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Abstract Data clustering is the most popular data anal-

ysis method in data mining. It is the method that parts the

data object to meaningful groups. It has been applied into

many areas such as image processing, pattern recognition

and machine learning where the data sets are of many

shapes and sizes. The most popular K-means and other

classical algorithms suffer from drawback of their initial

choice of centroid selection and local optima. This paper

presents a new improved algorithm named as Boundary

Restricted Adaptive Particle Swam Optimization (BR-

APSO) algorithm with boundary restriction strategy. The

proposed BR-APSO algorithm is tested on nine data sets,

and its results are compared with those of PSO, NM-PSO,

K-PSO and K-means clustering algorithms. It has been

found that the proposed algorithm is robust, generates more

accurate results and its convergence speed is also fast

compared to other algorithms.

Keywords Adaptive PSO � Data clustering � Cluster

centroid � K-means clustering � Nelder mean method

1 Introduction

Data Clustering is an unsupervised classification method

whose aim is to part the data set into clusters on the basis of

similarities and dissimilarities among the data objects. It

helps to find the hidden relationship present in the data

objects and divides them in the subsets which have some

meaning in context with a particular problem [2].

The clustering algorithm falls in two categories: hier-

archical clustering and partitional clustering. The hierar-

chical clustering approach is a group of nested clusters

arranged as a tree known as dendrogram. Each cluster node

of the tree consists of child nodes [26]. The idea is to find

the data on different levels of granularity. In contrast,

partitional clustering methods assume the given number of

clusters to be found and then look for the optimal partition

based on the objective function. The hierarchical clustering

can be considered as a series of partitional clustering and

any member of hierarchical clustering can be considered as

partitional clustering [8].

Data clustering relies on many assumptions, character-

istics, information found in the data that explain the data

set and its relationship to each other. The objective of

clustering algorithm is to maximize the inter cluster dis-

tance and minimize the intra cluster distance as shown in

Fig. 1 [3].

K-means clustering is one of the older partitioning

methods, which is commonly used to automatically divide

the data set into k groups. K-means algorithm generates a

fast and efficient solution. The basic K-means algorithm

works with the objective to minimize the mean squared

distance from each data point to its nearest centre.

Although K-means is a very popular algorithm, it suffers

from several drawbacks. K-means algorithm is highly

dependent upon its initial selection of cluster centres and
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pre-knowledge of fixed cluster centres. It also suffers from

dead unit problem [21]. The K-means algorithm may

contain several local minima, as the objective function of

K-means is not convex [9, 10]. To solve such problems,

evolutionary algorithms such as genetic algorithm (GA)

and particle swarm optimization (PSO) have been intro-

duced. Genetic algorithm starts its search with a random set

of solutions, instead of just one solution. Once a population

of solutions (a random set of binary strings) are created at

random, each solution is evaluated in the context of the

problem [13]. A termination criterion is then checked. If

the termination criterion is not satisfied then three main

operators modify the population of solutions and a new

(and hopefully better) population is created [17, 18]. Par-

ticle swarm optimization (PSO) is a population based

algorithm which relies upon the cognitive and social

behavior of swarm. PSO imitates the swarming behavior of

birds flock, fish and bees, how they are seeking food,

defined as cornfield vector [1, 12]. Although, evolutionary

algorithms are more efficient and generate the good solu-

tions, they suffer from high computational cost of slow

convergence rate. PSO also suffers from slow convergence

rate [11]. To deal with slow convergence problem of PSO

several hybridizations have been proposed in the literature.

A hybridization of Nelder-Mead simplex method with

PSO was proposed by Fan, Liang and Zhara [7]. A

hybridization of K-means, Nelder-Mead simplex and PSO

was proposed by Kao and Zhara [10]. The idea behind

hybridization is to use the merits of all the algorithms and

to find the exact and appropriate cluster centres for clus-

tering the arbitrary data. In another approach linearly

decreasing weight particle swarm optimization (LDWPSO)

was introduced with the concept of linearly decreasing

inertia factor to solve the slow convergence problem of

PSO. Yang et al. [4] proposed an algorithm named as

accelerated linearly decreasing weight particle swarm

optimization (ALDWPSO) for improving the performance

of PSO and to maintain the global and local search abilities

of swarm. This paper presents a hybridization scheme

named as Boundary Restricted Adaptive Particle Swam

Optimization (BR-APSO). The objective of proposed BR-

APSO is to find the appropriate cluster centre, solve the

slow convergence problem and maintain the equilibrium

between global and local search capabilities of swarm.

Results shown on different artificial and real life situation

data set prove that BR-APSO gives more accurate results

as compared to K-means PSO, K-PSO, K-NM-PSO,

LDWPSO and ALDWPSO.

This paper is organized as follows: In Sect. 2, the

K-means algorithm, its details, working and major draw-

backs are described. Section 3 details the standard PSO and

its hybridization with other algorithms. Section 4 describes

the BR-APSO approach, its development and working.

Section 5 discusses simulation and experimental results

made on some standard test systems and draws inferences

on the cluster formation from the results obtained. Finally,

Sect. 6 concludes the paper.

2 K-means Algorithm

K-means algorithm has been developed by J. A. Hartigan

and M. A. Wong in between 1975 and 1977. It works on

the concept that a centre point can represent a cluster.

K-means algorithm is an iterative process in which data

objects are moved into different clusters, until they reach

the appropriate cluster [8, 17].

Given a set of observations (x1, x2,…, xn), where each

observation is a d-dimensional real vector. K-means algo-

rithm aims to partition the n observations into c sets (c \ n)

as Z = (z1, z2,…, zc) to minimize a measure of dispersion

within the clusters. The standard K-means algorithm min-

imizes the within-cluster sum of squares distance according

to the equation (1) given below.

f1 ¼ arg min
Xc

j¼1

X

Xi2Z j

Xi � l j
�� ��

2
 !

ð1Þ

where l j is the mean of Z j.

In K-means algorithm as shown in Fig. 2, k objects are

selected as centroids from the given data set and other data

objects of data set are assigned to c clusters where maxi-

mum similarity is achieved. Once all the data objects are

assigned then it calculates the mean squared distance from

each data point. The process is repeated until the termi-

nation criterion is satisfied. Choosing a proper initial cen-

troid is the key step of the basic K-means procedure.

The main advantage of K-means algorithm is that it

generates a fast and efficient solution [24]. The drawback

of K-means algorithm is that the effectiveness and quality

of result of K-means algorithm is highly dependent upon

the objective function used in measuring the distance

between objects. Its selection of initial cluster centres and

also the number of clusters must be previously known and

Fig. 1 Clustering analysis process
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fixed before clustering process starts [16, 18]. K-means

algorithm is also very sensitive in respect to outliers.

3 PSO and its hybridization

PSO is one of the popular algorithms of evolutionary

computation techniques which simulates the movement

and flocking of birds. PSO performs a global search of

solution space and has been widely used to solve multi

objective optimization problems [1]. This approach is

based upon the cooperation of agents called swarms. In

analogy with evolutionary computation methods, a swarm

is similar to population and a particle is similar to an

individual. PSO follows a stochastic optimization method

based on swarm intelligence (SI) [23]. The fundamental

idea is that each particle represents a potential solution

which it updates according to its own experience and that

of neighbours. In PSO, particles are the agents that show

the individual solutions. On the other hand, swarm is the

collection of particles that shows the solution space. The

PSO algorithm searches in parallel using a group of indi-

viduals or particles in a swarm, approach to the optimum

through its present velocity, previous experience and the

experience of its neighbours [5, 19]. PSO searches the

problem domain by adjusting the trajectories of moving

points in a multidimensional space. The motion of an

individual particle for the optimal solution is governed

through the interactions of the position and velocity of each

individual, its own previous best performance and the best

performance of their neighbours. For a swarm the ith par-

ticle is represented by a position denoted as xi = (xi1,

xi2,…, xid). Except for the position, each particle of a

swarm is represented in D dimensional space with a

velocity vi = (vi1, vi2,…, vid). The particles explore in the

search space with a velocity that is dynamically adjusted

according to its own and neighbours’ performances. The

standard PSO method updates the velocity and position of

each particle according to the equations given below.

vidðt þ 1Þ ¼ x�vidðtÞ þ c1
�randðÞ�ðpid � xidÞ

þ c2
�randðÞ�ðpgd � xidÞ

ð2Þ

xid t þ 1ð Þ ¼ vid t þ 1ð Þ þ xid tð Þ ð3Þ

where c1 and c2 are two positive acceleration constants,

rand() is a uniformly random number in [0,1], pid and

pgd are the best positions found so far by the ith particle

and all the particles respectively, t is the iteration count and

x is an inertia weight which is usually, linearly decreasing

during the iterations. Equation (2) consists of three parts:

the first one shows the current speed of the ith particle i.e.

the present state, the second term is known as the cognition

term which shows the thought of the particle itself and the

last and third term is a social term that shows the ability of

information sharing among the swarms. The inertia weight

x plays a role of balancing the local and global search. El-

abd and Kamel [6] proposed that the initial value of x
should be high and it should drop linearly and reach its

minimum at the end. The higher value at the beginning of

iteration helps the particle to move fast and find the global

search ability and the small value at the end helps the

particles to find the finer local search at the end.

Tsai and Chiu [21] proposed generalized models and

techniques for tuning these parameters. PSO also has some

drawbacks. PSO finds the best result with interaction of

particles, but when the search space is large its conver-

gence speed becomes very slow near global optimum. It

also shows poor quality clustering results when it deals

with large and complex data sets [19, 25].

Nelder-Mead simplex method, which is a derivative free

line search method, is specially used for unconstrained

minimization scenarios such as nonlinear least squares,

nonlinear simultaneous equation and other types of func-

tion minimization [14, 15]. It is used to find the local

minima to a function with several variables. The NM

simplex method process is based on four basic operations-

reflection, expansion, contraction and shrinkage. With the

help of these four operations the methods may improve

themselves and find the closest local optimum point.

The hybrid NM-PSO algorithm as shown in Fig. 3, is

hybridization of Nelder-Mead (NM) simplex search method

and particle swarm optimization in which the population size

is set to 3N ? 1. The initial randomly generated 3N ? 1

particles are sorted by fitness and after that top N ? 1 par-

ticles are given to simplex method to improve the (N ? 1)th

particle [7]. The remaining 2N particles are adjusted by PSO.

The process of adjusting these 2N particles includes selec-

tion of gbest particle and selection of neighbourhood best

particle and velocity updates. The gbest particle is then

calculated as guided by sorted fitness values and neigh-

bourhood best particle is determined by dividing the 2N

particles in N neighbourhood.

Algorithm of K-means  

1.  Randomly choose k cluster centres. 

2 . Assign each object to the closest centroid's cluster. 

3 . When all objects have been assigned, recalculate 
      the positions of the centroids. 

4.  Go back to Steps 2 unless the centroids are not 
     changing. 

Fig. 2 K-means algorithm
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Kao et al. [10] has proposed a hybridization of K-means,

Nelder Mead and PSO. The idea behind this is to use the

merits of this entire algorithm. In K-NM-PSO 3N particles

are randomly generated. The clustering process is started

by K-means and then NM-PSO is carried out to its

completion.

Shi and Eberhart [20] have proposed a linearly

decreasing weight particle swarm optimization (LDWPSO)

algorithm. In this algorithm concept of linearly decreasing

inertia weight was introduced. Results show that LDWPSO

is more efficient and accurate as compared to the original

PSO and has a great efficiency of balancing the global and

local search abilities of the swarm. In LDWPSO w is lin-

early decreased from 0.9 to 0.4 in the search process. The

equation of linearly decreasing inertia weight is as follows:

w ¼ ðwmax � wminÞ �
Iterationmax � Iterationi

Iterationmax

þ wmin

ð4Þ

In this equation w is the inertia weight, wmin is 0.4 and

wmax is 0.9.

Yang et al. [4] proposed a hybrid algorithm named as

accelerated linearly decreasing weight particle swarm

optimization (ALDWPSO) as shown in Fig. 4, is hybrid-

ization of linearly decreasing weight and an acceleration

strategy to improve the performance of PSO. It involves the

four processes—the encoding and initialization of the

particle, acceleration strategy, velocity update, position

update and fitness evaluation.

4 Proposed algorithm

In standard PSO when evaluation goes on, at each iteration

particles of swarm update the velocity based on their

momentum, personal best solution and group best solution.

In evaluation process, some particles of swarm have a

tendency to go outside the boundary in the search of global

solution. In Fig. 5 these particles are shown by arrows.

These particles will attract another particle and pass the

personal best and global best information which will not be

accurate as this particle is outside the boundary. Due to this

inaccurate information, the quality of clustering result will

affect more and the diversity of clustering process will be

lost. It also affects the convergence rate of solution and the

algorithm is stuck in local minimum.

Another problem with PSO is its slow convergence near

global solution [10]. There are several algorithms and their

hybridization is available in literature, but these algorithms

can improve the global convergence ability of PSO to a

certain degree [24]. In proposed boundary restricted adap-

tive particle swarm optimization algorithm (BR-APSO) as

shown in Fig. 6, a boundary restriction strategy has been

taken for those particles which go outside the boundary of

search space. When evaluation process starts by standard

PSO, there are several particles which go outside the

boundary and affect the clustering result. In Fig. 7, it is

shown that after applying the BR-APSO, there is no element

which is outside.

In this approach the algorithm forcibly brings back those

particles which go outside in the evaluation process. This

process iteratively goes on when the termination criteria

are not satisfied. The inertia weight is maximum in

beginning of the process and as the process carries on low

inertia is suggested for the reasons that it must not jump

Algorithm of NM-PSO  

1. Initialization 
    Generate a population of size 3N +1. 
2. Evaluation & Ranking 
    Evaluate the fitness of each particle. Rank them on the   
     basis of fitness. 
3. Simplex Method 
    Apply NM operator to the top N +1 particles and   
    replace the (N +1)th particle with the update. 
4. PSO Method 
    Apply PSO operator for updating the remaining 2N        
    particles. 
    Selection: From the population select the global best   
    particle and the neighbourhood best particles. 
    Velocity Update: Apply velocity update to the 2N  
    particles with worst fitness according to equations (2)    
     and (3). 
5.  If the termination conditions are not met, then go back  
     to 2 

Fig. 3 Algorithm of NM-PSO

Algorithm of ALDWPSO  

1. Initialize the position and velocity randomly. 
2. Start clustering of 1/3 of particles on initial 

population. 
3. For 1/3 particles recalculate the cluster centres and 

replace the original 1/3 centres. 
4. Start clustering of the fitness value. 
5. Calculate the Pbest and Gbest. 
6. Weight is linearly decreasing between 0.9 to 0.4 for 

each particle 
7. Velocity and position update. 

8. If the terminating condition is not satisfied then go to  
step 4 

Fig. 4 Algorithm of ALDWPSO

394 Int. J. Mach. Learn. & Cyber. (2013) 4:391–400

123



over the global solution. Previous work adopted the tuning

process by linearly decreasing the inertia weight but it is

seen that better solutions or swarm crowding near the

global solution is observed with small change in the inertia

weight and hence the inertia weight adaption function is

non-linear. This motivates us to choose exponential

function to update the inertia weight in BR-APSO. Result

shows that the performance is significantly improved over

other methods of PSO because it effectively balances the

global and local searching ability of swarm.

5 Datasets and result discussion

Nine data sets have been taken to validate our algorithm.

Data sets are, Vowel, Iris, Crude oil, Contraceptive Method

Choice, Glass and Wine. The aim for selecting these data

sets is to cover the data set of all dimensions (high, low,

medium). The data set with 3 dimensions is grouped into

three clusters, so the number of parameters is the product

of cluster number and its attributes (features) i.e.

N = k 9 d = 3 9 3 = 9, for finding the optimal cluster

centre. The datasets are available at ftp://ftp.ics.uci.edu/

pub/machine-learning-databases/.

1. Artificial data set 1 (Art1): This is a 2-dimensional

problem with 4 unique classes. The problem is inter-

esting in that only one of the inputs is really relevant to

the formation of the classes. Figure 8 shows the arti-

ficial data set1. A total of 600 patterns were drawn

from four independent bivariate normal distributions,

where classes were distributed according to equation

(5) for i = 1,… * where l is the mean vector and
P

is the covariance matrix; m1 = -3, m2 = 0, m3 = 3

and m4 = 6.

N2 l ¼
mi

0

� �
;
X
¼

0:50 0:05

0:05 0:50

� �� �
ð5Þ

2. Artificial data set 2 (Art2): This is a three dimensional

problem with 5 unique classes. The total number of

data sets is n = 250, where distribution of features of

class is according to Class1 * Uniform (85, 100),

Class2 * Uniform (70, 85), Class3 * Uniform (55,

70), Class4 * Uniform (40, 55), Class5 * Uniform

(25, 40). The data sets are shown in Fig. 9.

3. Vowel data set: This data contain 871 Indian Telugu

vowels sounds. This is the three dimensional problem

where all three attributes are corresponding to the I, II

and III vowel frequency and six overlapping classes

Fig. 5 Standard PSO clustering

Algorithm of the proposed scheme (BR-APSO) 

1. Randomly generate 3N particles where each particle            

represents a feasible solution, i.e. cluster solution 

2. Initialization of particle position and velocity. 

3.  Calculate the fitness function 

( )2 , 1,...., , 1,....,i jobjective function f x c i n j z= − = =∑
/* Where n and z are the numbers of datasets and 

clusters, respectively and 
ix is data point and 

jc is 

cluster centre. */ 

4. The value of objective function is stored as particle 
personal best and global or swarm best.

5. Calculate the value of the inertia weight exponentially  

w=maxw*(exp(-iter));

6. Update the velocity and position of particle i.  

   /* Boundry restriction strategy */ 
    If position<=upbnd and position>=lwbnd 
     Then     position= position 

     else   position= position - velocity; 

7.  Place n points into the space represented by the objects 

that are clustered with cluster centres obtained from 

PSO algorithm. These points represent initial group 

centroids.

8. Assign each object to the group that has the closest   

centroid. When all objects have been assigned, 

recalculate the positions of the c centroids.

9. Repeat steps until the centroids no longer move. 

Fig. 6 Algorithm of BR-APSO

Fig. 7 BR-APSO clustering
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{d (72 objects), a (89 objects), i (172 objects), u (151

objects), e (207 objects), o (180 objects)}.

4. Fisher Iris data set: This is perhaps the best known

database to be found in the pattern recognition

literature. The data set contains 3 classes of iris flower

of 150 instances each, where each class refers to a type

of iris plant (Iris setosa, Iris virginica and Iris

versicolor). One class is linearly separable from the

other two; the latter are NOT linearly separable from

each other. Each class has 50 samples with four

features.

5. Crude oil data set: This data set has 56 data with five

attributes: vanadium, iron, beryllium, saturated hydro-

carbons and aromatic hydrocarbons. The crude oil data

set is taken from three zones of sandstone.

6. Contraceptive Method Choice (CMC) data set: This

data set is the subset of 1987 National Indonesia

contraceptive Prevalence survey. This data set is the

sample of women who are married and were not

pregnant or did not know if they were at the time of

interview. The problem is to predict the choice of

current contraceptive method of women on the basis of

their demographic and economic characteristics.

7. Wisconsin breast cancer data set: It contains 683

objects with two categories and nine attributes: clump

thickness, cell size uniformity, cell shape uniformity,

marginal adhesion, single epithelial cell size, bare

nuclei, bland chromatin, normal nucleoli, and mitoses.

Categories are malignant and benign.

8. Glass data set: The data set was collected from 6

different glasses: building windows float processed (70

objects), building windows non-float processed (76

objects), vehicle windows float processed (17 objects),

containers (13 objects), tableware (9 objects), and

headlamps (29 objects), where each data has nine

features: refractive index, sodium, magnesium, alumi-

num, silicon, potassium, calcium, barium, and iron.

9. Wine dataset: These data are the results of a chemical

analysis of wines grown in the same region in Italy but

derived from three different cultivars. The analysis

determined the quantities of 13 constituents (inputs)

found in each of the three types of wines (classes).

These data are collection of 178 instances (data

vectors). Hence, this is a classification problem with

‘‘well behaved class structures’’. There are 13 inputs, 3

classes and 178 data vectors.

Kao et al. [10] summarized the details of these nine data

sets for better understanding the characteristics and further

analysis. The inputs, classes and data vector details of the

different data sets are shown in Table 1.

In this section, details of the overall results of the pro-

posed algorithm are discussed. The performance and

comparison of the result of different algorithms such as

Fig. 8 Artificial dataset 1

Fig. 9 Artificial dataset 2

Table 1 Characteristics of data set

Name

of data

set

No. of

classes

No. of

attributes

(features)

No. of instances in each class

Art1 4 2 600 (150, 150, 150, 150)

Art2 5 3 250 (50, 50, 50, 50, 50)

Vowel 6 3 871 (72, 89, 172, 151, 207, 180)

Iris 3 4 150 (50, 50, 50)

Crude

oil

3 5 56 (7, 11, 38)

CMC 3 9 1,473 (629, 334, 510)

Cancer 2 9 683 (444, 239)

Glass 6 9 214 (70, 17, 76, 13, 9, 29)

Wine 3 13 178 (59, 71, 48)
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K-means, PSO, NM-PSO, K-PSO, K-NM-PSO, LDWPSO,

ALDWPSO are evaluated. The clustering quality is also

compared. The criteria for evaluating of quality are:

Sum of intra cluster distance: The sum of distances

between data object and centre of cluster. If the sum is

minimum then the quality of clustering is high.

Error rate: The total number of misplaced data objects of

the cluster divided by the total number of data as according

to equation (6)

ER ¼
Xn

i¼1

if Ai ¼ Bið Þ then 0 else 1ð Þ=n

 !
� 100 ð6Þ

Here n is the total number of data objects. Ai and Bi is

the dataset with ith data object before and after clustering.

The program has been written in MATLAB. The results

of proposed algorithm are average of 20 simulation runs.

Kao et al. [10] and Yang et al. [4] have taken 10xN

iterations for each run for all dataset in N dimensional

problem. On the other hand proposed algorithm finds the

global optimal solution in just 100 iterations as compared

to 10 9 N iterations. The experimental results also show

that its convergence is very fast and provide more effi-

ciency and effectiveness as compared to K-means, K-PSO,

K-NM-PSO, LDWPSO, ALDWPSO.

The Intra cluster distances of all seven algorithms for

nine datasets are summarized in Table 2. The obtained

values are the result of inter cluster distance and its stan-

dard deviation and average of intra cluster distance over 20

simulation runs. Result shows that for all experimental data

set BR-APSO gives better result by little difference

between the averages and less standard deviations in

comparison of other seven algorithms. Proposed algorithm

is more effective and faster to find the best global optima as

compared to PSO, NM-PSO, K-PSO, K-NM-PSO LDW-

PSO and ALDWPSO. Table 3 shows an example of error

rate calculation. In this table data points (2, 6) and (1, 7) are

misplaced and the error rate is 2/5.

Table 4 describes the error rate of all the algorithms

over 20 simulations with mean and standard deviation and

best solution among all. For all data sets, proposed

Table 2 Comparison of intra cluster distance for K-means, PSO, NM-PSO, K-PSO, K-NM-PSO, LDWPSO, ALDWPSO and BR-APSO

Data set Criteria K-means PSO NM-PSO K-PSO K-NM-PSO LDWPSO ALDWPSO BR-APSO

Art1 Average 721.57 627.74 515.88 515.88 515.88 515.88 515.88 515.88

(Std) 295.84 180.24 7.14E-08 5.60E-05 7.14E-08 7.14E-08 7.14E-08 0

Best 516.04 515.93 515.88 515.88 515.88 515.88 515.88 515.88

Art2 Average 2,762 2,517.2 1,910.4 2,067.3 1,746.9 1,746.9 1,745.9 1,744.69

(Std) 720.66 415.02 296.22 343.64 3.6 3.6 3.6 3.42

Best 1,746.9 1,743.2 1,743.2 1,743.2 1,743.2 1,743.2 1,743.2 1,743.2

Vowel Average 159,243 168,477 151,984 149,376 149,141.4 152,393 148,985.5 148,985.4

(Std) 916 3,715.3 4,386.43 155.56 120.38 4,935.47 30.67 29.72

Best 149,422 163,882 149,240 149,206 149,005 149,041 148,967.2 148,967.2

Iris Average 106.05 103.51 100.72 96.76 96.67 96.67 96.66 96.66

(Std) 14.11 9.69 5.82 0.07 0.008 0.03 0.0009 0.0007

Best 97.33 96.66 96.66 96.66 96.66 96.66 96.66 96.65

Crude oil Average 287.36 285.51 277.59 277.77 277.29 277.24 277.24 267.91

(Std) 25.41 10.31 0.37 0.33 0.095 0.043 0.039 0.33

Best 279.2 279.07 277.19 277.45 277.15 277.21 277.21 266.94

CMC Average 5,693.6 5,734.2 5,563.4 5,532.9 5,532.7 5,532.18 5,532.18 5,532.18

(Std) 473.14 289 30.27 0.09 0.23 9.50E-05 2.00E-06 2.00E-07

Best 5,542.2 5,538.5 5,537.3 5,532.88 5,532.4 5,532.18 5,532.18 5,532.18

Cancer Average 2,988.3 3,334.6 2,977.7 2,965.8 2,964.7 2,964.39 2,964.39 2,963.7

(Std) 0.46 357.66 13.73 1.63 0.15 0.0001 6.80E-06 1.00E-06

Best 2,987 2,976.3 2,965.59 2,964.5 2,964.5 2,964.39 2,964.39 2,963.70

Glass Average 260.4 291.33 248.96 207.35 200.5 200.5 200.5 199.87

(Std) 36.82 6.82 6.82 5.12 2.26 2.26 2.26 1.09

Best 215.68 243.45 243.45 203.37 199.68 199.68 199.68 199.64

Wine Average 18,061 16,311 16,303 16,294 16,293 16,292.7 16,292.38 16,292.41

(Std) 793.21 22.98 4.28 1.7 0.46 0.64 0.24 0.21

Best 16,555.7 16,294 16,292 16,292 16,292 16,292.2 16,292.19 16,292.19
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algorithm has smaller mean and standard deviation among

all seven algorithms such as K-means, NM-PSO, K-NM-

PSO, LDWPSO, ALDWPSO.

The convergence graph of the BR-APSO, NM-PSO,

K-PSO, K-NM-PSO, K-means, PSO are shown in Figs. 10

and 11. Figure 10a shows the convergence behavior of the

algorithms for data set Art1. In all the algorithms the

convergence speed of K-means algorithm is fast but it is

stuck in local optimum. The other algorithms PSO & NM-

PSO take about 50 iterations for global convergence.

K-PSO and K-NM-PSO take about 10 iterations to reach

the global optimum, whereas proposed BR-APSO takes

about 7 iterations to converge to global optimum. On the

other hand, in Fig. 10b the algorithms BR-APSO, NM-

PSO, K-PSO & K-NM-PSO correctly cluster the data of

Art1 dataset into four clusters. In Figs. 10c, d the PSO

clusters the dataset with 25 % error rate & K-means clus-

ters the dataset with 25.67 % error rate.

Figure 11a shows the convergence graph of all algorithms

for Art2 data set. K-means algorithm is fast but stuck in local

minima. PSO and NM-PSO takes 80 iterations for finding

global optimum, whereas, BR-APSO takes about 10 itera-

tions for convergence to global optimum. Figure 11b, c, d

shows the clustering results of all the algorithms. BR-APSO,

K-PSO, NM-PSO, K-means, K-NM-PSO clusters the correct

dataset in five clusters whereas K-means shows 40 % error

rate and PSO shows the 20 % error rate to clusters the dataset

in five clusters.

Table 3 Error rate calculations

I Data point Ai Bi Not misplaced (0)/

Misplaced (1)

1 (2, 6) 2 1 1

2 (6, 3) 2 2 0

3 (1, 7) 2 1 1

4 (5, 4) 1 1 0

5 (8, 7) 1 1 0

Number of misplaced point: 2

Table 4 Comparison of error rate for K-means, PSO, NM-PSO, K-PSO, K-NM-PSO, LDWPSO, ALDWPSO and BR-APSO

Data set Criteria K-means PSO NM-PSO K-PSO K-NM-PSO LDWPSO ALDWPSO BR-APSO

Art1 Average 13 7.57 0 0 0 0 0 0

(Std) 17.78 12.18 0 0 0 0 0 0.00

Best 0 0 0 0 0 0 0 0.00

Art2 Average 34 22 4.04 10 0 0 0 0.00

(Std) 13.45 11.35 8.52 10.32 0 0 0 0.00

Best 20 0 0 0 0 0 0 0.00

Vowel Average 44.26 44.65 41.96 42.24 41.94 42.25 41.83 41.83

(Std) 2.15 2.55 0.98 0.95 0.95 1.47 0.32 0.29

Best 42.02 41.45 40.07 40.64 40.64 40.18 40.87 40.34

Iris Average 17.8 12.53 11.13 10.2 10.07 10.13 10 10.00

(Std) 10.72 5.38 3.02 0.32 0.21 0.27 0 0.0

Best 10.67 10 8 10 10 10 10 9.33

Crude oil Average 24.46 24.64 24.29 24.29 23.93 26.52 26.34 26.34

(Std) 1.21 1.73 0.75 0.92 0.72 0.66 0.79 0.007

Best 23.21 23.21 23.21 23.21 23.21 25 25 26.32

CMC Average 54.49 54.41 54.47 54.38 54.38 54.38 54.38 54.38

(Std) 0.04 0.13 0.06 0 0.05 0 0 0.0002

Best 54.45 54.24 54.38 54.38 54.31 54.38 54.38 54.31

Cancer Average 4.08 5.11 4.28 3.66 3.66 3.51 3.51 3.49

(Std) 0.46 1.32 1.1 0 0 0 0 0.00

Best 3.95 3.66 3.66 3.66 3.66 3.51 3.51 3.49

Glass Average 37.71 45.59 40.89 32.17 30.45 30.45 30.45 29.01

(Std) 13.75 15.62 15.58 15.52 14.13 14.13 14.13 14.13

Best 11 11.21 9.35 12.62 12.62 12.62 12.62 12.61

Wine Average 31.12 28.71 28.48 28.48 28.37 28.51 28.31 28.48

(Std) 0.71 0.41 0.27 0.4 0.27 0.4 0.28 0.24

Best 29.78 28.09 28.09 28.09 28.09 28.09 28.08 28.08
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Fig. 10 a Conversion graph of BR-APSO, K-means, PSO, K-NM-PSO

for Art 1; b BR-APSO, NM-PSO, K-PSO and K-NM-PSO with 0 % error

rate; c PSO with 25 % error rate; d K-means with 25.67 % error rate

Fig. 11 a Conversion graph of BR-APSO, K-means, PSO, K-NM-

PSO for Art 2; b BR-APSO, NM-PSO, K-PSO and K-NM-PSO with

0 % error rate; c PSO with 20 % error rate; d K-means with 40 %

error rate
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6 Conclusion

This paper has proposed a cluster analysis algorithm based

on PSO named as BR-APSO. The performance of this

algorithm is validated on nine data sets based on intra

cluster distance criterion in N dimensional Euclidian space.

The K-means and other algorithms suffer from initial

center selection and slow convergence rate near global

optima. The experiment results by using nine data sets

show that proposed algorithm has better performance and

convergence rate compared to K-means K-PSO, K-NM-

PSO, LDWPSO, ALDWPSO and least error rate compared

to these algorithms.
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