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Abstract We propose a novel method (FANSEA) that

performs very complex time series matching. The matching

here includes comparison and alignment of time series, for

diverse needs: diagnosis, clustering, retrieval, mining, etc.

The complexity stands in the fact that the method is able to

match quasi-periodic time series, that are eventually phase

shifted, of different lengths, composed of different number

of periods, characterized by local morphological changes

and that might be shifted/scaled on the time/magnitude

axis. This is the most complex case that can occur in time

series matching. The efficiency stands in the fact that the

newly developed FANSEA method produces alignments

that are comparable to those of the previously published

SEA method. However and as a result of data reduction,

FANSEA consumes much less time and data; hence,

allowing for faster matching and lower storage space.

Basically, FANSEA is composed of two main steps: Data

reduction by curve simplification of the time series traces

and matching through exchange of extracted signatures

between the time series under process. Due to the quasi-

periodic nature of the electrocardiogram (ECG), the tests

were conducted on records selected from the Massachusetts

Institute of Technology-Beth Israel Hospital database

(MIT-BIH). Numerically, the new method data reduction

was up to 80 % and the time reduction was up to 95 %.

Accordingly and among many possible applications, the

new method is very suitable for searching, querying and

mining of large time series databases.

Keywords Pattern matching � Machine learning �
Time series alignment � Data reduction � Data mining �
Data retrieval

1 Introduction

Modeling, analysis and exploration of time series are

important applications in many fields of science and tech-

nology. They are particularly useful in knowledge dis-

covery, machine learning and in diagnosis of systems

generating these time series. Domains for such applications

include economy, e.g., financial data [1], physiology, e.g.,

[2–4], data retrieval by content, e.g., music retrieval by

humming [5–7] and fault/anomaly/novelty detection in

industrial systems [8–11]. One basic operation that many

time series analysis and exploration systems use is com-

parison of two given time series based on their shapes. That

is, given two time series, the comparison operation consists

in establishing a way to tell whether their traces are similar

enough. One of the two time series stands in general for the

reference (known behavior), whereas the second for the

target (the unknown behavior). Some typical examples are

illustrated in Fig. 1I–III, where the reference-target time

series are (a, b), (c, d) and (e, f).

Many techniques have been developed for time series

comparison. Yet, the dynamic time warping (DTW) [12] is

recognized by many researchers as the most accurate

comparison technique. The main advantage of the DTW is

its great ability in taking into account the time axis shift

(Fig. 1II) and/or scaling problems (Fig. 1III). It can also

align time series of different lengths. The main problem

with DTW is its high computational complexity. In addi-

tion and from our point of view, DTW can only deal with

the simplest case of time series matching: 1-period time
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series with no phase-shift (e.g., Fig. 1I–III). In [13], we

developed a novel time series matching technique, SEA,

that can also match time series with time/magnitude axis

shift and/or scaling and that might be of different lengths.

In other words, SEA can do the same job as the DTW

technique. However, the SEA method can also perform

more complex matchings. These include: 1-period phase-

shifted time series (e.g., Fig. 2I) and multiple-periods time

series containing different number of periods each

(Fig. 2II). These are the most complex time series match-

ing that we have encountered. The SEA method was also

shown to be more accurate and less memory and time

consuming than DTW. In this study, we propose an even

more efficient method for time series comparison (acro-

nym: FANSEA). The efficiency of FANSEA stands in the

fact that it consumes much less time than SEA and uses

only a small fraction of the original time series samples for

comparable quality of matching with respect to SEA.

Basically, the proposed FANSEA is an accelerated and

enhanced version of the SEA method. Whereas the SEA

method performs the alignment on the whole data sets of

the two time series to match, FANSEA proceeds first to

extraction of as few significant points as possible from the

two time series curves, on which the matching is per-

formed. Accordingly, the FANSEA technique is com-

posed of two main phases. In the first phase, there is

dominant points (DPs) extraction from the two time series

(e.g., Fig. 3). This objective is realized through a variant

of the FAN line simplification algorithm [14]. In the

second phase, the SEA matching method is applied to the

two sets of extracted DPs. To show the effectiveness and

efficiency of the new method, we compare it to the SEA

method. We specifically use electrocardiogram (ECG)

data, since this type of time series is basically a quasi-

periodic signal that is characterized by high variability

and noise (See Sect. 4). Obtained results show that the

new method uses less than 20 % of the original samples

and that it is much less time consuming than SEA, for

comparable alignments.

The rest of this paper is organized as follows. In Sect. 2,

there is review of existing time series comparison methods,

including our own and new classification of these tech-

niques. In Sect. 3, the proposed FANSEA method is pre-

sented. In Sect. 4, applications on the FANSEA and the
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(II): Time/Magnitude axis shift (C-D)

(III): Time/Magnitude axis scaling (E-F)

Fig. 1 Illustration of some

typical situations of similar time

series to compare. (I) illustrates

two similar time series (a and

b) with local morphology

change. In (II), time series (d) is

significantly shifted to the right

(time axis) and to the bottom

(magnitude axis), with respect

to time series (c). In (III), time

series (f) is a down-scaled

version of time series (e). In all

situations, the challenge of

comparing/aligning the time

series is to overcome these

obstacles and declare the

appropriate time series similar

538 Int. J. Mach. Learn. & Cyber. (2013) 4:537–550

123



SEA methods are performed. In Sect. 5, obtained results

are discussed. At last, in Sect. 6, a general conclusion is

dressed.

2 Time series comparison: what methods

and what data?

In this section, the emphasis is on existing time series

comparison techniques. In sub-Sect. 2.1, we review the

main existing methods, in terms of the nature of the used

algorithms and techniques. In sub-Sect. 2.2, we present our

personal and new categorization of time series comparison

methods, in terms of the nature of the used data.

2.1 Algorithm nature: comparison or alignment?

There should be distinction between two classes of time

series matching techniques: Comparison methods and

alignment methods. Let X = (xi), i = 1:n and Y = (yj),

j = 1:m, be two given time series to be matched. Com-

parison methods render a distance that reflects the degree

of dissimilarity between X and Y; whereas alignment

methods perform a mapping between the points of X and

those of Y. Of course, alignment methods render also a

distance measure. The Euclidian distance (Eq. 1) seems to

be the first used time series comparison. This is basically

due to its simplicity, but, also to its interesting linear

temporal and spatial complexities. One of the drawbacks of

the Euclidian distance is that it works on equal lengths time

series. It is also reported to be very sensitive to the time

axis shift and/or scaling and to local noise. A discrete

fourier transform (DFT) based method was proposed by

Agrawal et al [15]. In this method, the two time series are

mapped from the time domain to the frequency domain

through the DFT. Then, the first most significant k coeffi-

cients of the DFT in each series are used in the comparison

through the Euclidian distance. To all evidence, this tech-

nique compares the two time series, but does not align

them. Shatkay and Zdonic [16] proposed also a comparison

method. Their technique consists in transforming first the

raw data into characters defined over a limited alphabet and

then in applying string matching techniques. However, this

method effectiveness is limited since data reduction by

quantification of time series leads to important data dis-

tortion. A histogram based comparison method was pro-

posed by Chen and Özsu [17]. Since histograms ignore the

temporal dimension of the data sequences, this category of

(I) Phase-Shifted time series  (S1-S2)

S1
S2

S3 S4

(II) Many-periods time series with different number of periods (S3-S4)

Fig. 2 Very complex time

series matching situations.

I 1-period time series, with one

phase-shifted with respect to the

other. Here, S1 and S2 are

1-period instances of a quasi-

periodic time series. From this

perspective, they are similar.

II Many-periods time series

containing different number of

periods each. Here, S3 and S4

are instances of a quasi periodic

time series, with 2 and 3 periods

respectively. These are also

similar time series

Fig. 3 A time series and 15 computed dominant points (DPs) on its

curve. Dominant points are perceptually attractive points on the time

series curve. They constitute a kind of abstraction (compression) of

the time series, while preserving most of the time series shape

(discontinuous line)
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methods is capable of rendering only a global similarity

measure. However, no alignment at the point-to-point level

is possible in such methods. Another comparison method

was proposed by Bozkaya et al [18] and is referred to by

longest common sub-sequence (LCSS). This method is

based on a modified version of the Edit distance [19]. This

method allows non-linear mapping between the two time

series. However, the threshold on the edit distance is very

difficult to be set.

The other category of methods performs alignment

between the two time series. That is, in this class of

methods, there is a mapping between the points of the two

time series to match. The famous DTW [12] leads this

class and has been intensively used by many researchers in

resolving many technological and scientific problems in

numerous fields. As examples of DTW applications, we

cite speech recognition [20], music retrieval [21], ECG

recognition [22] and general time series mining [23]. As

mentioned above, the main advantage of the DTW is its

remarkable ability in taking into account the time axis

shift and/or scaling problems (e.g., Fig. 4). However, the

DTW main problem resides in its high temporal com-

plexity. SEA [13] is another alignment method that was

recently proposed for time series matching. It was shown

to be more effective than DTW in the precision of

matching. It also consumes less memory and less time

than DTW.

Euclidian ðX; YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i¼n

i¼1

ðxi � yiÞ2
v

u

u

t : ð1Þ

2.2 Data nature: periodic or not-periodic?

From another point of view, we classify time series com-

parison methods according to the nature of the data it can

process. Basically, our analysis of existing time series

comparison methods shows three main classes in terms of

the nature of the data it can match. We report these classes

in ascending order of complexity of the data: (a) non-

periodic or 1-period-no-phase-shift (e.g., Fig. 1I–III),

(b) one-period-with-phase-shift (e.g., Fig. 2I) and (c) peri-

odic-many-periods (e.g., Fig. 2II). Note that this classifi-

cation is organized also in order of inclusion. In other

words, methods in (c) can treat data (a), (b) and (c),

methods in (b) can treat data (a) and (b), and methods in

(a) can treat data (a) only. This situation is illustrated in

Fig. 5.

2.2.1 Non-periodic or 1-period-no-phase-shift

This type of data is treated by all existing methods with

more or less satisfactory results, including comparison and

alignment techniques. To report some, the DFT [15] and

the DTW [12] belong to this class. The types of data that

can be treated by this class are time series that are non-

periodic (e.g., Fig. 1I–III) and also (about) 1-period of

periodic time series, with the condition that none of the two

time series is significantly phase shifted with respect to the

other.

Fig. 4 Alignment of two time

series S1 and S2 by the DTW

method. In this case, S2 is

shifted to the right (time axis).

Note that DTW performs a non-

uniform alignment to achieve

such a remarkable result. Note

also that S1 and S2 are of

different lengths

(a), e.g. DFT and DTW 

(b), e.g. PI-DTW 

(c), SEA 

Fig. 5 Classification of time series comparison methods from the

point of view of the data it can match. a Non-periodic or 1-period-no-

phase-shift (e.g., Fig. 1I–III), b one-period-with-phase-shift (e.g.,

Fig. 2I) and (c) periodic-many-periods (e.g., Fig. 2II). Note that

methods in (c) can treat data (a), (b) and (c), methods in (b) can treat

data (a), (b) and methods in (a) can treat data (a) only
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2.2.2 1-Period of phase-shifted time series

This type of data is present in periodic time series (e.g.,

Fig. 2I), but also and specifically in some techniques of

shape recognition/retrieval using object contour time ser-

ies. For the case in Fig. 2I, the two time series are instances

of one period of the same (or similar) quasi-periodic time

series. However, each time series is phase-shifted with

respect to the other. In the case of shape recognition/

retrieval using object contour time series, the mapping

contour ? time series leads generally to phase-shifted

time series due to object rotation, among many other

complications. Except SEA and its derivatives, none of the

above mentioned techniques can correctly match this type

of time series, including DTW. However, Keogh et. al. [24]

proposed a modified version of DTW they called Phase

independent DTW (PI-DTW) that can deal with phase

shifted 1-period time series. They successfully used it to

match shapes based on their contours. If PI-DTW can

match (a) and (b) time series, it is unable to match time

series of type (c).

2.2.3 Periodic-many-periods time series

This kind of data is of course present in periodic time series

(e.g. Fig. 2II). In this case, the two time series to compare/

align must contain many periods each, but not necessarily

the same number of periods. Indeed, time series that con-

tain many periods but the same number of periods brings

the data to type (a) if there is no (significant) phase shift

and to (b) if there is (significant) phase shift. Thus, the

types of data specific to this class are time series that are

phase-shifted, in addition to being composed of a different

number of periods each. This is the most complex com-

parison/alignment case that one can face. More, this is a

problem that is naturally encountered in many applications:

clustering, pattern recognition, summarizing etc. of quasi-

periodic time series. Methods that can match such types of

data should consider the repetitive (patterns) as redundant

information. Thus, with this principle in mind, no matter

the number of periods in each time series, the two time

series should be appropriately aligned and a distance or a

similarity measure that reflects the degree of resemblance

rendered. To the best of our knowledge and except SEA

and its derivatives, none of the above mentioned techniques

can align this type of time series. This analysis and com-

parison is further summarized in Table 1.

Through this study, we show that, like SEA, the pro-

posed new time series matching method (FANSEA) can

align this last category of time series, but with more effi-

ciency. The efficiency stands in two aspects: time reduction

and used data reduction, for nearly the same precision of

matching with respect to SEA. If the aspect of speed is

clearly admitted as an advantage, the aspect of data

reduction may need some clarification. In addition to the

fact that data reduction speeds up the matching process, it

also gives the opportunity to efficiently represent the time

series in memory. To all evidence, this is another important

advantage when it comes to represent and explore large or

even very large databases (VLDB).

3 The proposed method

As stated above, the proposed method is composed of two

main steps: data reduction and Matching.

3.1 Data reduction: the FAN method

The data reduction step is performed through curve sim-

plification of the two time series. This approach can briefly

be defined as follows. Let P = (pi), i = 1…N, where

Table 1 Summary of the comparative study on existing time series comparison methods

Method Approach/paradigm Comparison

ability

Alignment

ability

Difference

in length

Phase

shift

Periodicity

Euclidian Time domain Yes No No No No

DFT (Agrawal et al [15]) Frequency domain Yes No Yes Yes Yes

Shatkay and Zdonic [16] Characters (text) Yes No Yes No No

Chen and Özsu [17] Statistics (histogram) Yes No Yes Yes Yes

LCSS Bozkaya et al. [18] Characters Yes Yes (edit-distance) Yes No No

DTW and derivatives Time domain Yes Yes Yes No No

PI-DTW Keogh et al. [24] Time domain DTW

derivative

Yes Yes Yes Yes No

SEA and derivatives

Boucheham [13]

Time domain Yes Yes Yes Yes Yes
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pi = (x1(i), x2(i)), be a given polyline (discrete curve), with

x1(i) being the horizontal (temporal) coordinate and x2(i)

being the vertical (magnitude) coordinate of point pi. The

simplification of P to a given precision e, e[ 0, a preset

threshold on the tolerance of the approximation, consists in

computing another polyline Q = (qj), j = 1…K, satisfying

the following conditions [25]:

(a) K \ N; (data reduction rule)

(b) q1 = p1 and qK = pN; (endpoints must coincide)

(c) Let ||.,.|| be a distance defined on discrete curves. Then

||P, Q|| \ e.

We use the FAN [14] line simplification algorithm for

the points of Q determination. This algorithm uses a

sequential selection strategy, reducing gradually the dis-

tance between P and Q by the maximal possible amount

under norm ||.,.|| at each selection. The FAN main steps are

as follows.

(a) The first point of the curve is selected as the first DP:

(Q = [p1]).

(b) At each following step, let qi be the current selected

dominant point. The next selected point, say qi?1, is

computed as the furthest point from qi (Max(|X1qi -

X1qi?1|)) that satisfies the tolerance error (|X2q -

X2r|) \ e) for all the points q lying between qi and

qi?1, where r is the vertical projection of point q on

the line joining qi and qi?1. Figure 6 illustrates the

selection of the fifth DP q5 in a 150 samples time

series.

(c) The process is repeated for the remaining sub-curve

beginning at qi?1 and ending at pN, until the right

endpoint is selected.

Following the simplification process, we compute the

data reduction (in terms of samples reduction) by Eq. 2.

DR ðP; QÞ ¼ 1� 2
jQj
jPj

� �

� 100% ð2Þ

The 2 factor in Eq. 2 is due to the fact that, upon simpli-

fication, the time indexes of the selected DPs are no longer

implicit as in the case of the original samples. Therefore,

both the magnitude and the time indexes are stored.

3.2 Matching

3.2.1 Step 1

Data reduction: both time series to align X and Y are

passed through the FAN procedure, described in sub-Sect.

3.1. The outcome of processing a time series with the FAN

procedure is a set of (perceptually) significant points on the

time series curve. Let Xs be the reduced set of points for X

and Ys that of Y. For the need of the method, we report

here that each element of Xs coordinates are as follows.

Temporal-index: Xs1; magnitude-value: Xs2. (respectively,

Ys1 and Ys2 for YS).

3.2.2 Step 2

Signature establishment: time series Xs = (Xs1, Xs2)i,

i = 1:k, which is initially ordered on the temporal value

(Xs1) is reordered on the magnitude value Xs2. The

obtained trace is referred to in this study as signature (Xs).

This operation is performed for both Xs and Ys. The

obtained signature (Xs) and signature (Ys) will be used for

the matching of X and Y through Xs and Ys alignment. The

comparison is explained in the next step.

3.2.3 Step 3

Magnitude exchange and comparison: in the third step of

FANSEA, there is exchange of the magnitudes between the

two time series Xs and Ys. That is, time series Xs will

‘wear’ the magnitude of time series Ys and vice versa.

Upon the exchange operation, the resulting two time series

are put in natural (temporal) order. This specific action is

designed herein by reconstruction. The comparison is then

performed for each time series (e.g., Xs) with its recon-

structed correspondent resulting from the exchange step

(e.g., XsRec), using the correlation factor, corr (Eq. 3) as an

objective criterion and visual inspection as a subjective

criterion. Note here that the method handles time series of

q4(X1q4,X2q4) q5(X1q5,X2q5)
q

r

Error of approximation

Fig. 6 Curve simplification of a 150 samples time series (red color)

with eight DPs (green squares) using the FAN method. The red color

time series represents here the input polyline P and the set of DPs

represents the reduced form Q to the tolerance error e . The data

reduction in this case is DR (P, Q) = (1 - 2 9 16/150) 9

100 % & 78.7 %. It can be seen that the eight DPs by themselves

bear most of the time series shape (blue, discontinuous curve). Thus,

comparisons based on the eight DPs instead of the 150 original points

will potentially be much faster than and nearly as precise as

comparisons using the whole data. In addition, one can use the eight

DPs (16 values only, instead of 150) to store the time series. Note that

the red time series is a true portion of electrocardiogram data (see

Sect. 4). The selection of DP q5, as an example, is such that q5 is the

furthest possible point from the last selected DP q4 (Max (|X1q4 -

X1q5|)) that satisfies the tolerance error (|X2q - X2r|) \ e), for all the

points q lying between q4 and q5, where r is the vertical projection of

point q on the line joining q4 and q5 (color figure online)
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different lengths since the effective alignments and com-

puted correlations are performed on equal lengths series

(Xs, Xsrec) and (Ys, Ysrec). An illustrative example is

presented in Fig. 7. The illustration is performed on two

ECG time series taken from two different records (see Sect.

4 for a brief presentation of ECG). Plot 1-up shows

respectively: time series X (600 samples, two periods) and

Y (700 samples, three periods). Plot 1-middle shows the

reconstructed time series by FANSEA upon exchange of

the magnitudes between X and Y, using only the computed

DPs (circles). Plot 1-lower shows the local difference (X-

Xrec, Y-Yrec). Plot II shows the sorted magnitudes (sig-

natures) of the computed DPs for X (red) and Y (blue).

This step is used for the exchange operation by linear

mapping.

Corr ðX; YÞ ¼ cov ðX; YÞ2

var ðXÞ � var ðYÞ ð3Þ

In the following, we present the FANSEA method in a

more formal way.

3.3 The FANSEA algorithm

Let X = (X1
(i), X2

(i)), i = 1…n, and Y = (Y1
(j), Y2

(j)),

j = 1…m, be the original time series to match, where: X1

is the temporal index of time series X, X2 is the magnitude

index of time series X, Y1 is the temporal index of time

series Y, Y2 is the magnitude index of time series Y.

Let also sort-on-magnitude-value be a procedure that

sorts any input time series on the magnitude coordinate;

Fig. 7 I Upper-subplot: shows the time series X (600 samples, two

periods, red) and Y (700 samples, three periods, blue). Middle sub-

plot: shows the reconstructed Xrec (using DPs of X temporal index

and DPs of Y magnitudes) versus the computed DPs of X for

comparison (left) and vice-versa (right). Lower sub-plot: shows the

local distance (point to point difference) between the originals and the

reconstructed time series (left X-Xrec, right Y-Yrec). II Sorted

magnitudes of the DPs (Signatures). Note that, in this case, X and Y

are both portions of ECG taken from two different records. It may be

noticed the ability of FANSEA to correctly align these time series and

report the local difference in magnitude using only 35 and 43 DPs out

of 600 and 700 samples (11.7 and 12.3 %). The correlation factors in

this case are: corr (X, Xrec) = 0.9731; corr (Y, Yrec) = 0.9827

(color figure online)
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and sort-on-temporal-index the inverse procedure of sort-

on-magnitude-value.

Let also FAN (X, e) ? Xs be the procedure that per-

forms samples reduction on the given time series X curve

by extraction of perceptually most significant points Xs to a

given precision e (sub-Sect. 3.1).

The FANSEA algorithm is then as follows:

(a) Data reduction:

FAN (X, e) ? Xs;

FAN (Y, e) ? Ys

(b) Sorting on Magnitude:

• X0s = (X0s1, X0s2) / sort-on-magnitude-value

(Xs); where X0s1 is the temporal-index (X0s),

and X0s2 is the magnitude-value (X0s).

• Y0s = (Y0s1, Y0s2) / sort-on-magnitude-value

(Ys); where Y0s1 is the temporal-index (Y’s),

and Y’s2 is the magnitude-Value (Y0s).

(c) Normalization: If n = m, then X0s2 and Y0s2 are

normalized as described in step e.

(d) Signature exchange: there is exchange of the magni-

tudes between the two reduced time series.

X00 / (X0s1, Y0s2): X00 uses magnitudes of Y0s and

time indexes of X0s.

Y00 / (Y0s1, X0s2): Y00 uses magnitudes of X0s and

time indexes of Y0s.

(e) Reconstruction and matching: let XsRec (resp. YsRec)

be the reconstructed time series as a result of

reordering X00 and Y00 on their respective temporal

index. Formally:

Xsrec / sort-on-temporal-index (X00): The recon-

structed time series of Xs;

Ysrec / sort-on-temporal-index (Y00): The recon-

structed time series of Ys;

note here that since |Xsrec| \ |X| and |Ysrec| \ |Y|,

the gaps between the DPs are filled by linear

interpolation between successive such DPs.

(f) Times series of different lengths: using the same notations

above, and assuming that |X| = n = |Y| = m, the

comparison is performed by first applying a linear

mapping between the two signatures X0s2 and Y0s2.

4 Applications

We apply the newly developed FANSEA method and the

SEA method on electro-cardiogram (ECG) time series.

Briefly, the ECG is a series of measurements taken at

regular times that reflect the heart activity. A normal ECG

is composed of three complexes in this order: P wave, QRS

complex and T wave (Fig. 8). Comparison of this kind of

data is a very complex problem since the ECG is a quasi-

periodic signal intensively subject to local (physiological)

variabilities and also to different kinds of noise. In all our

applications, we used time series taken from the MIT-BIH

ECG database. This is a public collection of records sam-

pled at 360 Hz.

4.1 Application 1

This application illustrates the ability of FANSEA to match

very complex similar time series much faster than SEA and

using much less samples. Figure 9 Uppper shows two

similar time series taken from the same record of MIT-BIH

database (X at the very beginning; Y at the very end of

record Rec. 102 of MIT-BIH database) and processed by

SEA. Figure 9 Middle shows the plots of the original time

series versus the respective reconstructed ones (X vs. Xrec

and Y vs. Yrec). Notice that in both cases, the recon-

structed time series are almost identical to the original

ones, which demonstrates the ability of SEA to match

similar time series, even with local variabilities and noise.

Figure 9 Lower shows the local differences between the

original time series and their respective reconstructed ones

(X–Xrec and Y–Yrec). Notice here also that the differences

are very small. In other words, using the SEA method,

similar patterns allow near perfect alignments and render

very small differences. This property could be exploited to

recognize similar patterns of time series for different

practical needs.

On the numerical level, the processing time for SEA was

1.22 s and the mean correlation 0.995. Note that the cor-

relation factor is very close to the perfect one value. This is

a sign of the resemblance between X and Y. The correla-

tion factor also could be used to consolidate the recognition

problem of similar time series.

The next figure (Fig. 10) shows the processing of the

same two time series of Fig. 9 using the FANSEA method.

The plots are shown in the same fashion as in Fig. 9, except

that in the middle subplot the original series were replaced

by the dominant points extracted by the FAN method. The

plots show almost the same alignments as in Fig. 9. That is,

using FANSEA, similar patterns are also very well aligned

and render small differences.

On the numerical level, the processing time was

0.875 s; the mean correlation was 0.989. Note here also

that the correlation factor is very close to the one perfect

value and the time used by FANSEA is roughly half that

of SEA. On the other hand, the mean data reduction was

82.8 %. That is the data used by FANSEA to perform

nearly as good as SEA is less than 20 % that used by

SEA (100 %).
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Fig. 8 Two ECG time series.

Examples of P-wave, QRS

complex and T-wave are

indicated. These are the

clinically significant basic

patterns. Likewise, examples of

periods in each time series are

indicated. Physiologically, each

period corresponds to one heart

beat cycle

Fig. 9 Matching two similar

time series (X, Y) using SEA.

Results: mean correlation 0.995;

processing time 1.22 s. Each

reconstructed time series bear

the color of the other time series

to recall the exchange operation.

So is the case for the local

difference

Fig. 10 Matching of the same

time series in Fig. 9 using

FANSEA. Results: mean

correlation 0.987; mean data

reduction 82.8 %; execution

time 0.875 s. The DPs are

plotted as small dots in the same

color of the time series it

belongs to. Each reconstructed

time series bear the color of the

other time series to recall the

exchange operation. So is the

case for the local difference
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4.2 Application 2

This application illustrates the ability of FANSEA to dis-

criminate between very complex non-similar time series in

much less time and using a small percent of the original

samples with respect to SEA. It is illustrated in Figs. 11, 12,

where X = Rec. 102 and Y = Rec. 103 (hence, two different

ECGs belonging to two different persons). Figure 11 shows

results of processing these records with the SEA method. The

middle plots clearly show severe reconstruction distortions

(dashed plots), which reflects important mismatches between

the two time series. The differences are plotted in the bottom

subplots and confirm the mismatch. That is, using SEA, non-

similar patterns align poorly and render important differences.

Numerically, the processing time was 1.532 s and the

mean correlation factor was 0.950.

Figure 12 shows the processing of the same records in

Fig. 11 using FANSEA. The plots are in the same fashion

of Fig. 11 and are basically comparable to those in Fig. 11

(SEA results). In other words, the plots of Fig. 12 also

reflect the mismatch between X and Y. That is, using

FANSEA, non-similar patterns align poorly and render

important differences.

On the numerical level, the processing time was 0.765 s;

the mean correlation factor was 0.871 and the mean data

reduction was 83.7 %. That is here also, FANSEA used

less than 20 % of the original samples and roughly half the

time of SEA to do comparable work.

Fig. 11 Matching two

different time series (X = rec.

102, Y = Rec. 103) using SEA.

Results: processing time

1.532 s; mean correlation factor

0.950

Fig. 12 Matching the same

two series in Fig. 11 with

FANSEA. Results: processing

time 0.765 s; mean correlation

factor 0.871; mean data

reduction 83.7 %
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4.3 Application 3

The aim of this application is to show the effect of the time

series length on the numerical results of the two methods.

For this purpose, record 102 of the MIT-BIH database has

been chosen. The two methods (SEA and FANSEA) have

then been applied to segments of lengths ranging from 500

samples to 50,000 samples (X at very beginning; Y at very

end of record 102). The correlation factor, execution time

for SEA and FANSEA and the data reduction for the

FANSEA have been determined. These results are shown

in Figs. 13, 14, 15. Figure 13 shows the correlation factor

of FANSEA versus that of SEA. The figure shows that

FANSEA performs practically as well as SEA in terms of

the correlation factor. Figure 14 shows the execution time

of FANSEA versus that of SEA in seconds. The figure

clearly shows that FANSEA consumes much less time than

SEA as the time series get longer. Figure 15 shows both the

data reduction (squares) and the time reduction (stars)

recorded for FANSEA with respect to SEA. This plot

shows that the data reduction is always beyond 80 % and

that the time reduction ranges from 35 % for short time

series to 95 % for very long time series. Particularly, this

application shows also the ability of FANSEA to match

very long time series. Indeed, except SEA and its deriva-

tives, existing time series matching techniques deal only

Fig. 13 Correlation factor as a

function of time series length

(samples) for SEA (squares)

and FANSEA (stars)

Fig. 14 Execution time as a

function of time series length

(samples) for SEA (squares)

and FANSEA (stars)
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with short (few hundred samples) to moderately long time

series (few thousands of samples). The application shows

the ability of FANSEA (and SEA) to match very long time

series (tens of thousands of samples).

Note that all experiments were performed on a machine

with 2.4 GHz processor and 256 Mega Byte main memory,

under MatLab7 programming environment.

5 Discussion

The different applications show globally the ability of the

proposed FANSEA to match very complex time series

(class c). They also show the ability of FANSEA to deal

with very long time series, which in the author’s believe is

another distinctive power that must be reported. Needless is

to say that, the SEA method is also characterized by these

two last abilities, since FANSEA is an enhancement to the

SEA method. Indeed, in all applications, the qualitative

results (plots) and numerical results (correlation factor)

show that the FANSEA method performs practically as

good as the SEA method. Precisely, like SEA, it is able to

correctly align very complex time series and give the

opportunity to ‘recognize’ those that are similar and the

opportunity to ‘discriminate’ between those that are dif-

ferent. However, FANSEA is much faster. It consumes

much less time than SEA to do the same work. In addition,

FANSEA uses globally speaking less than 20 % of the

original samples to do the same job of the SEA method.

These last two properties grant the FANSEA method the

efficiency that enables it to be a much better candidate for

searching, querying and mining of large scale time series

databases, where data reduction and speed of process are a

must. In general, it is useful in applications where there is

need for searching/recognizing specific time series based

on their shapes. For instance, economic, medical and

industrial signals are typical data where such need is

expressed by experts in their respective fields.

Quantifying the complexity of the match by a metric is

also an interesting problem to mention. For this purpose,

we suggest the edit-distance measure [19] as a metric to

render the degree of complexity of matching time series s1

and s2. In other words, the complexity of the case to match

would be handled as a string to string correction problem.

As well known, the edit-distance between two strings s1

and s2 is defined as the minimal number of (weighted)

operations among the set {insertion, deletion, substitution}

that are necessary to transform s1 into s2. If we consider

the two time series as two strings s1 and s2 defined over an

appropriate alphabet, the metric we propose would be:

edit-distance (s1, s2). This metric is capable of handling

the following decisive information regarding the match

(s1, s2):

(a) Difference in the number of periods: there is more

effort needed to transform s1 into s2 in case the two

time series have a different number of periods (there

are more deletions/insertions/substitutions than in the

case where the number of periods is the same).

(b) Difference in length of the two time series: there is

also more effort needed to transform s1 into s2 in case

the two time series have different lengths (there are

also more deletions/insertions/substitutions than in

the case where the lengths are equal).

(c) The amount of phase-shift between the two time

series to match: the more the two time series are

Fig. 15 Percentage of data

reduction (squares) and time

reduction (stars) recorded by

FANSEA with respect to SEA

as a function of time series

length (samples)
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shifted one with respect to the other, the more there is

effort to transform s1 into s2.

(d) The degree of variability: here also, the more there

are variations within the periods, the more effort is

needed to transform s1 into s2.

It might also be of interest to mention that ASEAL [26]

is another accelerated version of SEA that was previously

published. A thorough comparison of FANSEA to ASEAL

is, evidently, an important and interesting issue. However,

this study is focused on the promotion of FANSEA as an

accelerated version of SEA. But globally, and according to

the findings in [26], the ASEAL method attained data

savings up to 90 %, and time savings up to 97 %. For

FANSEA, the savings in data were up to 80 % and the time

reductions up to 95 %. ASEAL seems then to be slightly

more efficient than FANSEA. However, this conclusion

must be considered with caution, since the two methods

should be directly and intensively compared using the same

data. Furthermore, the experimentation data has to be sig-

nificantly rich and representing the most usual situations.

This can only be performed in a separate study.

6 Conclusion

We have proposed a new time series matching technique

(FANSEA) that is based on combination of a data reduc-

tion technique (FAN) with the previously published time

series matching method SEA. The combination objectives

were to obtain an enhanced time series matching method

with the same abilities of SEA in recognizing similar time

series and discriminating between non-similar time series

and that would consume less data and time. The illustra-

tions clearly show that our objectives were attained. As

well known, processes acceleration can be achieved,

mainly, through hardware and algorithmic (complexity

reduction). The study clearly showed that data reduction

can also be a very good acceleration paradigm.

A distinctive quality of the method is that it targets

specifically very complex time series (quasi periodic,

phase-shifted, with different number of periods, different

lengths and possibly with time/magnitude axis shift/scal-

ing). The study illustrated the complexity property of the

matching through qualitative descriptions. Quantitative

measures, like the edit-distance, should be studied in future

works to better express and handle the complexity aspect of

the time series to match.

For future works, we plan also to explore possibilities of

integrating the novel method in specific application plat-

forms. Other data reduction techniques could also be

considered for possible combination with SEA and perhaps

with other time series alignment methods. The aim is to

propose always much more efficient time series matching

methods for different applications and needs.
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