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Abstract The theory of concept lattice proposed by Wille

has been generalized in three different ways based on

binary formal contexts, and substantive properties with

respect to these formal concepts have been derived. In this

paper, we study a reverse problem, that is, how to char-

acterize the notions of formal concepts in terms of their

properties. Axiomatic characterizations for the theory of

formal concept analysis are presented. By this approach,

four types of conceptual knowledge system are defined,

and axiom sets that must be satisfied by the conceptual

knowledge system are stated. It is proved that axioms of

the conceptual knowledge system guarantee the existence

of certain types of binary relations producing the same

formal concepts. The independence of axiom sets charac-

terizing the conceptual knowledge system is examined.

Keywords Concept lattices � Axioms � Independence �
Conceptual knowledge systems

1 Introduction

The theory of concept lattice [formal concept analysis

(FCA)], proposed by Wille in 1982, is an effective method

for data analysis [5, 21]. The central notions of the FCA are

formal concepts and concept lattices. A concept lattice is

an ordered hierarchical structure of formal concepts that

are defined by a binary relation between a set of objects and

a set of attributes. Each formal concept is an object-attri-

bute pair, which consists of two parts: the extension

(objects covered by the concept) and intension (attributes

describing the concept). As an effective tool for data

analysis and knowledge processing, the FCA has been

successfully applied to various fields, such as decision

making, information retrieval, data mining, and knowledge

discovery.

The FCA by Wille has been expanded widely with the

development of science and technology in the modern

society. For example, Burusco [3] and Belohlavek [2]

generalized a model of the FCA in the fuzzy environment.

Alcalde et al. [1] discussed a L-Fuzzy context with some

unknown values. Zhang et al. [29] introduced the definition

of variable threshold concept lattices to reduce the number

of fuzzy concepts in a fuzzy formal context.

The theory of rough sets (RST) which was originated by

Pawlak [12] is another important method for data analysis

and knowledge processing. The basic structure of the RST

is that an approximation space consists of a universe of

discourse and a binary relation imposed on it. Using the

concepts of lower and upper approximations, the RST

argues that knowledge hidden in information systems may

be unraveled and expressed in the form of decision rules

[13, 19, 20, 23, 32].

In recent years, more and more research has been con-

ducted to combine the FCA and RST together, which
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provides new, integrated approaches for data analysis. On

one hand, rough set approximation operators can be

introduced into the FCA by considering different types of

definability. For example, some authors introduced concept

approximations into the FCA [6, 7, 14, 15, 16], and some

others introduced rough reduction into the FCA [8, 31]. On

the other hand, the notions of formal concepts and concept

lattices are also introduced into the RST by considering

different types of formal concepts, such as the property and

object oriented formal concept lattices defined by Düntsch

and Gediga [4] and Yao [25–27], respectively, based on

approximation operators.

It is well-known that the axiomatic characterization of

rough approximation operators is an important approach

for studying mathematical structures of rough set algebras

[9, 11, 17, 18, 22, 24, 28]. The axiomatic approach takes

the lower and upper approximations as primitive notions

and a set of axioms are used to characterize approximation

operators that are the same as the ones produced by using

the constructive definitions. However, compared with the

studies on the axiomatic systems of rough sets, less effort

has been made for axiomatic characterizations in the FCA.

Zhang et al. [30] presented an axiomatic approach for the

formal concept introduced by Wille. Ma [10] discussed the

axiomatic characteristics of four types of formal concepts

using dualities. By comparing with the constructive

approach, the axiomatic approach aims to investigating the

mathematical characters of formal concepts rather than

developing methods for applications. In this paper, we

devote to the axiomatic approaches of the FCA.

In the following section, we first review the basic

notions of formal concepts and formal concept lattices

proposed by Wille. In Sect. 3, basic properties for the other

three types of formal concepts are illustrated. In Sect. 4, the

axiomatic characterizations of the four types of formal

concepts are presented, and then the independence of these

axiomatic systems is discussed. Section 5 concludes the

paper.

2 Preliminaries

A formal context is a triplet (U, A, I), where U ¼
fx1; x2; . . .; xng is a non-empty finite set of objects, A ¼
fa1; a2; . . .; amg a non-empty finite set of attributes, and I a

binary relation between U and A, which is a subset of the

Cartesian product U 9 A. For a pair of elements x 2 U and

a 2 A; if ðx; aÞ 2 I; also written as x I a, we say that the

object x has the attribute a, or the attribute a is possessed by

the object x; if ðx; aÞ 62 I;we say that the object x has not the

attribute a, or the attribute a is not possessed by the object x.

Denote ðx; aÞ 2 I by 1 and ðx; aÞ 62 I by 0, a formal

context can be denoted as a table only with the value 0

and 1.

The complement of a formal context (U, A, I) is defined

as (U, A, I*), where I � ¼ fðx; aÞj:ðxIaÞ; x 2 U; a 2 Ag:
For a formal context ðU;A; IÞ; 8X 2 PðUÞ and B 2

PðAÞ; where Pð�Þ is the power set of �; a pair of set-theo-

retic operators *, * are defined by

X� ¼ fa 2 Aj8x 2 X; ðx; aÞ 2 Ig;
B� ¼ fx 2 Uj8a 2 B; ðx; aÞ 2 Ig:

ð1Þ

X* denotes the set of attributes possessed by all objects in

X, B* denotes the set of objects which possess all attributes

in B. For simplicity, 8x 2 U; we denote {x}* as x*; and

8a 2 A; fag� as a*.

A pair ðX;BÞ;X 2 PðUÞ;B 2 PðAÞ; is called a formal

concept if X* = B and B* = X. X is referred to as the

extension of the concept (X, B) and B the intension of the

concept (X, B).

Let (U, A, I) be a formal context, 8X;X1;X2 2 PðUÞ and

B;B1;B2 2 PðAÞ; the pair of set-theoretic operators satis-

fies the following properties [5]:

(1) X1 � X2 ) X�2 � X�1 ;B1 � B2 ) B�2 � B�1;

(2) X � X��;B � B��;
(3) X* = X***, B* = B***;

(4) (X1 [ X2)* = X1
* \ X2

*, (B1 [ B2)* = B1
* \ B2

*;

(5) X � B� , B � X�:

The set of all formal concepts of (U, A, I) forms a

complete lattice which is called the formal concept lattice

of (U, A, I).

3 Three other types of formal concepts and concept

lattices

In this section, we discuss three other types of formal

concepts which are complementary to the definition of

formal concepts introduced by Wille.

Let (U, A, I) be a formal context, a pair of dual opera-

tors ];] is defined as follows [25]: 8X 2 PðUÞ and

B 2 PðAÞ;
X] ¼ fa 2 Aj9x 2 Uððx; aÞ 62 I ^ x 62 XÞg;
B] ¼ fx 2 Uj9a 2 Aððx; aÞ 62 I ^ a 62 BÞg:

ð2Þ

The operators ];] and *, * are in fact dual operators

related by:

X] ¼ X��� ;X� ¼ X� ]� ;B] ¼ B��� ;B� ¼ B� ]� ;

where X* denotes the complement of the set X.
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Theorem 3.1 [25] Let (U, A, I) be a formal context, then:

8X;X1;X2 2 PðUÞ;B;B1;B2 2 PðAÞ;

(1) X1 � X2 ) X
]
2 � X

]
1;B1 � B2 ) B

]
2 � B

]
1;

(2) X � X]];B � B]];

(3) X] ¼ X]]];B] ¼ B]]];

(4) ðX1 \ X2Þ] ¼ X
]
1 [ X

]
2; ðB1 \ B2Þ] ¼ B

]
1 [ B

]
2;

(5) X � B] , B � X].

Let X 2 PðUÞ;B 2 PðAÞ; a pair (X, B) is called a dual

concept if X ¼ B] and B ¼ X] [25]. For a set of objects

X 2 PðUÞ and a set of attributes B 2 PðAÞ; from Theorem

3.1 we can obtain that ðX]];X]Þ and ðB];B]]Þ are dual

concepts.

Analogously, all dual concepts of (U, A, I) form a

complete lattice which is called the dual concept lattice of

(U, A, I).

Let (U, A, I) be a formal context, the other two operators
h; � are defined as follows [4, 25]: 8X 2 PðUÞ; B 2 PðAÞ;
Xh ¼ fa 2 Aj8x 2 Uððx; aÞ 2 I ) x 2 XÞg;
B� ¼ fx 2 Uj9a 2 Aððx; aÞ 2 I ^ a 2 BÞg:

ð3Þ

X� ¼ fa 2 Aj9x 2 Uððx; aÞ 2 I ^ x 2 XÞg;
Bh ¼ fx 2 Uj8a 2 Aððx; aÞ 2 I ) a 2 BÞg:

ð4Þ

They are also dual operators related by: Xh ¼ X��� ;

X� ¼ X�h� ; Bh ¼ B��� ;B� ¼ B�h� :

Theorem 3.2 [4, 25] The operators h; � satisfy the fol-

lowing properties: for 8X; X1; X2 2 PðUÞ;B; B1;

B2 2 PðAÞ;

(1) X1 � X2 ) X�1 � X�2 ;X
h
1 � Xh

2 ;

B1 � B2 ) Bh
1 � Bh

2 ;B
�
1 � B�2;

(2) Xh� � X � X�h;Bh� � B � B�h;

(3) Xh ¼ Xh�h;X� ¼ X�h�;

B� ¼ B�h�;Bh ¼ Bh�h;
(4) ðX1 [ X2Þ� ¼ X�1 [ X�2 ; ðX1 \ X2Þh ¼ Xh

1 \ Xh
2 ;

ðB1 [ B2Þ� ¼ B�1 [ B�2; ðB1 \ B2Þh ¼ Bh
1 \ Bh

2 ;

(5) X � Bh , X� � B;

B� � X , B � Xh
.

For X 2 PðUÞ;B 2 PðAÞ; a pair (X, B) is called an

object-oriented concept if X ¼ B�;B ¼ Xh: From Theorem

3.2, we can verify that ðXh�;XhÞ and ðB�;B�hÞ are object-

oriented concepts.

All object-oriented concepts of (U, A, I) form a com-

plete lattice which is called the object-oriented concept

lattice of (U, A, I).

By exchanging objects and attributes in the definition of

an object-oriented concept, we can define an attribute-ori-

ented concept, that is, a pair ðX;BÞ;X 2 PðUÞ;B 2 PðAÞ; is

called an attribute-oriented concept if X ¼ Bh;B ¼ X�:

From Theorem 3.2, we can see that ðX�h;X�Þ and ðBh;Bh�Þ
are attribute-oriented concepts.

All attribute-oriented concepts of (U, A, I) form a

complete lattice which is called the attribute-oriented

concept lattice of (U, A, I)

Example 3.1 Table 1 gives a formal context (U, A, I)

with U = {1, 2, 3, 4, 5, 6} and A = {a, b, c, d, e, f}.

The concept lattice, the dual concept lattice, the object-

oriented concept lattice and the attribute-oriented concept

lattice of (U, A, I) are shown in Figs. 1, 2, 3, and 4,

respectively.

4 Axiomatic characterization of formal concepts

According to Sect. 3, from a formal context, four types of

formal concepts can be derived. In this section, we use

the axiomatic approach to characterize the essential

properties of the four types of formal concepts. At the

same time, we prove the independence of the axioms by

exemplifications.

Definition 4.1 Let U be a finite set of objects, A a finite

set of attributes, Lc : PðUÞ ! PðAÞ; and Hc : PðAÞ !
PðUÞ: Then (U, A, Lc, Hc) is called a conceptual knowl-

edge system if the following axioms are satisfied:

8X1;X2 2 PðUÞ;B1;B2 2 PðAÞ;

Table 1 A formal context (U, A, I)

U a b c d e f

1 1 0 0 1 0 1

2 1 1 0 1 1 1

3 0 0 0 1 0 0

4 0 0 1 0 1 0

5 1 1 0 1 1 1

6 0 0 1 0 1 0
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ðLC1Þ LcðX1 [ X2Þ ¼ LcðX1Þ \ LcðX2Þ;
ðHC1Þ HcðB1 [ B2Þ ¼ HcðB1Þ \ HcðB2Þ;
ðLHCÞ a 2 LcðxÞ () x 2 HcðaÞ; 8x 2 U; a 2 A:

For simplicity, we denote Lc({x}) as Lc(x), Hc({a}) as

Hc(a), Hc(Lc(X)) as HcLc(X) and Lc(Hc(B)) as LcHc(B).

Theorem 4.1 Let U be a finite set of objects, A a finite set

of attributes, Lc : PðUÞ ! PðAÞ and Hc : PðAÞ ! PðUÞ:
Then there exists a binary relation I between U and A such

that Lc(X) = X*, Hc(B) = B* for all X 2 PðUÞ and B 2
PðAÞ iff (U, A, Lc, Hc) is a conceptual knowledge system,

where X* and B* are defined by Eq. (1).

Proof ‘‘)’’ It follows immediately from the properties of

X* and B*. ‘‘(’’ Define a binary relation I � U � A as

follows:

I ¼ fðx; aÞja 2 LcðxÞg:

For any X 2 PðUÞ; we have

X� ¼ fa 2 Aj8x 2 X; ðx; aÞ 2 Ig
¼ fa 2 Aj8x 2 X; a 2 LcðxÞg

¼ a 2 Aja 2
\

x2X

LcðxÞ ¼ LcðXÞ
( )

¼ LcðXÞ:

Thus X* = Lc(X). Analogously, we can prove that

Hc(B) = B*. h

The following example shows that the three axioms for

the conceptual knowledge system are independent, i.e., any

two of the axioms can not deduce the third one.

Example 4.1 Let U = {1, 2, 3}, A = {a, b, c}.

(1) Define Lc(X) = A for any X � U and HcðBÞ ¼ ; for

any B � A: It is easy to see that axioms (LC1) and

(HC1) are satisfied, and a 2 Lcð1Þ; but 1 62 HcðaÞ; i.e.,

(LHC) is not satisfied. Thus Lc and Hc do not imply

(LHC).

(2) Define Lcð1Þ ¼ fag; Lcð2Þ ¼ fbg; Lcð3Þ ¼ fcg;Lc ð;Þ
¼ A; LcðXÞ ¼ ; for all other X � U: HcðaÞ ¼
f1g;HcðbÞ ¼ f2g; HcðcÞ ¼ f3g;Hcð;Þ ¼ U;HcðBÞ ¼
U for all other B � A: Since Hc(A[ {a})

= Hc(A) = U = Hc(A) \ Hc({a}), i.e., (HC1) is not

satisfied, we conclude that (LC1), ðLHCÞ;ðHC1Þ:

( , )U

( (21235, )d 456, )e

(125, )adf

(25, )abdef (46, )ce

( , )A

Fig. 1 The formal concept

lattice

( , )U

( (1235, )abdf 1346, )c

(346, )bce

(13, )abcdf (46, )abcef

( , )A

Fig. 2 The dualconcept lattice

( , )U A

( (1235, )abdf 12456, )abcef

( (125, )abf 2456, )bce

(2 (45, )b 6, )c

( , )

Fig. 3 The object-oriented

concept lattice

( , )U A

(1235, )abdef (1346, )acdef

(13, )adf (346, )cde

(3, )d (46, )ce

( , )

Fig. 4 The attribute-oriented

concept lattice
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(3) Define Lcð1Þ ¼ fag;Lcð2Þ ¼ fbg; Lcð3Þ ¼ fcg; Lcð;Þ
¼ A; LcðXÞ ¼ A for all other X � U: HcðaÞ ¼
f1g;HcðbÞ ¼ f2g;HcðcÞ ¼ f3g; Hcð;Þ ¼ U;HcðBÞ ¼
; for all other B � A: It is easy to see that (HC1),

(LHC) are satisfied, and Lc(U[ {1}) = Lc(U) =

A = Lc(U) \ Lc({1}), i.e., (LC1) is not satisfied.

This implies that (HC1), ðLHCÞ;ðLC1Þ:

Therefore, axioms (LC1), (HC1) and (LHC) are

independent. h

Theorem 4.2. Let (U, A, Lc, Hc) be a conceptual

knowledge system, then 8X 2 PðUÞ;B 2 PðAÞ; X � Hc

LcðXÞ and B � LcHcðBÞ:

Proof 8x 2 X; 8a 2 LcðXÞ ¼
T

x2X LcðxÞ; by (LHC),

we can obtain x 2 HcðaÞ: So x 2
T

a2LcðXÞ HcðaÞ ¼ Hc

S
a2LcðXÞ a

� �
¼ HcLcðXÞ; that is X � HcLcðXÞ: Similarly,

we can conclude B � LcHcðBÞ: h

Let (U, A, Lc, Hc) be a conceptual knowledge system. A

pair ðX;BÞ;X 2 PðUÞ;B 2 PðAÞ; is called a concept of

ðU;A; Lc;HcÞ if X = Hc(B) and B = Lc(X). We denote the

set of all concepts as L(U, A, Lc, Hc).

The partial ordered relation B in L(U, A, Lc, Hc) is

defined as follows:

ðX1;B1Þ	 ðX2;B2Þ , X1 � X2ð, B1 � B2Þ:

It allows us to conclude the following:

Theorem 4.3 (L(U, A, Lc, Hc), B) forms a complete

lattice, where the meet and the joint are, respectively, given

by:

ðX1;B1Þ ^ ðX2;B2Þ ¼ ðX1 \ X2; LcHcðB1 [ B2ÞÞ;
ðX1;B1Þ _ ðX2;B2Þ ¼ ðHcLcðX1 [ X2Þ;B1 \ B2Þ:

Proof It follows immediately from Theorem 4.1. h

Definition 4.2 Let U be a finite set of objects, A a finite

set of attributes, Ld : PðUÞ ! PðAÞ; and Hd : PðAÞ !
PðUÞ: Then (U, A, Ld, Hd) is called a dual conceptual

knowledge system if the following axioms are satisfied:

8X1;X2 2 PðUÞ;B1;B2 2 PðAÞ; ðx; aÞ 2 U � A;

ðLD1Þ LdðX1 \ X2Þ ¼ LdðX1Þ [ LdðX2Þ;
ðHD1Þ HdðB1 \ B2Þ ¼ HdðB1Þ [ HdðB2Þ;
ðLHDÞ a 62 LdðU 
 fxgÞ , x 62 HdðA
 fagÞ

Theorem 4.4 Let U be a finite set of objects and A a finite

set of attributes, Ld : PðUÞ ! PðAÞ and Hd : PðAÞ !
PðUÞ: Then there exists a binary relation I between

U and A such that LdðXÞ ¼ X] and HdðBÞ ¼ B] for all

X 2 PðUÞ and B 2 PðAÞ if and only if (U, A, Ld, Hd) is a

dual conceptual knowledge system, where X] and B] are

defined by Eq. (2).

Proof ‘‘)’’ It follows immediately from Theorem 3.1.

‘‘(’’ Define a binary relation I between U and A by

I ¼ fðx; aÞja 62 LdðU 
 fxgÞg:

Note that for all X 2 PðUÞ;X ¼
T

x2X � ðU 
 fxgÞ; we have

X] ¼ fa 2 Aj9x 2 Uððx; aÞ 62 I ^ x 62 XÞg
¼ fa 2 Aj9x 2 X� ; ðx; aÞ 62 Ig
¼ fa 2 Aj9x 2 X� ; a 2 LdðU 
 fxgÞg

¼ a 2 Aja 2
[

x2X�
LdðU 
 fxgÞ ¼ LdðXÞ

( )
¼ LdðXÞ:

Hence X] ¼ LdðXÞ: On the other hand, by axiom (LHD),

if I ¼ fðx; aÞja 62 LdðU 
 fxgÞg; then I ¼ fðx; aÞjx 62 Hd

ðA
 fagÞg: Hence

B] ¼ fx 2 Uj9a 2 Aððx; aÞ 62 I ^ a 62 BÞg
¼ fx 2 Uj9a 2 B� ; ðx; aÞ 62 Ig

¼ x 2 Ujx 2
[

a2Bc

HdðA
 fagÞ ¼ HdðBÞ
( )

¼ HdðBÞ;

which implies that B] ¼ HdðBÞ: h

The following example shows that the three axioms in

Definition 4.2 are independent.

Example 4.2 Let U = {1, 2, 3} and A = {a, b, c}.

(1) Define Ld(X) = A for any X � U and HdðBÞ ¼ ; for

any B � A: It is easy to verify that Ld and Hd satisfy

axioms (LD1) and (HD1), but they do not obey axiom

(LHD).

(2) Define Ldðf1; 2gÞ ¼ fa; bg; Ldðf1; 3gÞ ¼ fa; cg; Ld

ðf2; 3gÞ ¼ fb; cg; LdðUÞ ¼ ;; LdðXÞ ¼ A for all other

X � U;Hdðfa; bgÞ ¼ f1; 2g;Hdðfa; cgÞ ¼ f1; 3g;Hd

ðfb; cgÞ ¼ f2; 3g;HdðBÞ ¼ ; for all other B � A:

Then Ld and Hd satisfy axioms (LD1) and (LHD).

Since Hdðfa; bg \ fa; cgÞ ¼ HdðaÞ ¼ ; 6¼ Hdðfa; bgÞ
[Hd ðfa; cgÞ; we see that Ld and Hd do not obey

axiom (HD1).

(3) Define Ldðf1; 2gÞ ¼ fa; bg; Ldðf1; 3gÞ ¼ fa; cg; Ld

ðf2; 3gÞ ¼ fb; cg; LdðXÞ ¼ ; for all other X �
U:Hdðfa; bgÞ ¼ f1; 2g; Hdðfa; cgÞ ¼ f1; 3g;Hd

ðfb; cgÞ ¼ f2; 3g;HdðAÞ ¼ ;; and Hd(B) = U for all

other B � A: Thus Ld and Hd satisfy axioms (HD1)

and (LHD), but they do not obey axiom (LD1).

Therefore, we have examined that axioms (LD1), (HD1)

and (LHD) are independent. h

The following theorem shows that if (U, A, Lc, Hc) is a

conceptual knowledge system, then a dual conceptual

knowledge system can be constructed, that is, the dual oper-

ators of Lc and Hc satisfy the three axioms in Definition 4.2.
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Theorem 4.5 Let (U, A, Lc, Hc) be a conceptual knowl-

edge system. If 8X 2 PðUÞ;B 2 PðAÞ; Ld0 ðXÞ ¼ ðLcðX� ÞÞ
� ; Hd0 ðBÞ ¼ ðHcðB� ÞÞ� ; then ðU;A; Ld0 ;Hd0 Þ is a dual

conceptual knowledge system.

Proof We only need to prove that Ld0 and Hd0 satisfy

axioms (LD1), (HD1), and (LHD). By the properties of the

duality and the complement, we have

Ld0 ðX1\X2Þ¼ðLcðX�1 [X�2 ÞÞ
� ¼ðLcðX�1 Þ\LcðX�2 ÞÞ

�

¼ðLcðX�1 ÞÞ
� [ðLcðX�2 ÞÞ

� ¼Ld0 ðX1Þ[Ld0 ðX2Þ;

thus Ld0 satisfies axiom (LD1).

Similarly, we can prove that Hd0 satisfies axioms (HD1).

Finally, for ðx; aÞ 2 U � A; we have

a 62 Ld0 ðU
fxgÞ () a 62 ðLcðfxgÞÞ� () a 2 LcðfxgÞ
() x 2 HcðfagÞ () x 62 Hd0 ðA
fagÞ:

Thus ðU;A; Ld0 ;Hd0 Þ is a dual conceptual knowledge sys-

tem. h

However, if (U, A, Lc, Hc) be a conceptual knowledge

system, (U, A, Ld, Hd) a dual conceptual knowledge sys-

tem, then for X 2 PðUÞ and B 2 PðAÞ; the equations

Ld(X) = (Lc(X
*))* and Hd(B) = (Hc(B

*))* may be not

hold.

Example 4.3 Let U = {1, 2, 3}, A = {a, b, c}. Lc, Hc,

Ld, Hd are defined as Table 2. It is easy to verify that

(U, A, Lc, Hc) is a conceptual knowledge system,

(U, A, Ld, Hd) is a dual conceptual knowledge system. But

Ld({2, 3}) = {c}, (Lc({2, 3})*)* = {b, c}, so Ld({2, 3})

= (Lc({2, 3})*)*. Hd({a,c}) = {3} and (Hc({a, c})*)*

= {1, 3}, hence Hd({a, c}) = {3} = (Hc({a, c})*)*.

Theorem 4.6 Let (U, A, Ld, Hd) be a dual conceptual

knowledge system, then 8X 2 PðUÞ;B 2 PðAÞ;X �
HdLdðXÞ;B � LdHdðBÞ:

Proof 8X � U; note that X ¼
T

x2X� ðU 
 fxgÞ; then

8x 2 X� ; 8a 2 ðLdðXÞÞ� ¼
T

x2X� ðLdðU 
 fxgÞÞ� ; by

(LHD) we have x 2 ðHdðA
 fagÞÞ� : Hence

x 2
\

a2ðLdðXÞÞ�
ðHdðA
 fagÞÞ�

¼
[

a2ðLdðXÞÞ�
HdðA
 fagÞ

0
@

1
A
�

¼ ðHdLdðXÞÞ� ;

which implies that X� � ðHdLdðXÞÞ� : Thus X �
HdLdðXÞ:

On the other hand, 8B � A; note that B ¼
T

a2B� ðA

fagÞ; then 8a 2 B� ; 8x 2 ðHdðBÞÞ� ¼

T
a2B� ðHdðA


fagÞÞ� ; by (LHD) we have a 2 ðLdðU 
 fxgÞÞ� : Hence

a 2
\

x2ðHdðBÞÞ�
ðLdðU 
 fxgÞÞ�

¼
[

x2ðHdðBÞÞ�
LdðU 
 fxgÞ

0

@

1

A
�

¼ ðLdHdðBÞÞ� ;

which implies that B� � ðLdHdðBÞÞ� : Thus B �
LdHdðBÞ: h

Let (U, A, Ld, Hd) be a dual conceptual knowledge system.

A pair (X, B), X [ P(U), B [ P(A), is called a dual formal

concept of (U, A, Ld, Hd) if X = Hd(B) and B = Ld(X). The

set of all dual concepts is denoted as L(U, A, Ld, Hd).

For two dual concepts (X1, B1) and (X2, B2), we define

ðX1;B1Þ	 ðX2;B2Þ , X1 � X2ð, B1 � B2Þ:

Then we get the following

Theorem 4.7 (L(U, A, Ld, Hd), B) forms a complete

lattice in which the meet and the joint of the dual concepts

are defined as follows:

ðX1;B1Þ ^ ðX2;B2Þ ¼ ðHdLdðX1 \ X2Þ;B1 [ B2Þ;
ðX1;B1Þ _ ðX2;B2Þ ¼ ðX1 [ X2; LdHdðB1 \ B2ÞÞ:

Proof It follows immediately from Theorem 4.4. h

In the following, we present the axiomatic character-

izations of the other two types of concept lattices.

Definition 4.3 Let U be a finite set of objects, A a finite

set of attributes, Lo : PðUÞ ! PðAÞ; and Ho : PðAÞ !
PðUÞ: Then (U, A, Lo, Ho) is called an object-oriented

conceptual knowledge system if the following axioms are

satisfied: 8X1;X2 2 PðUÞ;B1;B2 2 PðAÞ; ðx; aÞ 2 U � A;

ðLO1Þ LoðX1 \ X2Þ ¼ LoðX1Þ \ LoðX2Þ;
ðHO1Þ HoðB1 [ B2Þ ¼ HoðB1Þ [ HoðB2Þ;
ðLHOÞ a 2 LoðU 
 fxgÞ () x 62 HoðaÞ:

Theorem 4.8 Let U be a finite set of objects, A a finite set

of attributes, Lo : PðUÞ ! PðAÞ;Ho : PðAÞ ! PðUÞ: There

exists a binary relation I between U and A such that

Table 2 An example to check that Ld(X) = (Lc(X
*))*,

Hd(B) = (Hc(B
*))*

X B Lc(X) Hc(B) Ld(X) Hd(B)

U A ; ; ; ;
{1, 2} {a, b} ; ; {a, b} {1, 2}

{1, 3} {a, c} ; ; {a, c} {3}

{2, 3} {b, c} ; ; {c} {2, 3}

{1} {a} {a} {1} A U

{2} {b} {b} {2} A U

{3} {c} {c} {3} {a, c} {2, 3}

; ; A U A U
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LoðXÞ ¼ Xh and HoðBÞ ¼ B� for all X 2 PðUÞ and B 2
PðAÞ if and only if (U, A, Lo, Ho) is an object-oriented

conceptual knowledge system, where Xh and B� are

defined by Eq. (3).

Proof ‘‘)’’ It follows immediately from Theorem 3.2.

‘‘(’’ Define a binary relation I between U and A by I � ¼
fðx; aÞjx 62 HoðaÞg: Then, for B � A; we have

B� ¼ fx 2 Uj9a 2 Aða 2 B ^ ðx; aÞ 2 IÞg
¼ fx 2 Uj9a 2 Aða 2 B ^ x 2 HoðaÞÞg

¼ x 2 Ujx 2
[

a2B

HoðaÞ ¼ HoðBÞ
( )

¼ HoðBÞ:

So Ho(B) = B�. on the other hand, by axiom (LHO), we have

Xh ¼ fa 2 Aj8x 2 Uððx; aÞ 2 I ) x 2 XÞg
¼ fa 2 Aj8x 2 Uðx 2 X� ) ðx; aÞ 2 I � g
¼ fa 2 Aj8x 2 X� ; a 2 LoðU 
 fxgÞg

¼ a 2 Aja 2
\

x2X�
LoðU 
 fxgÞ ¼ LoðXÞ

( )
¼ LoðXÞ:

Therefore, LoðXÞ ¼ Xh: h

The next example shows that the three axioms in Defi-

nition 4.3 are independent.

Example 4.4 Let U = {1, 2, 3} and A = {a, b, c}.

(1) Define Lo(X) = A for any X � U;HoðBÞ ¼ U for any

B � A: Then it is clear that Lo and Ho satisfy axioms

(LO1) and (HO1), but they do not obey axiom (LHO).

(2) Define Loðf1; 2gÞ ¼ fag; Loðf1; 3gÞ ¼ fbg; Lo

ðf2; 3gÞ ¼ fcg; LoðUÞ ¼ A; LoðXÞ ¼ ; for all other

X � U: Hoðfa; bgÞ ¼ f3g;HoðfagÞ ¼ f1; 2g;Ho

ðfbgÞ ¼ f1; 3g; HoðfcgÞ ¼ f2; 3g;Hoð;Þ ¼ ;; and

Ho(B) = U for all other B � A: Since Ho({a, b}[
{a}) = Ho({a, b}) = {3} = Ho({a, b}) [ Ho({a}),

we conclude that Lo and Ho satisfy axioms (LO1)

and (LHO), but they do not obey axiom (HO1).

(3) Define Loðf1; 2gÞ ¼ fag; Loðf1; 3gÞ ¼ fbg; Lo

ðf2; 3gÞ ¼ fcg; LoðUÞ ¼ A; Loð3Þ ¼ fa; bg; Lo

ðXÞ ¼ ; for all other X � U: HoðfagÞ ¼ f1; 2g;
HoðfbgÞ ¼ f1; 3g; HoðfcgÞ ¼ f2; 3g;Hoð;Þ ¼ ;;
and Ho(B) = U for all other B � A: Then it is easy

to check that axioms (HO1) and (LHO) are satis-

fied, however, Loðf1; 2g \ f3gÞ ¼ Loð;Þ ¼ ; 6¼ Lo

ðf1; 2gÞ \ Loðf3gÞ; that is, axiom (LO1) is not

satisfied. Hence ðHO1Þ; ðLHOÞ;ðLO1Þ:
Thus, axioms (LO1), (HO1) and (LHO) are independent. h

Theorem 4.9 Let (U, A, Lo, Ho) be an object-oriented

conceptual knowledge system, then 8X 2 PðUÞ;B 2
PðAÞ;HoLoðXÞ � X and LoHoðBÞ � B:

Proof 8X � U; note that X ¼
T

x2X� ðU 
 fxgÞ; then

8x 2 X� ; 8a 2 LoðXÞ ¼
T

x2X� LoðU 
 fxgÞ; by (LHO),

we have x 2 ðHðaÞÞ� : Hence

x 2
\

a2LoðXÞ
ðHoðaÞÞ�

¼
[

a2LoðXÞ
HoðaÞ

0
@

1
A
�

¼ ðHoLoðXÞÞ� :

So X� � ðHoLoðXÞÞ� : It follows that X � HoLoðXÞ:

On the other hand, 8B � A and 8a 2 B; 8x 2
ðHoðBÞÞ� ¼

T
a2BðHoðaÞÞ� ; by (LHO), we have a 2

LoðU 
 fxgÞ; then

a 2
\

x2ðHoðBÞÞ�
LoðU 
 fxgÞ

¼ Lo

\

x2ðHoðBÞÞ�
ðU 
 fxgÞ

0
@

1
A

¼ LoHoðBÞ:

Thus B � LoHoðBÞ: h

Let (U, A, Lo, Ho) be an object-oriented conceptual

knowledge system. A pair (X, B), X [ P(U), B [ P(A), is

called an object-oriented concept of (U, A, Lo, Ho) if

X = Ho(B) and B = Lo(X). The family of all object-ori-

ented concepts is denoted as L(U, A, Lo, Ho).

For two object-oriented concepts (X1, B1) and

(X2, B2), we define

ðX1;B1Þ	 ðX2;B2Þ , X1 � X2ð, B1 � B2Þ:

Then we conclude

Theorem 4.10 (L(U, A, Lo, Ho), B) is a complete lat-

tice, where the meet and the joint of the object-oriented

concepts are defined as follows:

ðX1;B1Þ ^ ðX2;B2Þ ¼ ðHoLoðX1 \ X2Þ;B1 \ B2Þ;
ðX1;B1Þ _ ðX2;B2Þ ¼ ðX1 [ X2; LoHoðB1 [ B2ÞÞ:

Definition 4.4 Let U be a finite set of objects, A a finite

set of attributes, Lp : PðUÞ ! PðAÞ; and Hp : PðAÞ !
PðUÞ: Then (U, A, Lp, Hp) is called an attribute-oriented

conceptual knowledge system if the following axioms are

satisfied:

8X1;X2 2 PðUÞ; 8B1;B2 2 PðAÞ; 8ðx; aÞ 2 U � A;

ðLP1Þ LpðX1 [ X2Þ ¼ LpðX1Þ [ LpðX2Þ;
ðHP1Þ HpðB1 \ B2Þ ¼ HpðB1Þ \ HpðB2Þ;
ðLHPÞ a 62 LpðxÞ , x 2 HpðA
 fagÞ:

Theorem 4.11 Let U be a finite set of objects and A finite

set of attributes, Lp : PðUÞ ! PðAÞ and Hp : PðAÞ !
PðUÞ: Then there exists a binary relation I between
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U and A such that LpðXÞ ¼ X� and HpðBÞ ¼ Bh for all

X 2 PðUÞ and B 2 PðAÞ if and only if (U, A, Lp, Hp) is an

attribute-oriented conceptual knowledge system, where X�

and Bh are defined by Eq. (4).

Proof ‘‘)’’ It follows immediately from Theorem 3.2.

‘‘(’’ Define a binary relation I between U and A by

I � ¼ fðx; aÞja 62 LpðxÞg:

Then, for X � U; we have

X� ¼ fa 2 Aj9x 2 Uððx; aÞ 2 I ^ x 2 XÞg
¼ fa 2 Aj9x 2 Uðx 2 X \ a 2 LpðxÞÞg

¼ a 2 Aja 2
[

x2X

LpðxÞ ¼ LpðXÞ
( )

¼ LpðXÞ:

So Lp(X) = X�. On the other hand, by axiom (LHP),

note that I � ¼ fðx; aÞja 62 LpðxÞg; then I � ¼ fðx; aÞjx 2
HpðA
 fagÞg: Hence

Bh ¼ fx 2 Uj8a 2 Aððx; aÞ 2 I ) a 2 BÞg
¼ fx 2 Uj8a 2 Aða 2 B� ) ðx; aÞ 2 I � g
¼ fx 2 Uj8a 2 B� ; x 2 HpðA
 fagÞg

¼ x 2 Ujx 2
\

a2B�
HpðA
 fagÞ ¼ HpðBÞ

( )
¼ HpðBÞ:

h

The following example shows that the three axioms in

Definition 4.4 are independent.

Example 4.5 Let U = {1, 2, 3} and A = {a, b, c}.

(1) Define Lp(X) = A for any X � U;HpðBÞ ¼ U for any

B � A: Thus Lp and Hp satisfy axioms (LP1) and

(HP1), respectively, but they do not obey axiom

(LHO).

(2) Define Lpðf1gÞ ¼ fa; bg; Lpðf2gÞ ¼ fa; cg; Lpðf3gÞ
¼ fb; cg; Lpð;Þ ¼ ;; LpðXÞ ¼ A for all other X � U:

HpðAÞ ¼ U; Hpðfa; bgÞ ¼ f1g;Hpðfa; cgÞ ¼ f2g;Hp

ðfb; cgÞ ¼ f3g; HpðfcgÞ ¼ f1; 2g; and HpðBÞ ¼ ; for

all other B � A: Then Lp and Hp satisfy axioms (LP1)

and (LHP). Note that Hpðfa; bg \ fcgÞ ¼ Hpð;Þ ¼
; 6¼ Hpðfa; bgÞ \ HpðfcgÞ; we see that Hp does not

obey axiom (HP1).

(3) Define Lpðf1gÞ ¼ fa; bg; Lpðf2gÞ ¼ fa; cg; Lpðf3gÞ
¼ fb; cg; Lpð;Þ ¼ ;; Lpðf1; 2gÞ ¼ fcg; LpðXÞ ¼ A

for all other X � U: Hpðfa; bgÞ ¼ f1g; Hpðfa; cgÞ ¼
f2g;Hpðfb; cgÞ ¼ f3g;HpðAÞ ¼ U; and HpðBÞ ¼ ;
for all other B � A: It is easy to see that axioms

(HP1) and (LHP) are satisfied. Note that Lp({1, 2}[
{1}) = Lp({1, 2}) = {c} = Lp({1, 2}) [ Lp({1}),

thus axiom (LP1) is not satisfied.

Therefore, we have examined that axioms (LP1), (HP1)

and (LHP) are independent. h

The following theorem shows that if (U, A, Lo, Ho) is an

object-conceptual knowledge system, then the dual opera-

tors of Lo and Ho obey the three axioms in Definition 4.4.

Theorem 4.12 Let (U, A, Lo, Ho) be an object-concep-

tual knowledge system. If Lp0 ðXÞ ¼ ðLoðX� ÞÞ� ;Hp0 ðBÞ ¼
ðHoðB� ÞÞ� ; 8X 2 PðUÞ; 8B 2 PðAÞ; then ðU;A; Lp0 ;Hp0 Þ
is an attribute-oriented conceptual knowledge system.

Proof It is similar to the proof of Theorem 4.5. h

However, if (U, A, Lo, Ho) is an object-conceptual

knowledge system and (U, A, Lp, Hp) an attribute-con-

ceptual knowledge system, then for X 2 PðUÞ and B 2
PðAÞ; the equations Lp(X) = (Lo(X*))* and Hp(B) =

(Ho(B*))* may not hold.

Example 4.6 Let U = {1, 2, 3} and A = {a, b, c}.

Lo, Ho, Lp, Hp are defined as Table 3. Then it is easy to

verify that (U, A, Lo, Ho) is an object-conceptual knowl-

edge system and (U, A, Lp, Hp) an attribute-conceptual

knowledge system. But Lp({2, 3}) = A, (Lo({2, 3})*)*

= {b, c}, so Lp({2, 3}) = (Lo({2, 3})*)*. Also, Hp({b,

c}) = {3}, (Ho({b, c})*)* = {2, 3}, thus Hp({b, c}) =

(Ho({b, c})*)*.

Theorem 4.13 Let (U, A, Lp, Hp) be an attribute-ori-

ented conceptual knowledge system, then, 8X 2
PðUÞ; 8B 2 PðAÞ;X � HpLpðXÞ;B � LpHpðBÞ:

Proof 8x 2 X;8a 2 ðLpðXÞÞ� ¼
T

x2XðLpðxÞÞ� ; by (LHP)

we have x 2 HpðA
fagÞ: Then

x 2
\

a2ðLpðXÞÞ�
HpðA
 fagÞ

¼ Hp

\

a2ðLpðXÞÞ�
ðA
 fagÞ

0
@

1
A

¼ HpLpðXÞ:

Hence X � HpLpðXÞ:

Table 3 An example to check that Lo(X) = (Lp(X*))*,

Ho(B) = (Hp(B*))*

X B Lo(X) Ho(B) Lp(X) Hp(B)

U A A U A U

{1, 2} {a, b} {a} {1,3} A {1}

{1, 3} {a, c} {a, b} U A {2}

{2, 3} {b, c} {c} U A {3}

{1} {a} {a} {1} {a, b} ;
{2} {b} ; {1, 3} {a, c} ;
{3} {c} ; {2, 3} {b, c} ;
; ; ; ; ; ;
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On the other hand, 8B � A; note that B ¼
T

a2B� ðA

fagÞ; then 8a 2 B� ; 8x 2 HpðBÞ ¼

T
a2B� HpðA
 fagÞ;

by (LHP) we have a 2 ðLpðxÞÞ� : Hence

a 2
\

x2HpðBÞ
ðLpðxÞÞ�

¼
[

x2HpðBÞ
LpðxÞ

0
@

1
A
�

¼ ðLpHpðBÞÞ� :

Consequently, B� � ðLpHpðBÞÞ� : Thus B � LpHpðBÞ:
h

Let (U, A, Lp, Hp) be an attribute-oriented conceptual

knowledge system. A pair (X, B), X [ P(U), B [ P(A), is

called an attribute-oriented concept of (U, A, Lp, Hp) if

X = Hp(B) and B = Lp(X). The set of all attribute-oriented

concepts is denoted as L(U, A, Lp, Hp).

For two attribute-oriented concepts (X1, B1) and

(X2, B2), we define

ðX1;B1Þ	 ðX2;B2Þ , X1 � X2ð, B1 � B2Þ:

Then, by Theorem 4.11, we can conclude

Theorem 4.14 (L(U, A, Lp, Hp), B) forms a complete

lattice, where the meet and the joint of the attribute-ori-

ented concepts are, respectively, defined as follows:

ðX1;B1Þ ^ ðX2;B2Þ ¼ ðX1 \ X2; LpHpðB1 \ B2ÞÞ;
ðX1;B1Þ _ ðX2;B2Þ ¼ ðHpLpðX1 [ X2Þ;B1 [ B2Þ:

5 Conclusion

Generalizations of the FCA proposed by Wille have been

studied in various ways. A majority of the studies exam-

ined formal concepts and concept lattices by using con-

structive approach; however, less effort has been made by

using axiomatic approaches. In this paper, we discuss the

axiomatic characterizations of formal concepts. Using the

axiomatic approach, four types of conceptual knowledge

systems from a formal context are defined. Axioms for

characterizing conceptual knowledge systems guarantee

the existence of certain types of binary crisp relations

which produce the same formal concept operators. Fur-

thermore, the independence of axiom set for characterizing

each type of conceptual knowledge system is examined.

The formal concept axiomatic systems will help us to

understand the structural features of various formal

concepts.

An important generalization of the FCA is fuzzy concept

lattice. For may examine further research, the axiomatic

characteristic of concept lattice theory in the fuzzy envi-

ronment need to be investigated.
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