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Abstract In this paper, we extend the classical assign-

ment problem to the multicriteria assignment problem by

considering three criteria: cost, time and quality subject to

many realistic constraints including multi-job assignment

and a knapsack-type resource constraint. The paper

addresses the uncertainty of the real-life assignment prob-

lem by formulating a fuzzy cost–time–quality assignment

problem using exponential membership functions. We

define fuzzy goal for each criterion as per the preferences

of the decision-maker and aggregate the fuzzy goals using

product operator. In order to obtain optimal assignment

plans, the resultant nonlinear 0-1 optimization problem is

solved using genetic algorithm for different choices of the

shape parameters in the exponential membership functions.

As an illustrative example, we consider a fuzzy manpower

planning problem.

keywords Assignment problem � Fuzzy optimization �
Multicriteria decision-making � Nonlinear programming �
Genetic algorithm

1 Introduction

Assignment problem is of great use in many important

decision-making problems such as resource allocation

problem, personnel scheduling and manpower planning.

One may refer to the recent survey paper of Pentico [27]

for details on assignment problems. The classical assign-

ment problem is usually considered either as the cost

minimizing problem or as the time minimizing problem.

Cost minimizing problem aims at finding the optimal

assignment that minimizes the total project cost, whereas

the time minimizing problem search for the shortest dura-

tion, when the total project time is of vital concern.

However, assigning jobs only based on cost and/or time

cannot efficiently model the real-world situations. There-

fore, generalized assignment problems are proposed in the

literature that include factors other than cost and time while

making the allocation decisions.

In the real-world scenario, the various parameters

responsible for an optimal assignment plan need not be

deterministic. Moreover, assignment problems are also

affected by vagueness and ambiguity associated with the

use of linguistic expressions such as ‘‘high cost’’, ‘‘longer

time’’ and ‘‘poor quality’’ by the decision-maker. In such

situations, the assignment problem is modeled as fuzzy

assignment problem. The real-world decision-making

problems in general and the assignment problem in par-

ticular have benefited greatly from the fuzzy set theory [38,

39, 42] in terms of integrating quantitative and qualitative

information, subjective preferences of the decision-maker.

With respect to the fuzzy model of the assignment problem

and its variants, one may refer to the works of Belacela and

Boulasselb [1], De and Yadav [5], Feng and Yang [7],

Huang et al. [12], Kagade and Bajaj [14], Kumar and

Gupta [15], Li et al. [18], Lin and Wen [19], Lin et al. [20],
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Liu and Gao [22], Liu and Li [23], Mukherjee and Basu

[25], Qin et al. [28], Ridwan [29], Sakawa et al. [31], Tada

and Ishii [32], Tsai et al. [34], Wang and Watada [37],

Yang and Liu [41].

In this paper, we study a new model of multicriteria

assignment problem based upon cost, time, and quality

objectives subject to many realistic constraints including

multi-job assignment and a knapsack-type resource con-

straint. We propose an efficient fuzzy approach to solve it

using exponential membership functions. The paper is

organized as follows. In Sect. 2, we describe and formulate

the multicriteria assignment problem. In Sect. 3, we for-

mulate fuzzy multicriteria assignment problem. In Sect. 4,

we present details of the genetic algorithm (GA) to solve

the model of the fuzzy multicriteria assignment problem.

Numerical illustrations of fuzzy manpower planning are

provided in Sect. 5 to demonstrate the proposed method-

ology and the concluding remarks are made in Sect. 6.

2 Problem formulation

2.1 Problem description, assumptions and notations

In the real-world allocation problems, the managers hope

not only to maximize the profit (minimize the cost) and

minimize the time but also wish to promote the quality of

each job/task performed when assigned to a specific

worker. The amounts of cost needed and time required to

accomplish a task with certain level of quality are highly

interrelated with the difficulty of the job and the capability

of the worker. Moreover, the level of quality does not

necessarily relate to the time taken and cost incurred,

because a job can be completed on time consuming rea-

sonable budget, while the quality is unacceptable. There-

fore, a trade-off among the cost, time and quality is

required to make the allocation decision. The multicriteria

assignment problem considered in this paper is described

as under.

Assume that there are n tasks and n workers are avail-

able to perform the tasks. We wish to find an optimal

assignment plan satisfying the following requirements:

1. Consider three goals, namely, minimize the total cost

of finishing tasks, minimize the total time in which all

the tasks are completed and maximize the overall

quality level achieved. A project is said to be accom-

plished if all n tasks are completed with an acceptable

level of quality. It is then expected that the project can

be optimally assigned and efficiently conducted so that

resources utilized can also be minimized. An optimal

assignment implies that the task is assigned to the most

suitable worker, explicitly, the most capable or skillful

worker, requiring the least resources, i.e., cost and time

and resulting in the highest quality level. In other

words, if worker i has ability to undertake some tasks

and it is believed that he will probably account for

more cost or consume very long time or is not meeting

the quality standards, in such situations, the worker

i will be deprived of opportunity to undertake such

tasks.

2. All the tasks must be completed and each task is

completed by only one worker. A worker can under-

take more than one task, i.e., multi-job assignment is

permissible.

3. It is allowed not to assign any task to some worker(s).

4. In order to balance amount of work among the

workers, it is necessary to stipulate the number of

workers who have been assigned to various tasks. In

this paper, we assume that this number should be at

least s, 0 \ s B n.

5. In the process of decision-making, the working ability

of each worker is considered. We define the maximum

number of tasks that can be assigned to the worker i by

li, 0 \ li B n.

6. There is an additional knapsack-type resource con-

straint subject to a maximum limit on the overall

distribution of resources.

For each worker i finishing task j, we denote the cost, the

consumed time, the quality level and the consumed resource

by cij, tij, qij and dij; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; n; respec-

tively. In order to model the above-mentioned multicriteria

assignment problem, the following variables are employed:

xij ¼
1; if task j is assigned to worker i;
0; otherwise:

�

2.2 Objectives

2.2.1 Cost

Let f1(x,C) denote the total cost after all tasks are com-

pleted, i.e.,

f1ðx;CÞ ¼
Xn

i¼1

Xn

j¼1

cijxij:

2.2.2 Time

The total consumed time after all tasks assigned to worker i

are completed, is given by

Xn

j¼1

tijxij; i ¼ 1; 2; . . .; n:

Assuming every worker started simultaneously, the total

consumed time denoted by f2(x,T) when all the tasks are

finished, is given as
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f2ðx; TÞ ¼ max
1� i� n

Xn

j¼1

tijxij:

2.2.3 Quality

Let f3(x,Q) denote the total quality achieved after all the

tasks are completed, i.e.,

f3ðx;QÞ ¼
Xn

i¼1

Xn

j¼1

qijxij:

In this paper, the quality of the tasks completed has been

considered at five different levels, where level 1 is the best

and level 5 is the worst. Thus, for maximizing total quality

we need to minimize f3(x,Q). This is done so in order to

maintain consistency in the nature of all the three objective

functions. It may be noted that the quality level can be

decided by the project manager and may represent the

perceived quality of the work, the ease of communication,

the reputation of a firm or an individual.

2.3 Constraints

• Each task must be completed by only one worker and

all the tasks should be finished, therefore, we have

Xn

i¼1

Xn

j¼1

xij ¼ n;

Xn

i¼1

xij ¼ 1; j ¼ 1; 2; . . .; n:

• The number of tasks that are finished by worker i can

not be larger than liði ¼ 1; 2; . . .; nÞ and the number of

workers who undertake some tasks must be at least

s, therefore, we have

Xn

j¼1

xij� li; i ¼ 1; 2; . . .; n;

Xn

i¼1

min 1;
Xn

j¼1

xij

( )
� s:

• The knapsack-type resource constraint subject to a

maximum limit b on the overall distribution of

resources is expressed as

Xn

i¼1

Xn

j¼1

dijxij� b:

2.4 The decision problem

The constrained multicriteria assignment model is written

as follows:

(P1) min f1ðx;CÞ ¼ min
Xn

i¼1

Xn

j¼1

cijxij

min f2ðx; TÞ ¼ min max
1� i� n

Xn

j¼1

tijxij

 !

min f3ðx;QÞ ¼ min
Xn

i¼1

Xn

j¼1

qijxij

subject to
Xn

i¼1

Xn

j¼1

xij ¼ n; ð1Þ

Xn

i¼1

xij ¼ 1; j ¼ 1; 2; . . .; n; ð2Þ

Xn

j¼1

xij� li; i ¼ 1; 2; . . .; n; ð3Þ

Xn

i¼1

min 1;
Xn

j¼1

xij

( )
� s; ð4Þ

Xn

i¼1

Xn

j¼1

dijxij� b; ð5Þ

xij 2 f0; 1g; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; n: ð6Þ

3 Fuzzy multicriteria assignment problem

Operationally, formulating an assignment problem requires

an estimate of the cost, time and quality for various possible

allocations among workers and tasks. In real-world problems,

these estimates cannot be determined exactly because cost,

time and quality are affected by various indefinite and

uncertain factors that cannot be measured precisely. Also, the

decision-maker’s assessment about the estimates may be

based on incomplete knowledge about the project itself, which

may affect the decision of allocation of a task to a parti-

cular worker. Hence, making a decision based upon a crisp

model is not the best decision. Under such circumstances, the

issue of allocation of tasks becomes one of a choice from

a ‘‘fuzzy’’ set of subjective/intuitive interpretations.

In this section, we present fuzzy model of the multicriteria

assignment problem based on vague aspiration levels of the

decision-maker to determine the best allocation strategy. We

assume that the decision-maker may decide aspiration levels

on the basis of past experiences and knowledge possessed by

him. The best allocation decision is resulted from the inter-

section of all the fuzzy goals and the constraints.

3.1 Representation of fuzzy goals

The vague aspiration levels of the decision-maker can be

characterized by using the fuzzy membership functions, for
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example, linear [42, 43], piecewise linear [13], exponential

[3, 17], tangent [16]. A linear membership function is most

commonly used because it is simple and it is defined by

fixing two points: the upper and lower levels of accept-

ability. However, there are some difficulties in using linear

membership functions, see Watada [40]. Furthermore, if

the membership function is interpreted as fuzzy utility of

the decision-maker, describing the behavior of indiffer-

ence, preference or aversion towards uncertainty, then a

nonlinear membership function provides a better repre-

sentation than a linear membership function. Moreover, it

should be emphasized that unlike linear membership

functions, for nonlinear membership functions the marginal

rate of increase(or decrease) of membership values as a

function of model parameters is not constant—a technique

that reflects reality better than the linear case.

We transform the multicriteria assignment problem (P1)

into a fuzzy multicriteria assignment problem using the

exponential membership functions characterizing vague

aspiration levels of the decision-maker with regard to the

objective functions of cost, time and quality. The advan-

tage of using the exponential form of membership function

is that it is not as restrictive as the linear form, but flexible

enough to describe the grades of precision in the parameter

values. Let lZ1
ðxÞ; lZ2

ðxÞ; and lZ3
ðxÞ represents the

membership functions in respect of cost, time, and quality

objectives, respectively. It may be noted that 0 B lZj
ðxÞ

B 1; j = 1, 2, 3. The following steps are used in the con-

struction of the exponential fuzzy membership functions:

Step 1: Find Zj
worst (upper bound), Zj

* (lower bound) and

Dj (tolerance) of each objective function as

follows:

(a) Obtain individual Zj
worst (worst solution) by

maximizing the cost objective, time objective

and quality objective subject to all the con-

straints of the problem (P1).

(b) Obtain individual Zj
* (best solution) by

minimizing the cost objective, time objective

and quality objective subject to all the con-

straints of the problem (P1).

(c) Obtain the tolerance Dj = Zj
worst - Zj

* for

each objective function.

Step 2: Define the exponential membership func-

tion lZj
ðxÞ, j = 1, 2, 3 as follows, see Fig. 1:

lZj
ðxÞ ¼

1; Zj� Z�j

1�exp
KjðZworst

j
�ZjÞ

Dj

� �
1�expðKjÞ ; Z�j \Zj� Zworst

j

0; Zj [ Zworst
j

8>>><
>>>:

As Fig. 1 shows, for Kj \ 0 (Kj [ 0), the membership

function lZj
ðxÞ is strictly concave (convex) in [Zj

*, Zj
worst].

The values of the shape parameter Kj of the fuzzy

membership function allows us to model the grades of

precision in the corresponding objective function. It may be

noted that by changing the shape parameters, we can

capitalize on an advantage of the exponential membership

functions: they explore the different fuzzy utilities of the

decision-maker.

3.2 Aggregation of fuzzy goals

Once the fuzzy membership functions are defined, the

fuzzy goals are aggregated using the ‘‘product operator’’.

Further, the aspiration levels of the various fuzzy goals are

used in the constraints to achieve the desired compromise

solution. Therefore, the fuzzy multicriteria assignment

problem becomes:

(P2) max W ¼ ðlZ1
ðxÞ � lZ2

ðxÞ � lZ3
ðxÞÞ

subject to constraints (1–6)

lZ1
ðxÞ � lZ1

ðxÞ� 0; ð7Þ

lZ2
ðxÞ � lZ2

ðxÞ� 0; ð8Þ

lZ3
ðxÞ � lZ3

ðxÞ� 0: ð9Þ

Here, (lZ1
ðxÞ � lZ2

ðxÞ � lZ3
ðxÞ) denotes the product term.

Further, lZ1
ðxÞ; lZ2

ðxÞ and lZ3
ðxÞ are the desired aspiration

levels of the fuzzy goals corresponding to the three

objective functions. The model (P2) can be solved for

varying aspiration levels of the decision-maker regrading

the achievement of various fuzzy goals.

4 Solution methodology

The fuzzy multicriteria assignment problem (P2) is a single

objective nonlinear 0-1 optimization problem with the

knapsack-type constraint and is ‘‘NP-hard’’ problem [26].

To deal with such ‘‘NP-hard’’ problems many heuristicFig. 1 Fuzzy membership functions
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methods have been developed. Herrera et al. [9] presented

a personnel assignment problem with verbal information

using a GA. Toroslu and Arslanoglu [33] presented GA

solutions for different versions of the personnel assignment

problem with multiple objectives based on hierarchical and

set constraints. Wang et al. [35] presented a two-stage

fuzzy facility location problem with Value-at-Risk (VaR)

which results in a two-stage fuzzy zero-one integer pro-

gramming problem. They also proposed an approximate

approach to compute the VaR by making use of the dis-

cretization method of fuzzy variables and a hybrid geno-

type-phenotype-mutation-based binary particle swarm

optimization algorithm to compute the VaR. Wang et al.

[36] proposed a hybrid mutation-based binary ant-colony

optimization approach to the two-stage fuzzy-random

facility-location model. Lin et al. [21] presented a particle

swarm optimization algorithm combined with the random-

key encoding scheme for solving a bi-objective personnel

assignment problem. In this paper, we propose to use GA

to solve fuzzy multicriteria assignment problem (P2). The

GA is a well-known random search and global optimiza-

tion method based on the idea of natural selection and

evolution. Rather than relying on the gradient information,

it searches the optimal solution by simulating the natural

evolution process. The GA is proven to be a suitable

method for solving large-scale optimization problems

which are nonlinear, non-convex and discrete. It has

demonstrated several significant advantages, such as strong

robustness, convergence to global optimum and parallel

search capability. As large-scale parallel stochastic search

and optimization algorithms, the GAs have a good prove-

nance in the resolution of diverse NP-hard problems [6,

10], including network optimization and resource assign-

ment [24, 30].

4.1 Genetic algorithm

GA, a general adaptive optimization search methodology

based on a direct analogy to Darwinian natural selection

and genetics in biological systems, is a promising alter-

native to conventional heuristic methods and is based on

the principle of ‘‘survival of the fittest’’ [4, 8, 11]. An

overview of basic GA is as follows.

To solve a problem with GA, an encoding mechanism

must first be designed to represent each solution as a

chromosome. A fitness function is then defined to measure

the goodness of a chromosome. The GA searches the

solution space using a population which is a set of chro-

mosomes at each generation. During each generation, the

three genetic operators: selection, crossover and mutation,

are applied to the population several times to form a new

population. Selection operation results in forming a parent

population for creating the next generation. Crossover

operation with a crossover rate recombines the two selected

chromosomes to form offsprings. Mutation operation with a

mutation rate randomly alter selected positions in a selected

chromosome. New population is then generated by replac-

ing some chromosomes in the parent population with the

offsprings. This process is repeated until some termination

condition, e.g., the number of generations is reached.

It may be noted that while solving the model (P2), in

each GA run, the decision-maker is required to provide

values of the shape parameters K1, K2 and K3 based on his

estimates of vagueness in the objective functions of cost,

time and quality, respectively. The following are the

technical details of the algorithm used.

4.1.1 Chromosome encoding

A gene in a chromosome is characterized by two factors:

locus (i.e., the position of the gene located within the

structure of chromosome), and allele (i.e., the value the gene

takes). In the proposed encoding method, the length of the

chromosome is taken to be n, same as the number of jobs

that need to be allocated. Thus, a solution is represented as a

chromosome Chk, which is encoded as an array, as follows:

Chk ¼ Xk½j� ¼ aj; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; popsize:

Here, popsize defines the number of chromosomes

initialized to constitute population of one generation. The

initialization algorithm to create first generation of size

popsize is as follows:

Step 1 For k = 1 to popsize, repeat Step 2.

Step 2 For j = 1 to n, repeat Step 3.

Step 3 Randomly generate an integer aj 2 ½1; n�: Initial-

ize Xk[j] = aj.

Here, aj takes an integer value in [1, n], indicating that the

jth task is assigned to worker aj. For example, a1 = 2

indicates that the job 1 is assigned to worker 2. After

decoding this solution, we can get the corresponding values

of decision variables xij:

xij ¼
1; if i ¼ aj

0; otherwise

�

where i ¼ 1; 2; . . .; n; denotes the worker and j ¼
1; 2; . . .; n; is the job-id. It can be verified easily that this

solution satisfies the constraints (1), (2) and (6) of the

model (P2). If it also satisfies other constraints of the

model, then it is a feasible solution.

4.1.2 Fitness evaluation

The fitness function is another important issue in GA for

solving any problem. The design of the chromosome takes

care of the constraints (1), (2) and (6) of the model (P2).
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Any violation in the left out constraints (3)-(5) and (7)-

(9) will lead to infeasibility. We use penalty parameter

approach to put selective pressure on the infeasible chro-

mosomes, thus assigning them lesser fitness and leading to

their elimination in subsequent generations. Absolute val-

ues of all the violations in the constraints (3)–(5) and (7)–

(9) are clubbed together to get the net violation V. We use a

static penalty parameter P to penalize the net violation V.

In general, the use of penalty parameter is to put enough

selective pressure on the fitness function to avoid infeasi-

bility of the chromosomes. In case of no violation of the

inequality constraints (3)–(5) and (7)–(9), the penalty

parameter P will be zero and positive otherwise. It may be

noted that if the penalty is too high or too low then the

problem might become very difficult for the GA. A large

penalty discourages the exploration of the infeasible region

since the very beginning of the search process. On the other

hand, if the penalty is too low, a lot of the search time

(generations) will be spent exploring the infeasible region

because the penalty will be negligible with respect to the

objective function. The resultant fitness function fitk for

chromosome Chk; k ¼ 1; 2; . . .; popsize is thus expressed

as:

fitk ¼ ðlZ1
ðxÞ � lZ2

ðxÞ � lZ3
ðxÞÞ � P � V

where

P ¼ 103; if V [ 0

0; otherwise

�

The objective is to find the solution chromosome Chk

corresponding to the best found (maximum value) fitness,

for the function fitk.

4.1.3 Elitism

In order to preserve and use previously found best solution

in subsequent generations, an elite-preserving operator is

often used. In addition to an overall increase in performance,

there is another advantage of using elitism. In an elitist GA,

the statistics of the population-best solutions cannot degrade

with generations. The elite count (t) indicates the number of

individuals that are guaranteed to be carried forward to the

next generation without performing selection, crossover and

mutation operations. In this paper, we use t = 1 to retain the

most fit individual of the current population for the popu-

lation comprising the next generation.

4.1.4 Selection

The selection method determines how chromosomes are

selected from the current population to be considered as

parents for crossover. The goal of selection (reproduction)

operator is to choose individuals that, on average, are more

fit than others to pass on their genes to the next generation.

We employ 4-player tournament selection as a selection

mechanism in this study. Four individuals are randomly

selected and the one with the highest fitness is selected for

the parent population. It may be recalled that we already

have one member of the next generation as an outcome of

performing elitism. Let Ch0k; k ¼ 2; 3; . . .; popsize consti-

tutes the parent population which will give rise to

remaining popsize - 1 members of the next generation

after the crossover and mutation operations are performed.

The remaining popsize - 1 chromosomes for the parent

population are generated using 4-player tournament selec-

tion as follows:

Step 1 For k = 2 to popsize, repeat Step 2 to Step 5.

Step 2 Randomly generate four integers sel1; sel2; sel3;

sel4 2 ½1; popsize�: These represents the selection of

chromosomes Chsel1 ; Chsel2
; Chsel3 ; Chsel4

for 4-player

tournament selection.

Step 3 If fitsel1
C fitsel2 , let m = sel1 else m = sel2.

Step 4 If fitsel3
C fitsel4 , let t = sel3 else t = sel4.

Step 5 If fitm C fitt, let Ch0k = Chm, else Ch0k = Cht.

4.1.5 Crossover operator

Crossover is the main genetic operator. The two parent

chromosomes, if selected for mating pool, reproduce two

child chromosomes (offsprings) using the crossover oper-

ation. The crossover probability pc 2 ð0; 1Þ represents the

statistical chance that the two selected chromosomes will

crossover. For each potential crossover, a random number

between 0 and 1 is generated. If the number of selected

chromosome is odd then the above procedure is repeated

until one more chromosome gets selected or the number of

selected chromosomes become an even number. Two-point

crossover is used here between the selected parents to

exchange the gene values between the two randomly

selected crossover points in both parent chromosomes to

produce offsprings. The algorithm of the two-point cross-

over operation is given below:

Step 1 For k = 2 to popsize, repeat Step 2.

Step 2 Randomly generate a real number r from interval

(0,1). The chromosome Ch0k is selected as a parent if

r \ pc.

Step 3 Denote the selected parents as S1; S2; . . . and

divide them into following pairs ðS1; S2Þ; ðS3; S4Þ; . . .:

Step 4 For each pair of selected parents, for example

(S1, S2), randomly select two positions pos1; pos2 2
½1; n�:
Step 5 Exchange the gene values between the two

selected positions pos1 and pos2, for the two selected

parents.
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Figure 2 depicts the two point crossover operation

between two randomly generated positions, pos1 = 2 and

pos2 = 4, for the selected parents.

4.1.6 Mutation operator

Mutation is another operator which produce spontaneous

random changes in various chromosomes by altering one or

more genes. In this paper, out of several available mutation

operators, we use swap mutation. With some probability of

mutation pm 2 ð0; 1Þ; a chromosome is selected for the

process of mutation. The mutation process is summarized

as follows:

Step 1 Set k = 2.

Step 2 If k B popsize, go to Step 3, otherwise stop.

Step 3 Randomly generate a real number r from interval

(0,1). If r \ pm, select the chromosome Ch0k for mutation

and go to Step 4 else k = k ? 1 and go to Step 2.

Step 4 Randomly select two positions, pos1; pos2 2 ½1; n�
and swap the gene values at the two selected positions.

Figure 3 depicts the process of mutation in a selected

chromosome with pos1 = 3 and pos2 = 5. Here, in the

selected chromosome, pos1 = 3 corresponds to task 3 is

assigned to worker 6, i.e., x63 = 1 and pos2 = 5 corre-

sponds to task 5 is assigned to worker 4, i.e., x45 = 1. After

swap mutation is performed, task 3 is assigned to worker 4,

i.e., x43 = 1 and task 5 is assigned to worker 6, i.e.,

x65 = 1.

4.2 Step-wise description of the proposed solution

approach

The step-wise description of the proposed solution

approach for obtaining the optimal assignment plans of the

fuzzy assignment problem is as follows:

Step 1 Express fuzzy goal of each objective function of

the problem (P1) using exponential fuzzy membership

function and aggregate different fuzzy goals using

product operator.

Step 2 Use aspiration level of each fuzzy goal to guide

the solution search.

Step 3 Use GA to solve the resultant nonlinear 0-1

optimization problem (P2) for different choices of the

shape parameters in the exponential fuzzy membership

functions.

5 Numerical illustrations: results and analysis

In this section, we present numerical illustrations of the

fuzzy manpower planning problem. The proposed GA is

coded in C?? on a personal computer with Intel Cor-

e2Duo CPU, having a speed of 2.8 GHz and a 4 GB RAM.

The following settings of the parameters are used to solve

different problem instances: number of tasks (n) = number

of workers (n) = 6, li = 2 V i, s = 5, b = 30, pc = 0.5,

pm = 0.1, popsize = 100, generations = 2,000. Table 1

provides necessary data in respect of cost, time, quality and

resource requirements. Table 2 gives the upper bound

(Zj
worst), lower bound (Zj

*) and the tolerance (Dj) for each

objective function. These values are used to construct the

exponential membership functions of the three objectives.

Optimal assignment plans are reported in Tables 3, 4, 5

for different values of the shape parameters and different

estimates of aspiration levels indicated by the decision-

maker. For each combination of the shape parameters

(K1, K2, K3), we have presented results by taking two dif-

ferent estimates of the aspiration levels ðlZ1
ðxÞ; lZ2

ðxÞ;
lZ3
ðxÞÞ:
Figures 4, 5, 6 show the variations in the degree of

satisfaction of the goals of cost, time and quality corre-

sponding to different choices of the shape parameters.

Generally, the achievement levels may not be large enough

to satisfy the decision-maker because of multiple objective

nature of the problem and also considering the fact that we

are dealing with 0-1 programming problem. Accepting a

high deterioration in one of the objective functions may

provide higher improvement(s) in the remaining objective

functions. In most cases, it is possible that poor perfor-

mance on one criterion may be compensated by good

Fig. 2 Two point crossover operation

Fig. 3 Swap mutation operation
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performance on other criteria. Thus, corresponding to

decision-maker’s preferences, many different solutions can

be reached at different satisfaction degrees.

The above-obtained optimal assignment plans clearly

shows the advantage of using exponential membership

functions in the fuzzy multicriteria assignment problem. If

the decision-maker is not satisfied with the obtained

Table 1 The cost–time–quality–resource matrix

Worker i Task (j) Worker i Task (j)

1 2 3 4 5 6 1 2 3 4 5 6

c1j 6 3 5 8 10 6 c4j 9 10 8 6 10 4

t1j 4 20 9 3 8 9 t4j 12 13 14 6 9 10

q1j 1 2 1 1 1 3 q4j 3 5 2 3 4 2

d1j 9 6 4 8 7 3 d4j 6 3 2 10 4 8

c2j 6 4 6 5 9 8 c5j 4 6 7 9 8 7

t2j 6 18 8 7 17 8 t5j 9 8 7 14 5 9

q2j 2 3 2 3 4 3 q5j 2 5 4 3 2 2

d2j 7 5 9 6 2 4 d5j 7 5 4 8 9 6

c3j 11 7 4 8 3 2 c6j 3 5 11 10 12 8

t3j 2 8 20 7 15 7 t6j 17 13 3 4 13 7

q3j 1 4 3 2 3 4 q6j 2 2 3 4 3 4

d3j 5 8 7 11 9 5 d6j 4 11 6 9 5 10

Table 2 The worst-best solution payoff matrix

Zj Zj
worst Zj

* Tolerance (Dj)

Z1 59 28 31

Z2 35 9 26

Z3 24 12 12

Table 3 Optimal assignment plan-I

ðlZ1
ðxÞ;lZ2

ðxÞ; lZ3
ðxÞÞ

= (0.7, 0.75, 0.8)

ðlZ1
ðxÞ;lZ2

ðxÞ;lZ3
ðxÞÞ

= (0.8, 0.65, 0.85)

W 0.581732 W 0.52569

lZ1
0.796488 lZ1

0.859998

lZ2
0.790324 lZ2

0.693501

lZ3
0.924142 lZ3

0.881425

Cost (Z1) 31 Cost (Z1) 30

Time (Z2) 17 Time (Z2) 20

Quality (Z3) 18 Quality (Z3) 19

Resource consumed 29 Resource consumed 29

Optimum allocation Worker1:

{Task 6}

Optimum allocation Worker1:

{Task 2}

Worker2:

{Task 4}

Worker2:

{Task 4}

Worker3:

{Task 5}

Worker3:

{Task 6}

Worker4:

{Task 3}

Worker4:

{Task 5}

Worker5:

{Task 2}

Worker5:

{Task 3}

Worker6:

{Task 1}

Worker6:

{Task 1}

Shape parameters: (K1, K2, K3) = (2, -1, -5)

Table 4 Optimal assignment plan-II

ðlZ1
ðxÞ;lZ2

ðxÞ; lZ3
ðxÞÞ

= (0.8, 0.9, 0.85)

ðlZ1
ðxÞ;lZ2

ðxÞ; lZ3
ðxÞÞ

= (0.85, 0.8, 0.7)

W 0.697663 W 0.70678

lZ1
0.836013 lZ1

0.96679

lZ2
0.928821 lZ2

1

lZ3
0.898464 lZ3

0.731059

Cost (Z1) 48 Cost (Z1) 39

Time (Z2) 12 Time (Z2) 9

Quality (Z3) 15 Quality (Z3) 18

Resource

consumed

30 Resource

consumed

29

Optimum

allocation

Worker1:

{Task 3,

Task 4}

Optimum

allocation

Worker1:

{Task 3}

Worker2:

{Task 6}

Worker2:

{Task 4}

Worker3:

{Task 1}

Worker3:

{Task 1,

Task 6}

Worker4:

{Task 5}

Worker4:

{Task 5}

Worker5:

{Task 2}

Worker5:

{Task 2}

Worker6:{NIL} Worker6:{NIL}

Shape parameters: (K1, K2, K3) = (-5, -1, -2)
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assignment plan, more assignment plans can be obtained by

varying values of the shape parameters in the exponential

membership functions enabling us to explore different

fuzzy utilities of the decision-maker. In the proposed

methodology, all the three objectives are treated equiva-

lently. However, the decision-maker can choose different

solutions according to his needs in different situations. For

example, cost can be the most important objective for the

decision-maker in a determined period of allocation plan.

Then, the decision-maker will choose the solution which

satisfies the cost objective function the most. However, this

can cause poor performance of the satisfaction degree of

other objective functions. The proposed solution method

provides a wide range of information and flexibility in the

sense that by changing shape parameters in the exponential

membership functions interactively provides different

scenario analysis for imprecise allocation plans. Also, it is

possible that the upper bound Zj
worst and lower bound Zj

* of

the objective functions can be changed using decision-

maker’s preferences so that new membership functions are

generated. This will lead to the formulation of a new crisp

0-1 programming problem.

5.1 Comparison of the proposed approach

with the approach of Tsai et al. [34]

To further assess the performance of the proposed

approach, we compare the experimental results of the

proposed approach with the experimental result produced

by the approach of Tsai et al. [34]. In their approach, the

linear membership functions have been used to capture the

vague aspiration levels of the decision-maker and max–min

approach proposed by Bellman and Zadeh [2] is used to

aggregate all the fuzzy goals. Table 6 presents the corre-

sponding optimal assignment plan obtained using the

approach of Tsai et al. [34].

The comparison of the optimal assignment plans pre-

sented in Tables 3, 4, 5 with the optimal assignment plan

Table 5 Optimal assignment plan-III

ðlZ1
ðxÞ;lZ2

ðxÞ; lZ3
ðxÞÞ

= (0.9, 0.8, 0.7)

ðlZ1
ðxÞ;lZ2

ðxÞ; lZ3
ðxÞÞ

= (0.7, 0.9, 0.8)

W 0.679218 W 0.641255

lZ1
0.927742 lZ1

0.736945

lZ2
0.859636 lZ2

0.96849

lZ3
0.851663 lZ3

0.898464

Cost (Z1) 29 Cost (Z1) 32

Time (Z2) 25 Time (Z2) 18

Quality (Z3) 16 Quality (Z3) 15

Resource

consumed

29 Resource

consumed

30

Optimum

allocation

Worker1:

{Task 6}

Optimum

allocation

Worker1:

{Task 3,

Task 4}

Worker2:

{Task 2,

Task 4}

Worker2:

{Task 2}

Worker3:

{Task 5}

Worker3:

{Task 6}

Worker4:

{Task 3}

Worker4:

{Task 5}

Worker5:{NIL} Worker5:{NIL}

Worker6:

{Task 1}

Worker6:

{Task 1}

Shape parameters: (K1, K2, K3) = (2, -5, -2)

z 
(x

)
µ

1

Fig. 4 The degree of satisfaction of the goal of the total cost

z 
(x

)
µ

2

Fig. 5 The degree of satisfaction of the goal of the total time

z 
(x

)
µ

3

Fig. 6 The degree of satisfaction of the goal of the overall quality
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presented in Table 6, clearly shows that the individual

achievement level of each fuzzy goal is better in most of

the assignment plans obtained using the proposed

approach. In other words, the proposed approach not only

provides better assignment plans but also provides flexi-

bility in the sense that if the decision-maker is not satisfied

with the obtained assignment plan, more assignment plans

can be obtained by varying values of the shape parameters

in the exponential membership functions enabling us to

explore different fuzzy utilities of the decision-maker. It is

important to point out that the flexibility to explore dif-

ferent fuzzy utilities of the decision-maker is not possible

in the approach of Tsai et al. [34] since the linear mem-

bership functions are defined by fixing both the upper and

lower levels of acceptability.

6 Conclusions

In this paper, we have discussed a fuzzy multicriteria

assignment problem to deal with an uncertain environment

in the real-world applications of the assignment problem.

We considered overall quality in finishing all the tasks

along with cost and time objectives. The solution of the

proposed model is a trade-off among the cost, time and

quality objectives. The exponential fuzzy membership

functions have been used to efficiently model the fuzzy

assignment problem using product operator. The shape

parameters in the exponential membership functions are

used to describe the grades of precision in the objective

functions. The resultant nonlinear 0-1 optimization prob-

lem with a knapsack-type resource constraint is ‘‘NP-hard’’

and thus has been solved using GA. Optimal assignment

plans have been reported corresponding to many choices of

the shape parameters describing different fuzzy utilities of

the decision-maker and the various combinations of desired

aspiration levels of the objectives indicated by the deci-

sion-maker.
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