the contour, which is farthest from

the MP joint. All these points are the tips of the fingers.

Obviously, the tip obtained from a contour and the nearest

MP joint belong to a particular finger. So, the distance

between these two points gives the finger pose length.

2.7.4 Correspondence problem

Either MP joints or finger tips individually or jointly can

not give exact information about which finger they corre-

sponds to. In order to solve this ambiguity, some radial

range for each MP joint is considered. Let us consider the

simple case of horizontal orientation of the hand. Angular

ranges are defined to identify the fingers as shown in Fig.

13. Let us assume that, the center of the largest circle

inscribed coincides with the origin of the reference co-

ordinate system as shown in Fig. 13. Subsequently, the

angle made by the position vector of all the MP joints with

X-axis is determined. MP joint of thumb (if present) falls in

the first quadrant of the co-ordinate system. Hence, we can

fix the range for MP joint of thumb as ð0�; 90�Þ: Similarly,

the angular range for MP joints of index, middle, ring and

little fingers are ð90�; 150�Þ; ð150�; 185�Þ; ð185�; 215�Þand

ð215�; 270�Þrespectively.

2.8 Hand posture estimation

Next step of our proposed scheme is to determine finger

joint angles from the information of MP joints and finger

tips. The joint angles of the fingers are calculated only

using the information of finger posture length i.e., the

distance between MP joint and the corresponding finger tip.

For this, the hand modelling constraints discussed earlier is

used. Let, ‘‘L’’ be the original length of the finger. Simi-

larly, ‘‘h1’’ is the joint angle corresponds to flexion of the

MP joint, ‘‘h2’’ is the joint angle corresponds to PIP joint

and ‘‘h3’’ is the angle corresponds to DIP joint of finger.

And let ‘‘Lobs’’ be the observed length, i.e., distance

between MP joint and the corresponding finger tip.

In this, the known parameters are, length of the finger

(L) and observed Length (Lobs). Apparently, M, P, D and

T represents MP joint, PIP joint, DIP joint and Tip of the

finger, which are shown in Fig. 14.

It is assumed that the lengths of all the joints of a finger

are of equal length and MP, PIP, DIP and finger tip (T) lie

in the same plane. The finger plane is aligned with x–y

plane, such that MP joint coincides with the origin of the

reference coordinate system. Here, finger plane is the plane

passing through M, P, D and T. Let us assume that, all

phalangeal lengths are equal i.e., each phalangeal is of

Fig. 13 Regions showing possible MP joint locations of all the

fingers
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length equal to one third of the total length of the finger.

The co-ordinates of M are (0, 0), and the coordinates of the

tip, T are given by [11],

Tx ¼
L

3
cosðh1Þ þ cosðh1 þ h2Þ þ cosðh1 þ h2 þ h3Þð Þ

Ty ¼
L

3
sinðh1Þ þ sinðh1 þ h2Þ þ sinðh1 þ h2 þ h3Þð Þ

ð20Þ

Therefore, we can express Lobs as,

Lobs ¼
L

3
cosðh1Þ þ cosðh1 þ h2Þ þ cosðh1 þ h2 þ h3Þð Þ

ð21Þ

Let us consider the triangle, MPD. By using ‘Cosine’ rule

and ‘Sine’ rule, the following relations can be obtained.

ðMDÞ2 ¼ L

3

� �2

þ L

3

� �2

� 2
L

3

� �
L

3

� �
cosðp� h2Þ ð22Þ

cos \MDPð Þ ¼
L
3

� �2 þ ðMDÞ2 � L
3

� �2

2 L
3

� �
ðMDÞ

ð23Þ

sin \MDPð Þ
L
3

� � ¼ sinðp� h2Þ
ðMDÞ ð24Þ

Fig. 14 MP joint, PIP joint, DIP joint and Tip of a finger

Fig. 15 a Column 1 input color

frame, and column 2 skin color-

based segmented region; b
column 1 full hand image

showing largest circle inscribed,

and column 2 separated palm; c
results of key frames extraction
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Again, let us consider the triangle, MDT. By using ‘Cosine’

rule for this triangle we can obtain the following relations.

cos \MDTð Þ ¼ cos p� h3 � \MDPð Þ ð25Þ

r2 ¼ ðMDÞ2 þ L

3

� �2

� 2ðMDÞ L

3

� �
cosð\MDTÞ ð26Þ

We can also apply some of the constraints, given in

Type-II constraints of hand model. So, h3 is replaced by
2
3
h2: So, h3 can be removed from the above relations.

Subsequently, we can solve for h2. After solving for h2, we

use the Eq. (21) to solve for h1. For each finger, by

proceeding in the similar way, we can find joint angles of

all fingers.

2.9 Gesture animation scheme

After estimating the flexion angles of MP, PIP and DIP

joints of all fingers, we can export these angles as

parameters to 3D hand model developed in OpenGL. We

can perform the animation of gestures using these

parameters. Since, the extraction of the parameters has

been done on the key frames only, we do not have any

information about the pose of the hand, in the frames

between the key frames. To give an illusion of continuous

animation by presenting the different positions of hand,

we should be able to estimate the pose of hand in these

intermediate frames. This is called interpolation. As the

name suggests, key frame interpolation attempts to gen-

erate new frames by interpolating values between two

existing frames. There are many interpolation techniques

available. The simplest method of interpolation is ‘‘linear

interpolation’’. In our proposed method, we simply alter

the joint angles in one key frame till they equal the joint

angles of the next key frame. In this process, the human

hand constraints are taken into consideration, thus

ensuring that in the process of interpolation, improper

gestures are not displayed.

Fig. 16 a Column 1 distance

transformed image and column

2 detected corners; b refined

corners using k-curvature (MP

joints detection); c results of

fingertips detection
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3 Experimental results

For our experiments, the proposed gesture recognition

module was implemented using the image processing

library of OpenCV 2.0 in Microsoft Visual Studio 2008

IDE in a window-based system having speed of 2.10 GHz.

Whereas, gesture animation part was implemented in the

OpenGL platform. The hand model was developed using

cylinders and cubic in OpenGL. An web camera, with a

resolution of 12 MP, 640 9 480 is used for capturing the

hand movements. The performance of the proposed algo-

rithms are reasonably satisfactory in the above mentioned

setup.

Prior to gesture recognition and animation, calibration

of the hand is done by keeping the hand in open position

showing all the fingers. While calibrating, hand should be

perpendicular to the camera axis, and the distance of the

hand from the camera should not vary much.

The results of the skin color segmentation are shown in

Fig. 15a, whereas Fig. 15b illustrates the results of sepa-

ration of arm from the palm. Finally, Fig. 15c illustrates

one example of key frame extraction from a small gesture

video sequence, where key frames are marked by asterisk.

The results of MP joints and fingertip detection using

corner detection technique are shown in Fig. 16a–c. MP

joints are obtained by using k-curvature method, which is

shown in Fig. 16b. Finally, Fig. 17a, b shows the animation

of single-handed gestures.

For two handed gestures, face is removed after detecting

the skin colored regions i.e., hand and the face. Experi-

mental results of this step is shown in Fig. 18. Subse-

quently, MP joints of two hands and finger tips are detected

for estimating the hand pose. Figs. 19 and 20 illustrate

these steps. Finally, the results of two-handed dynamic

hand gesture reconstruction and animation is shown in

Fig. 21. We observe that our proposed scheme is capable

of making hand pose as desired. Our scheme is capable of

animating both single-handed and two-handed static and

dynamic gestures. Static gestures consist of only one frame

and so does not include any temporal change in the hand

shape and pose.

4 Conclusion

As explained earlier, mainly two research papers [5] and

[7] extensively deal with this very specific research topic.

These papers did not address the problem of face detection

and separation for hand parameters estimation. The prob-

lem of two-handed gesture animation was totally ignored in

the earlier methods. Additionally, these methods have

some constraints in estimating the hand parameters like

placing of the hand in front of the camera. Some of these

constraints are overcome in the proposed method. This

paper presents a simple approach for finding the hand

configurations from a 2D monocular image in a hand

Fig. 17 a, b Reconstruction of

static gestures: first column

shows the original gestures;

second column shows the

reconstructed gestures
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gesture sequence and subsequently extracts some hand

parameters that are appropriate and sufficient to describe a

particular hand pose. Computation complexity is signifi-

cantly reduced by summarizing the large gesture sequence

in the form of few key frames. The key video frames are

selected on the basis of the amount of change in hand shape

- for a given key frame in the sequence the next key frame

is the one in which the hand changes its shape significantly.

Thus, an entire video clip is transformed into a small

number of representative frames that are sufficient to rep-

resent a gesture sequence. As discussed earlier, hand

parameters are identified only from the extracted key

frames that are appropriate and sufficient to describe a

particular hand pose. Thus, a collection of such hand

parameters, one set per key frame, constitutes the total

description of the gesture in terms of some numerical

values. Since only images of key hand postures are

required to be analyzed to extract the control points and no

hand motion tracking is involved, the computational

complexity of the animation process is greatly reduced.

Thus, the proposed method proves to be appropriate for

real-time gesture synthesis in an on-line sign language

conversation system.

Finally, the gesture animation is done by using the set of

parameters for every key frame to crete each of the key

frames and all in-between frames are interpolated i.e., all in

between frames are interpolated using image metamor-

phosis so that the synthesized video looks like natural

gesturing. One important contribution of this paper is hand

pose estimation and reconstruction of two-handed dynamic

hand gestures.

In this paper, we have only considered hand gestures

having only local motions i.e., palm is kept fixed and

gestures are created using finger movements only. How-

ever, the proposed technique can be extended with some

modifications to include more natural form of gestures i.e.,

global motions of palm and arm. For this, along with the

MP joints and finger tips of fingers, wrist and elbow

Fig. 18 Hand segmentation: first row shows the original images

captured by the camera; second row shows the results of skin color-

based segmentation; third row shows the results after component

labelling; fourth row shows the results of centroid detection of face

and hands; fifth row shows the separated hands

Fig. 19 Matacarpophalangial joints detection: first row shows dis-

tance transformed hand images; second row shows the results of

corner detection algorithm; third row shows the detected MP joints;

and the i shows the hand with the MP joints represented by tiny

circles
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position of the hand should also be considered. Future

works also include the segmentation of the hand in a more

cluttered background and tackling the problem of inter-

ference among the fingers for gesture animation.
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Fig. 20 Separated fingers and

the detected finger tips and

Matacarpophalangial joints of

two hands

Fig. 21 Two-handed dynamic hand gesture reconstruction and animation obtained in our experiment
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