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Abstract Multi-instance (MI) learning is receiving

growing attention in the machine learning research field, in

which learning examples are represented by a bag of

instances instead of a single instance. K-nearest-neighbor

(KNN) is a simple and effective classification model in the

traditional supervised learning. As its two variants,

Bayesian-KNN (BKNN) and Citation-KNN (CKNN) are

proposed and are widely used for solving multi-instance

classification problems. However, CKNN still applies the

simplest majority vote approach among the references and

citers to classify unseen bags. In this paper, we propose an

improved algorithm called Bayesian Citation-KNN

(BCKNN). For each unseen bag, BCKNN firstly finds its k

references and q citers respectively, and then a Bayesian

approach is applied to its k references and a distance

weighted majority vote approach is applied to its q citers.

The experimental results on several benchmark datasets

show that our BCKNN is generally better than previous

BKNN and CKNN. Besides, BCKNN almost maintains the

same order of computational overhead as CKNN.

Keywords Multi-instance learning � KNN �
Bayesian-KNN � Citation-KNN � Bayesian Citation-KNN �
Distance weighting

1 Introduction

Multi-instance learning (MI learning) has received much

attention in the machine learning research field. MI learn-

ing is a variation of the standard supervised learning. In

standard supervised learning, each example is an instance

represented by an attribute vector, augmented with a class

label. The learning task is to build a classifier that predicts

the class label of an unseen instance, given its attribute

vector. In MI learning, however, each example consists of a

bag of instances. Each bag has a class label, but the

instances themselves are not labeled. Therefore, the

learning task is to build a classifier that predicts the class

label of an unseen bag [1]. Recently, some researchers

combine multi-instance learning and multi-label learning

[2] to propose another machine learning framework: Multi-

Instance Multi-label learning (MIML learning) [3, 4]. In

this paper, we temporarily focus our attention on the multi-

instance learning.

Two different approaches have been adopted to classify

an unseen bag of instances in the context of multi-instance

problem. The first approach classifies a bag as negative if

all the instances in it are negative and positive if at least

one instance in it is positive [5]. In contrast, another

approach classifies a bag as the maximum label among all

instances in it using the simplest majority vote approach

[6].

MI learning was original motivated by the drug activity

prediction problem where each instance is a possible con-

formation of a molecule and each bag contains all likely
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low-energy conformations for the molecule. A molecule is

active if it binds strongly to the target protein in at least one

of its conformations and is inactive if no conformation

binds to the protein. Thus the problem is to predict the label

(active or inactive) of molecules based on their confor-

mations [7].

In recent years, in additional to the drug activity pre-

diction problem, a variety of learning problems have been

tackled as multi-instance problems. For example, several

inductive logic programming problems [8, 9], identifying

thioredoxin-fold proteins [10], content-based image

retrieval [11, 12], stock market prediction [13], text cate-

gorization [14], natural scene classification [15], image

categorization [16], etc.

In order to address these multi-instance problems, a

large number of algorithms are proposed, which can be

broadly divided into two main categories: eager learning

and lazy learning [17, 18]. It appears that up to now most of

these algorithms belong to eager learning. For example,

Dietterich et al. [5] assumed that the classifier could be

represented as an axis-parallel rectangle, and proposed four

typical algorithms. Among them, the iterated-discrim APR

algorithm is the best one. Auer [19] focused on theoretical

research and presented the MULTINST algorithm to effi-

ciently learn axis-parallel concept. After that Maron and

Lozano-Perez [20] described a new general framework

called Diverse Density (DD), Zhang and Goldman [7]

proposed an improved algorithm called EM-DD by com-

bining EM and the extended DD. Multi-instance Learning

via Embedded Instance Selection (MILES) is a recent MI

learning approach presented by Chen et al. [21]. Then,

Foulds and Frank [22] revisited the MILES algorithm and

presented an empirical study investigating the efficacy of

alternative base learners for MILES. Besides, TILDE [23]

and RELIC [6] are two of top-down decision tree induction

systems for MI learning.

For lazy learning, Wang and Zucker [18] proposed two

variants of the K-nearest-neighbor (KNN) algorithm

(Bayesian-KNN and Citation-KNN). In this paper, we

denote them by BKNN and CKNN respectively. Their

experimental results on the drug discovery benchmark

datasets show that both BKNN and CKNN are competitive

with the best ones conceived in the concept learning

framework. After that, Xu [24] proposed a nearest distri-

bution approach to multi-instance learning (MINND).

Besides, the KNN algorithm can be used as the basic

classifier for some meta multi-instance learning algorithms

such as MIBoost [25] and MIWrapper [26].

According to the paper by Wang and Zucker [18], CKNN

still applies the simplest majority vote approach among the

references and citers to classify unseen bags. In this paper,

we proposed an improved algorithm called Bayesian Cita-

tion-KNN (BCKNN). For each unseen bag, BCKNN firstly

finds its k references and q citers respectively, and then a

Bayesian approach is applied to its k references and a dis-

tance weighted majority vote approach is applied to its q

citers. The experimental results on two drug discovery

benchmark datasets validate its effectiveness and efficiency.

Besides, in order to adapt KNN to the multi-instance learn-

ing, several alternative distance functions and classification

approaches are introduced in our paper.

The rest of the paper is organized as follows. In Sect. 2,

we briefly introduce the KNN algorithm and its two vari-

ants BKNN and CKNN and then discuss how to adapt

KNN to the multi-instance learning. Section 3 proposes our

improved algorithm called Bayesian Citation-KNN

(BCKNN). Section 4 gives the detailed experimental setup

and the compared results on several benchmark datasets.

Finally, we draw conclusions and outline the main direc-

tions for our future work in Sect. 5.

2 Adapting K-nearest-neighbor to the multi-instance

learning

K-nearest-neighbor (KNN) has been widely used as a

simple and effective classification model in the traditional

supervised learning [27]. KNN assumes all instances cor-

respond to points in the m dimensional real space Rm. The

nearest neighbors of an unseen instance are defined in

terms of the standard Euclidean distance. More precisely,

let an arbitrary instance x be described by the attribute

vector ha1ðxÞ; a2ðxÞ; . . .; amðxÞi, where ajðxÞ denotes the

value of the jth attribute Aj of the instance x. Then the

distance between two instances x and y is defined as:

dðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

j¼1

ðajðxÞ � ajðyÞÞ2
v

u

u

t : ð1Þ

In KNN, the target function can be either discrete-

valued (classification) or real-valued (regression). This

paper considers learning discrete-valued target functions of

the form f : Rm ! C, where C is a finite set fc1; c2; . . .; csg.
For an unseen instance y, KNN needs to find its k-nearest

neighbors at first. We assume its k-nearest neighbors are

fx1; x2; . . .; xkg and their class labels are respectively

fc1; c2; . . .; ckg. Then, KNN uses the simplest majority

vote approach to determine the class label of y. Therefore,

the detailed classification formulation of KNN is

cKNNðyÞ ¼ arg Max
c2C

X

k

i¼1

dðc; ciÞ ð2Þ

where dðc; ciÞ ¼ 1 if c ¼ ci, and 0 otherwise.

KNN is a typical example of lazy learning, which simply

stores training instances at training time and delays its
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learning process until classification time. In contrast, eager

learning generates an explicit model at training time. Due to

its simplicity and effectiveness, KNN has been widely used

for classification in the traditional supervised learning. In this

paper, however, we focus our attention on multi-instance

classification problems instead of traditional supervised

classification problems. Thus, a natural question is how to

adapt KNN to multi-instance classification problems.

According to the observation by Wang and Zucker [18],

two practical problems in adapting KNN to multi-instance

learning must be addressed, which are the distance measure

problem and the classification approach problem. To address

the first problem, four distance functions [28–30], such as the

minimum distance, the maximum distance, the centroid

distance, and the Hausdorff distance, have been proposed.

Given two sets of instances X ¼ fx1; x2; . . .; xog and

Y ¼ fy1; y2; . . .; ypg, above distance functions can be

respectively defined as:

DMinðX; YÞ ¼ Min
x2X

Min
y2Y
fdðx; yÞg

� �

ð3Þ

DMaxðX; YÞ ¼ Max
x2X

Max
y2Y
fdðx; yÞg

� �

ð4Þ

DcenðX;YÞ ¼ d
1

o

X

o

i¼1

xi;
1

p

X

p

j¼1

yj

 !

ð5Þ

DHðX; YÞ ¼ Max Max
x2X

Min
y2Y
fdðx; yÞg

� �

;

�

�Max
y2Y

Min
x2X
fdðx; yÞg

� �� ð6Þ

where dðx; yÞ is the standard Euclidean distance between

two instances x and y, 1
o

Po
i¼1 xi and 1

p

Pp
j¼1 yj are the

centroids of the instance sets X and Y respectively. In Sect.

4, we design three groups of experiments to validate the

effectiveness of different distance functions. The experi-

mental results show that the maximum distance seems to be

the worst and the minimum distance seems to be the best

among all four distance functions. The more detailed

experimental results can be found from Tables 2, 3 and 4 in

Sect. 4.

To address the second problem, instead of the simplest

majority vote approach, another two alternative classifica-

tion approaches, namely the Bayesian approach and the

citation approach are proposed by Wang and Zucker [18].

They call the resulting algorithms Bayesian-KNN (BKNN)

and Citation-KNN (CKNN) respectively.

BKNN uses Eq. 7 to classify y.

cBKNNðyÞ ¼ arg Max
c2C

PðcÞPðc1; c2; . . .; ckjcÞ ð7Þ

where C is a finite set fc1; c2; . . .; csg. It appears that up to

now almost all MI classification problems are binary

classification problems. Namely, ci is either positive or

negative. Thus, the maximal number of combination that

fc1; c2; . . .; ckg can take is k þ 1. Therefore, the computa-

tional cost of BKNN is not expensive.

In CKNN, the concept of citation is used and the nearest

neighbors are extended to the combination of references and

citers. Give an unseen bag y, its k-nearest references are

fx1; x2; . . .; xkg, and its c-nearest citers are fx1; x2; . . .; xqg.
Please note that, the parameter c is different from the number

q. Then, CKNN uses Eq. 8 to classify y.

cCKNNðyÞ ¼ arg Max
c2C

X

k

i¼1

dðc; ciÞ þ
X

q

j¼1

dðc; cjÞ
 !

ð8Þ

where fc1; c2; . . .; ckg and fc1; c2; . . .; cqg are the class

labels of k references and q citers of y respectively. Their

experimental results on two drug discovery benchmark

datasets show that both BKNN and CKNN are competitive

with the best ones conceived in the concept learning

framework [18].

3 Bayesian Citation-KNN with distance weighting

Our research starts from our comments to CKNN. Just as

discussed before, CKNN still applies the simplest majority

vote approach among the references and citers to classify

unseen bags. That is say that the class labels of all refer-

ences and citers in CKNN are treated equally. That

essentially means that each reference and citer is treated

equally. However, intuitively, different references and

citers should play different roles in classifying the unseen

bag, since some of them are more important than others in

classification. Thus, a natural way to improve CKNN is to

respectively assign different weights to different references

and citers according to their distances to the unseen bag.

Besides, the Bayesian approach has been proved to be

much better than the simplest majority vote approach [18].

Motivated by these facts, in this paper, we propose an

improved algorithm called Bayesian Citation-KNN

(BCKNN) by combining the Bayesian approach and the

distance weighting approach. For each unseen bag,

BCKNN firstly finds its k references and q citers respec-

tively, and then a Bayesian approach is applied to its k

references and a distance weighted majority vote approach

is applied to its q citers.

Therefore, our BCKNN uses Eq. 9 to classify y.

cBCKNNðyÞ ¼ arg Max
c2C

� PðcÞPðc1; c2; . . .; ckjcÞ þ
X

q

j¼1

wjdðc; cjÞ
,

X

q

j¼1

wj

 !

ð9Þ

Int. J. Mach. Learn. & Cyber. (2014) 5:193–199 195

123



where fc1; c2; . . .; ckg and fc1; c2; . . .; cqg are the class

labels of k references and q citers of y respectively, and wj

is the weight of the jth citer.

To our knowledge, a large number of proposals can be

used to define the weights wj (j ¼ 1; 2; . . .; q). Among

them, the simplest proposal is to define their weights

according to their distances to the unseen bag. That is to

say, any functions which are inversely proportional to their

distances can be used to define weights of these citers.

Generally speaking, citers are weighted according to the

inverse of their distances from the unseen bag, with less

weight being assigned to citers that are further from the

unseen bag. Thus, just for simplicity, we define three

alternative simple weight functions as follows:

wj ¼
1:0

1:0þ dj

ð10Þ

wj ¼
1:0

1:0þ d2
j

ð11Þ

wj ¼ e�d2
j : ð12Þ

In Sect. 4, we design another group of experiments to

compare three different distance weighting functions.

Experimental results show that the distance weighting

function defined by Eq. 11 is a little better than another

two distance weighting functions defined by Eqs. 10 and

12. More detailed experimental results can be found

from Table 5 in Sect. 4. More important, seen from

Table 7 in Sect. 4, our BCKNN is generally better than

BKNN and CKNN. Please also note that our new

proposed BCKNN almost maintains the same order of

computational overhead as previous CKNN. The

experimental results from Tables 8 and 9 in Sect. 4

validate our conclusion.

4 Experimental conditions, methods, results

Because our proposed BCKNN is an improved algorithm

of previous BKNN and CKNN, we conduct our compared

experiments on the same datasets in the paper by Wang and

Zucker [14]. We download them from the main website of

Prof. E. Frank (http://www.cs.waikato.ac.nz/*eibe/multi_

instance/). Each bag in them represents a molecule, and the

main difference between these two datasets is that Musk2

contains molecules that have more possible conformations

than Musk1. Thus, the learning task is to predict whether

the molecule emits a musky odour. Some detailed

descriptions of these two datasets are shown in Table 1.

We implement our improved algorithm BCKNN, KNN

and the previous BKNN and use the implementation of

CKNN in Weka 3.5.7 [31]. Please note that, in our

implementation, the Laplace correction is used to smooth

the estimated class membership probabilities.

In the first three groups of experiments, we respectively

use KNN, BKNN, and CKNN with different k values to

validate the effectiveness of different distance functions. In

CKNN, we set c to k þ 2, which is the same as the setting

of the paper by Wang and Zucker [18]. Besides, in order to

save the running time of experiments, we use the tenfold

cross validation test instead of the leave-one-out test to

predict classification accuracy of each algorithm on each

datasets. Note that runs with various algorithms are carried

out on the same training sets and evaluated on the same test

sets. In particular, the cross-validation folds are the same

for all the experiments on each dataset.

The detailed experimental results are shown in Tables 2,

3 and 4. From the experimental results, we can see that,

generally speaking, the minimum distance seems to be the

best among all four distance functions and when k ¼ 2

the classification accuracies of related algorithms are the

highest. This conclusion is consistent with that of the paper

by Wang and Zucker [18].

In the fourth group of experiments, we use our proposed

BCKNN with different weights to compare three different

distance weighting functions. In BCKNN, we set k to 2 and

c to k þ 2, which is same to the setting of the paper by

Wang and Zucker [18]. Besides, the minimum distance

Table 1 Descriptions of two musk datasets

Dataset Instances Attributes Bags Positives Negatives

Musk1 476 166 92 47 45

Musk2 6,598 166 102 39 63

Table 2 Classification accuracy comparisons for KNN with differ-

ent k values and different distance functions

Datasets Distance

functions

k = 1 k = 2 k = 3 k = 4 k = 5

Musk1 Minimum

distance

85.78 90.11 84.78 84.78 80.33

Maximum

distance

66.22 66.22 68.33 68.44 68.44

Centroid

distance

84.56 84.56 82.44 83.67 79.22

Hausdorff

distance

80.44 85.78 83.67 84.78 73.67

Musk2 Minimum

distance

76.27 81.18 78.18 81.27 75.36

Maximum

distance

69.36 69.45 69.27 67.27 65.36

Centroid

distance

73.55 79.36 78.27 73.27 74.27

Hausdorff

distance

78.27 81.18 73.18 74.18 71.09
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defined by Eq. 3 is used. The detailed experimental results

are shown in Table 5. From the experimental results, we

can see that the distance weighting function defined by

Eq. 11 is a little better than another two distance weighting

functions defined by Eqs. 10 and 12.

Finally, we have designed another group of experiments

to validate our improved algorithm BCKNN. Thus, we

compared our BCKNN with previous BKNN and CKNN.

In this group of experiments, we use the fine-tuned expe-

rience parameters from previous four groups of experi-

ments: The values of k and c in related algorithms to 2 and

4 respectively. Besides, the minimum distance defined by

Eq. 3 and the distance weighting function defined by

Eq. 11 are used.

We add two other train direction prediction datasets

(denoted by eastwest and westeast) and three mutagenicity

prediction datasets (denoted by muta-atoms, muta-bonds

and muta-chains) into this group of experiments. At the

same time, we choose other two related multi-instance

learning algorithms (MIBoost [25] and MIWrapper [26])

for competitors. We use the implementation of MIBoost

and MIWrapper with the nearest neighbor algorithm as the

basic classifier) in Weka 3.5.7 [31]. The detailed descrip-

tion of them is shown in Table 6.

Table 7 shows the detailed compared results in terms of

classification accuracy. In the same way, we also observe

their CPU training and test time (the averaged CPU time in

seconds, all experiments are carried out on a PC with

Microsoft Windows XP professional 2002 service pack 3

with Intel (R) Core (TM) 2 Quad CPU Q8400 (2.66 GHz)

and 3 GB memory). The detailed experimental results are

Table 3 Classification accuracy comparisons for BKNN with dif-

ferent k values and different distance functions

Datasets Distance

functions

k = 1 k = 2 k = 3 k = 4 k = 5

Musk1 Minimum

distance

85.78 90.11 89.11 84.78 86.89

Maximum

distance

66.22 66.22 66.44 67.33 67.22

Centroid

distance

84.56 83.44 82.44 83.67 80.33

Hausdorff

distance

80.44 85.78 80.44 83.67 81.44

Musk2 Minimum

distance

76.27 81.18 78.18 80.27 76.36

Maximum

distance

69.36 69.45 64.27 67.27 71.27

Centroid

distance

73.55 79.36 71.45 74.45 71.27

Hausdorff

distance

78.27 81.18 75.27 74.18 72.36

Table 4 Classification accuracy comparisons for CKNN with dif-

ferent k values and different distance functions

Datasets Distance

functions

k = 1 k = 2 k = 3 k = 4 k = 5

Musk1 Minimum

distance

87.00 89.11 88.11 84.00 84.89

Maximum

distance

67.11 67.22 67.33 68.44 69.56

Centroid

distance

85.67 87.89 86.89 84.78 83.56

Hausdorff

distance

83.56 84.67 85.89 83.56 82.44

Musk2 Minimum

distance

81.18 82.36 88.09 85.27 80.27

Maximum

distance

69.27 70.36 70.36 68.27 67.36

Centroid

distance

82.09 81.36 81.36 80.27 75.27

Hausdorff

distance

79.27 79.18 76.27 74.18 76.27

Table 5 Classification accuracy comparisons for BCKNN with

different weights

Datasets No

weights

Weighted by

Eq. 10

Weighted by

Eq. 11

Weighted by

Eq. 12

Musk1 90.11 92.22 92.22 90.00

Musk2 82.27 82.18 83.18 84.18

Table 6 Descriptions of two train direction prediction datasets and

three mutagenicity prediction datasets

Dataset Instances Attributes Bags Positives Negatives

Eastwest 213 24 20 10 10

Westeast 213 24 20 10 10

Muta-atoms 1,618 10 188 125 63

Muta-bonds 3,995 16 188 125 63

Muta-chains 5,349 24 188 125 63

Table 7 Classification accuracy comparisons for BCKNN versus

BKNN, CKNN, MIBoost, and MIWrapper

Datasets BCKNN BKNN CKNN MIBoost MIWrapper

Musk1 92.22 90.11 89.11 84.56 85.67

Musk2 83.18 81.18 82.36 76.27 77.27

Eastwest 65 70 45 55 50

Westeast 65 65 45 40 50

Muta-atoms 75.44 69.59 75.96 84.04 83.51

Muta-bonds 72.78 67.46 74.39 82.46 82.46

Muta-chains 74.5 71.9 74.47 84.68 85.73

Average 75.45 73.61 69.47 72.43 73.52
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shown in Tables 8 and 9 respectively. From the experi-

mental results, we can see that:

1. BCKNN (92.22 %) is better than previous BKNN

(90.11 %) and CKNN (89.11 %) on Musk1. On

Musk2, BCKNN (83.18 %) also outperforms BKNN

(81.18 %) and CKNN (82.36 %). These results vali-

date the effectiveness of our improved solution.

2. The CPU training and test time of BCKNN (19.291

and 4.46) is almost equal to previous CKNN (19.243

and 4.584). These results show that our BCKNN

almost maintains the same order of computational

overhead as previous CKNN.

3. Generally speaking, on two train direction prediction

datasets, our BCKNN is much better than other two

related competitors (MIBoost and MIWrapper) while

this strength is reversed on three mutagenicity predic-

tion datasets.

5 Conclusion and future work

In this paper, we revisit the well-known algorithms called

Bayesian-KNN (BKNN) and Citation-KNN (CKNN). After

the discussion of two practical problems in adapting KNN

to multi-instance classification problems, we propose an

improved algorithm called Bayesian Citation-KNN

(BCKNN) by combining the Bayesian approach and the

distance weighting approach. For each unseen bag,

BCKNN firstly finds its k references and q citers respec-

tively, and then a Bayesian approach is applied to its k

references and a distance weighted majority vote approach

is applied to its q citers. The experimental results on sev-

eral benchmark datasets show that our BCKNN is generally

better than previous BKNN and CKNN. Besides, BCKNN

almost maintains the same order of computational over-

head as CKNN.

The same as BKNN and CKNN, our BCKNN also uses

standard Euclidean distance to define the difference between

each pair of instances. Thus, using some new proposed dis-

tance measures, such as affinity-based distance function

[32], to scale up the accuracy of our BCKNN is one of the

main directions for our future work. Besides, in the current

version of BCKNN, k references are treated equally in the

Bayesian approach. Thus, how to apply the distance

weighting approach to the references and get the distance

weighted Bayesian approach is another main direction for

our future work. Finally, investigating and researching

the ranking performance of our BCKNN in terms of AUC

[33–35] will also be included in our future work.

Acknowledgments We thank Prof. E. Frank and Miguel Garcia

Torres for their kindly help. We also thank anonymous reviewers for

their valuable comments and suggestions. This work was partially

supported by the National Natural Science Foundation of China

(No. 61203287), the Program for New Century Excellent Talents in

University (No. NCET-12-0953), the Provincial Natural Science

Foundation of Hubei (No. 2011CDA103), and the Fundamental

Research Funds for the Central Universities.

References

1. Zhou ZH (2004) Multi-instance learning: a survey. Technical

Report, AI Lab, Department of Computer Science and Tech-

nology, Nanjing University, Nanjing

2. Zhang ML, Zhou ZH (2007) ML-KNN: a lazy learning approach

to multi-label learning. Pattern Recognit 40:2038–2048

3. He J, Gu H, Wang Z (2012) Bayesian multi-instance multi-label

learning using Gaussian process prior. Mach Learn

88(1–2):273–295

4. Zhou ZH, Zhang M-L, Huang S-J, Li Y-F (2012) Multi-instance

multi-label learning. Artif Intell 176(1):2291–2320

5. Dietterich TG, Lathrop RH, Lozano-Perez T (1997) Solving the

multiple instance problem with axis-parallel rectangles. Artif

Intell 89(1–2):31–71

6. Ruffo G (2000) Learning single and multiple decision trees for

security applications. PhD Dissertation, Department of Computer

Science, University of Turin, Turin

7. Zhang Q, Goldman SA (2002) EM-DD: an improved multiple-

instance learning technique. Adv Neural Inf Process Syst

14:1073–1080

Table 8 CPU Training time comparisons for BCKNN versus

BKNN, CKNN, MIBoost, and MIWrapper

Datasets BCKNN BKNN CKNN MIBoost MIWrapper

Musk1 0.64 0.64 0.68 0.37 0.06

Musk2 116.53 125.21 116.26 48.78 0.77

Eastwest 0.02 0.02 0.02 0.02 0

Westeast 0.02 0.02 0.02 0.04 0

Muta-

atoms

0.55 0.55 0.56 2.09 0

Muta-

bonds

4.85 4.85 4.85 17.02 0.01

Muta-

chains

12.43 12.32 12.31 39.96 0.02

Average 19.291 20.516 19.243 15.47 0.12

Table 9 CPU test time comparisons for BCKNN versus BKNN,

CKNN, MIBoost, and MIWrapper

Datasets BCKNN BKNN CKNN MIBoost MIWrapper

Musk1 0.16 0.07 0.15 0.06 0.07

Musk2 27.09 14.36 27.73 8.09 8.13

Eastwest 0 0 0.01 0 0

Westeast 0 0 0 0 0.01

Muta-atoms 0.13 0.06 0.13 0.23 0.03

Muta-bonds 1.09 0.55 1.18 1.9 0.19

Muta-chains 2.75 1.38 2.89 4.53 0.46

Average 4.46 2.346 4.584 2.12 1.27

198 Int. J. Mach. Learn. & Cyber. (2014) 5:193–199

123



8. De Raedt L (1998) Attribute-value learning versus inductive logic

programming: the missing links. Lecture Notes Artif Intell

1446:1–8

9. Zucker JD, Chevaleyre Y (2001) Solving multiple-instance and

multiple-part learning problems with decision trees and rule sets,

application to the mutagenesis problem. Lecture Notes Artif Intell

2056:204–214

10. Wang C, Scott S, Zhang J, Tao Q, Fomenko D, Gladyshev V

(2004) A study in modeling low-conservation protein superfam-

ilies. Technical report, Department of Computer Science,

University of Nebraska-Lincoln, Lincoln

11. Yang C, Lozano-Perez T (2000) Image database retrieval with

multiple-instance learning techniques. In: Proceedings of the

IEEE International Conference on Data Engineering, pp 233–243

12. Zhang Q, Goldman SA, Yu W, Fritts J (2002) Content-based

image retrieval using multiple-instance learning. In: Proceedings

of 19th International Conference on Machine Learning,

pp 682–689

13. Maron O (1998) Learning from ambiguity. Department of Elec-

trical and Computer Science, Massachusetts Institute of Tech-

nology, Cambridge

14. Andrews S, Tsochantaridis I, Hofmann T (2003) Support vector

machines for multiple-instance learning. Adv Neural Inf Process

Syst 15:561–568

15. Maron O, Ratan AL (1998) Multiple-instance learning for natural

scene classification. In: Proceedings of 15th International Con-

ference on Machine Learning, pp 341–349

16. Chen Y, Wang JZ (2004) Image categorization by learning and

reasoning with regions. J Mach Learn Res 5:913–939

17. Aha DW (ed) (1997) Lazy learning. Kluwer Academic Publish-

ers, Dordrecht

18. Wang J, Zucker J-D (2000) Solving the multiple-instance prob-

lem: a lazy learning approach. In: Proceedings of 17th Interna-

tional Conference on Machine Learning, pp 1119–1125

19. Auer P (1997) On learning from multi-instance examples:

empirical evaluation of a theoretical approach. In: Proceedings of

the Fourteenth International Conference on Machine Learning.

Morgan Kaufmann, San Francisco, pp 21–29

20. Maron O, Lozano-Perez T (1998) A framework for multiple-

instance learning. In: Advances in Neural Information Processing

Systems, vol 10. MIT Press, Cambridge

21. Chen Y, Bi J, Wang JZ (2006) MILES: multiple-instance learning

via embedded instance selection. IEEE PAMI 28(12):1931–1947

22. Foulds JR, Frank E (2008) Revisiting multiple-instance learning

via embedded instance selection. In: Proceedings of 21st

Australasian Joint Conference on Artificial Intelligence. Springer,

Auckland, pp 300–310

23. Blockeel H, De Raedt L (1998) Top-down induction of first order

logical decision trees. Artif Intell 101:285–297

24. Xu X (2001) A nearest distribution approach to multiple-instance

learning. Department of Computer Science, University of

Waikato, Hamilton

25. Freund Y, Schapire RE (1996) Experiments with a new boosting

algorithm. In: Proceedings of the Thirteenth International Con-

ference on Machine Learning. Morgan Kaufmann Press, San

Francisco, pp 148–156

26. Frank ET, Xu X (2003) Applying propositional learning algo-

rithms to multi-instance data. Technical Report, Department of

Computer Science, University of Waikato, Hamilton

27. Dhurandhar A, Dobra A (2012) Probabilistic characterization of

nearest neighbor classifier. Int J Mach Learn Cybern. doi:

10.1007/s13042-012-0091-y

28. Peuquet DJ (1992) An algorithm for calculating minimum

euclidean distance between two geographic features. Comput

Geosci 18(8):989–1001

29. Edgar GA (1995) Measure, topology, and fractal geometry. 3rd

print, Springer, Berlin

30. Chen X, Doihara T, Nasu M (1995) Spatial relations of distance

between arbitrary object s in 2D/3D geographic spaces based on

the hausdorff metric. LIESMARS’95, Wuhan

31. Witten IH, Frank E (2005) Data mining: practical machine

learning tools and techniques, 2nd edn. Morgan Kaufmann, San

Francisco

32. Bhattacharya G, Ghosh K, Chowdhury AS (2012) An affinity-

based new local distance function and similarity measure for kNN

algorithm. Pattern Recognit Lett 33(3):356–363

33. Huang J, Ling CX (2005) Using AUC and accuracy in evaluating

learning algorithms. IEEE Trans Knowl Data Eng 17(3):299–310

34. Jiang L, Li C, Cai Z (2009) Learning decision tree for ranking.

Knowl Inf Syst 20(1):123–135

35. Liang G, Zhu X, Zhang C (2012) The effect of varying levels of

class distribution on bagging for different algorithms: an empir-

ical study. Int J Mach Learn Cybern. doi:10.1007/s13042-012-

0125-5

Int. J. Mach. Learn. & Cyber. (2014) 5:193–199 199

123

http://dx.doi.org/10.1007/s13042-012-0091-y
http://dx.doi.org/10.1007/s13042-012-0125-5
http://dx.doi.org/10.1007/s13042-012-0125-5

	Bayesian Citation-KNN with distance weighting
	Abstract
	Introduction
	Adapting K-nearest-neighbor to the multi-instance learning
	Bayesian Citation-KNN with distance weighting
	Experimental conditions, methods, results
	Conclusion and future work
	Acknowledgments
	References


