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Abstract This study compares the classification perfor-

mance of a hybrid ensemble, which is called the global–

local hybrid ensemble that employs both local and global

learners against data manipulation ensembles including

bagging and boosting variants. A comprehensive simula-

tion study is performed on 46 UCI machine learning

repository data sets using prediction accuracy and SAR

performance metrics and along with rigorous statistical

significance tests. Simulation results for comparison of

classification performances indicate that global–local

hybrid ensemble outperforms or ties with bagging and

boosting ensemble variants in all cases. This suggests that

the global–local ensemble has a more robust performance

profile since its performance is less sensitive to variation

with respect to the problem domain, or equivalently the

data sets. This performance robustness is realized at the

expense of increased complexity of the global–local

ensemble since at least two types of learners, e.g. one

global and another one local, must be trained. A comple-

mentary diversity analysis of global–local hybrid ensemble

and base learners used for bagging and boosting ensembles

on select data sets in the classifier projection space pro-

vides both an explanation and support for the performance

related findings of this study.

Keywords Hybrid classification ensemble � Global–local

learning � Heterogeneous–homogeneous diversity �
Boosting � Bagging � SAR metric � Statistical testing �
Classifier projection space

1 Introduction

The global–local hybrid ensemble (GLHE) is a classifier

ensemble design that is characterized by two main traits

[4]. First, one global learner and one local learner are

explicitly used. Second, both heterogeneous and homoge-

neous diversities are integrated. Mitchell presents an

explanation and comparison of how global and local

learners work [26]. When all training instances are con-

sidered during classification of a query instance, the learner

is termed as global. When only near training instances are

considered during classification of a query instance, the

learner is called local. Global learners estimate a single

target function for the entire instance space, while local

learners estimate target functions locally and differently for

each query instance [20].

There are advantages and disadvantages for each type of

learning algorithm, and their ability for generalization

depends on the problem at hand. Generally, global learners

do not respond well to isolated data points—those points in

a sparsely distributed area. That is, it attempts to have a

model that satisfies the majority of points while paying

little attention to outliers (similar to how linear regression

works). Local learners, alternatively, are better for handling

the isolated points since their generalization is instance-

based. However, if the target function only depends on a

few of the many available attributes, then the instances that

are most ‘‘similar’’ may actually be a large distance away

[27]. One can argue that these two types of learners may

behave in a ‘‘complementary’’ way: when one fails, the

other may succeed since it views the problem in such a

different manner.

Co-existence of a global learner along with a local

learner within the same ensemble framework may offer a

powerful mixture of diversity. While traditional ensemble
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designs in the literature appear to use only one type of

diversity, either heterogeneous or homogeneous [7], glo-

bal–local hybrid ensemble employs both forms. The het-

erogeneous diversity originates from the use of a global

learner and a local learner, while the homogeneous diver-

sity is due to multiple instantiations of each learner with

different initial parameterizations (e.g. initial weights for

neural networks, number of neighbors for kNN, pruning

techniques for decision trees, etc.). The combination of the

two diversities is not common in the literature. Although

some have experimented with it indirectly [41], others have

trivialized the combination to being nothing more than a

heterogeneous ensemble in essence [7].

The generic architecture of the GLHE design is shown

in Fig. 1. The contribution of GLHE is the design or

composition of the base classifiers. There are n base-clas-

sifiers from a global learner with different parameteriza-

tions. Likewise, there are m base-classifiers from a local

learner with different parameterizations. The global and

local learning algorithms provide the main source of

diversity (heterogeneity), while instantiation of multiple

classifiers from each learner (homogeneity) gives the

ensemble an opportunity to benefit from the better per-

forming learner numerous times rather than just once.

A previous GLHE study [4] compared prediction accu-

racy of the proposed design against those of 47 ensembles

reported in six prominent studies in the literature [5, 17, 22,

27, 32, 35]. The ensembles varied from bagging and

boosting to hybrid ensembles with up to seven different

learning algorithms. It was found that the performance of

GLHE is not statistically different when compared to the

performances of 45 other ensembles, statistically better

than that of C4.5 bagging ensemble, and statistically worse

than that of one hybrid ensemble. The results were sup-

portive of the hypothesis that GLHE offers the same robust

performance as other, at times more complex, ensemble

designs. Although a large number of comparisons were

performed and since comparisons were made with studies

already reported in the literature, the study was limited by

the constraints imposed by those same literature studies:

comparisons were made with ensembles designed by oth-

ers, only the prediction accuracy measurements were

available in the literature studies, and at most 27 datasets

were considered by any single study. Consequently, con-

clusions of the Baumgartner and Serpen study [4] facili-

tated making only general statements about GLHE. This

study aims to provide a more precise projection of the

utility of the GLHE design through a comparative perfor-

mance evaluation with data manipulation ensembles,

namely boosting and bagging classifier ensembles.

Although not directly studied in this work, the GLHE

method may be similarly applicable to relatively new

problem domains that traditional data manipulation

ensembles have been extended to, including adversarial

environments [6].

In data manipulation ensembles, the approach to build-

ing an ensemble uses a single learning algorithm with

different subsets of the original dataset to train different

base classifiers. Multiple classifiers are generated from a

single learning algorithm through variations of the training

data (e.g. different samples of instances and/or different

samples of features). Data manipulation ensembles are

ideal when a single learning algorithm is known to perform

well for a given dataset, as the performance will likely

improve. However, there is also risk that the learning

algorithm may not perform well for a given dataset, which

adversely affects the performance of the ensemble.

Regardless of its drawbacks, the simplicity of this method

makes it the most widely investigated diversity creation

method [30].

Popular data manipulation ensemble techniques are

bagging and boosting (AdaBoost). Breiman’s bagging, or

bootstrap aggregation, uses different instance subsets of the

training dataset with a single learning algorithm [8]. Gen-

erally, the subset size is near the size of the original dataset;

however, random sampling with replacement creates sub-

sets with duplicates and/or omissions of the original

instances. The same learning algorithm is used to train on

the different subsets of data, each training episode or case

resulting in a new base classifier. Given a new instance, the

classifier predictions are aggregated with a majority vote to

derive the final prediction for the ensemble. Whereas

bagging relies on randomness to provide better perfor-

mance from an ensemble, Boosting takes a more active

role. Freund and Schapire’s popular boosting variant,

AdaBoost [18], explicitly alters the distribution of the

training dataset to concentrate on the instances that have

not been correctly learned in the previous iterations (i.e.
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Fig. 1 Generic architecture of global–local hybrid ensemble (GLHE)

design
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consecutive training datasets target hard-to-classify instan-

ces). A weighted vote of each classifier’s prediction is per-

formed to obtain the ensemble’s final prediction. A recent

approach, bagging–AdaBoost, incorporates components of

each classic data manipulation ensembles into a single tech-

nique to improve the accuracy, stability, and robustness of the

ensemble [42].

In the subsequent sections a comparative simulation-based

performance and diversity analysis of global–local hybrid

ensemble with boosting and bagging ensembles will be pre-

sented. It is of interest to determine if the global–local hybrid

ensemble offers a more robust performance as a consequence

of its heterogeneous diversity when compared to data manip-

ulation ensembles, while also recognizing that the global–local

hybrid ensemble projects a higher level of training cost due to

the need to train both global and local learners.

2 Simulation study

The simulation study compares the performance of GLHE

against data manipulation ensembles, namely bagging and

boosting variants. The study employs 46 datasets from the

UCI Machine Learning Repository [2] to profile the per-

formance of global–local hybrid ensemble against boosting

and bagging ensembles on the basis of prediction accuracy

and SAR metrics. A rigorous statistical significance testing

is applied for the performance comparisons.

All simulations are executed using the open source

Weka software (version 3.5.8) using tenfold cross valida-

tion [39], with the large experiment and evaluation tool

(LEET) as a front-end [3]. The prediction accuracy esti-

mate for a classifier on a given dataset is an average of the

ten samples (10 folds). The variation of these samples is

not important for this study, as will be made apparent in the

discussion of the statistical significance testing method in a

forthcoming section. The 46 publically available datasets

from the UCI Machine Learning Repository are listed, with

their characteristics, in Table 1. This collection of datasets

was obtained as a union of datasets used in six popular

studies in the literature that target performance robustness

[5, 17, 22, 27, 32, 35]. Only those that could not be found

(due to naming discrepancies) and the letter dataset (due to

its relatively long required run-times) are not included.

Since exclusion of datasets is not dependent on a bias for/

against the GLHE design, little or no impact is anticipated

on the results and conclusions of this study.

2.1 Statistical significance testing

Demsar [14] argues that comparing classifiers does not

satisfy conditions for parametric tests, and instead proposes

the use of nonparametric alternatives. Some have applied

these tests to their studies [4, 5, 25], and we believe it is a

sound approach to follow. Since nonparametric tests rank

the classifiers for each dataset, the important source of

variations is the (independent) datasets and not the (usually

dependent) samples used to calculate the accuracy. This

implies that, besides obtaining a precise estimate of accu-

racy, the sampling method is irrelevant because one does

not have to worry about the Type I error generated from it.

When comparing multiple classifiers, basic statistics dic-

tates that a certain portion of the reported statistical sig-

nificance is actually due to random chance [14, 28, 35].

Demsar’s suggested procedure of tests resolves this issue.

In this study, first the Friedman test is performed, which is

based on the average rank of each classifier across the datasets

[19]. Iman and Davenport [21] showed that the Friedman test

is undesirably conservative, and derived a new statistic based

on its value. This is then used to test the null hypothesis—that

all classifiers have equivalent performance. If the null

hypothesis is accepted, then there is no statistically significant

difference in the classifier performances. Otherwise, the post

hoc Bonferroni–Dunn test is conducted, in which a control

classifier is compared to all others in the group [16]. The

performance of the control and another classifier is signifi-

cantly different if the corresponding average ranks differ by at

least the critical difference (CD).

The results of the statistical significance tests are pre-

sented graphically. An example is shown in Fig. 2. The

left-most bar is the control classifier used for the Bonfer-

roni–Dunn test, while the remaining bars are the compar-

ison classifiers. The height of each bar represents the

average rank of the associated classifier, which indicates

relative performance among the classifiers (higher ranks

are worse performing than lower ranks). Although exam-

ining the average ranks may offer some insight, the more

strict and valid comparison involves the statistical signifi-

cance thresholds resulting from the Bonferroni–Dunn test.

Any classifier with an average rank above the high

threshold is statistically worse than the control. Alterna-

tively, any classifier with an average rank below the low

threshold is statistically better than the control. Those

classifiers with ranks within the threshold lines have a

performance that is statistically no different than that of the

control. Note that the exact values of the thresholds are

displayed at the bottom of the graph. This series of sta-

tistical significance tests and the graphical presentation are

applicable to any measure of performance for multiple

classifiers. This includes the prediction accuracy and the

SAR metrics as described in the next section.

2.2 Performance metrics

The simulation study employs two performance metrics,

namely prediction accuracy and SAR where the latter is an
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Table 1 Simulation study datasets and their characteristics

Dataset Number

instances

Number

classes

# Binary

attributes

# Nominal

attributes

# Numeric

attributes

% Majority

class

% Minority

class

Anneal 898 6 19 13 6 76 1

Audiology 226 24 61 8 0 25 0

Autos 205 7 4 6 15 33 1

Balance-scale 625 3 0 0 4 46 8

Breast-cancer 286 2 3 6 0 70 30

Breast-w 699 2 0 0 9 66 34

Car 1,726 4 0 6 0 70 4

cmc 1,473 3 3 4 2 43 23

Colic 367 2 4 16 7 58 1

Credit-a 690 2 4 5 6 56 44

Credit-g 1,000 2 2 11 7 70 30

Diabetes 768 2 0 0 8 65 35

Echocardiogram 74 2 2 0 7 68 32

Glass 214 7 0 0 9 36 4

Haberman 306 2 0 1 2 74 26

Heart-c 303 5 3 4 6 54 46

Heart-h 294 5 3 4 6 64 36

Heart-statlog 270 2 0 0 13 56 44

Hepatitis 155 2 13 0 6 79 21

Hypothyroid 3,772 4 20 1 7 92 0

Ionosphere 351 2 0 0 34 64 36

Iris 150 3 0 0 4 33 33

kr-vs-kp 3,196 2 34 2 0 52 48

Labor 57 2 3 5 8 65 35

Lymphography 148 4 9 6 3 55 1

Monk2 599 2 2 4 0 66 34

Mushroom 8,124 2 4 18 0 52 48

Page-blocks 5,471 5 0 0 10 90 1

Pendigits 10,990 10 0 0 16 10 10

Satellite 6,435 7 0 0 36 24 10

Segment 2,310 7 0 0 19 14 14

Sick 3,772 2 20 1 7 94 6

Solar-flare-c 1,389 8 5 5 0 84 0

Solar-flare-m 1,389 6 5 5 0 95 0

Solar-flare-x 1,389 3 5 5 0 99 0

Sonar 208 2 0 0 60 53 47

Soybean 683 19 16 19 0 13 1

Splice 3,190 3 0 61 0 52 24

Tic-tac-toe 956 2 0 9 0 65 35

Tumor 339 22 14 3 0 25 0

Vehicle 846 4 0 0 18 26 24

Vote 435 2 16 0 0 61 39

Vowel 990 11 2 1 10 9 9

Waveform 5,000 3 0 0 40 34 33

Wine 176 3 0 0 13 40 26

Zoo 101 7 15 1 1 41 4
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aggregate measure based on prediction accuracy, area

under the receiver operating curve and root-mean-squared-

error.

Prediction accuracy or ACC in short is defined as the

proportion of the number of correct predictions that the

classifier makes relative to the total number of instances.

That is,

ACC ¼ Number of Correct Predictions

Total Number of Instances
;

where larger prediction accuracies indicate better perfor-

mance.

The receiver operating characteristic (ROC) is a

2-dimensional plot of true positives on the vertical axis

against false positives on the horizontal axis. The process

to construct the graph is as follows [39]. First, the pre-

dictions are sorted by descending probability, without

regard to whether or not the prediction is correct. Then the

graph is drawn by traversing through the predictions, from

most probable to least probable. If the prediction is correct,

then move one unit up. Alternately, if the prediction is

incorrect, then move one unit to the right. The area under

the ROC curve, ROCA, is used as a summary statistic.

Larger areas are considered as having better performance.

Although it is already in use and accepted in fields such as

medicine, ROCA is gaining popularity in the wider

machine learning community. For a 2-class problem, a

single ROCA value is calculated between the two classes.

For a c-class problem, there are c ROCA values calculated

such that a given class is considered against the set of the

remaining classes (i.e. a class is considered as 1 and all

remaining classes are considered as 0). These values are

then weighted by the number of instances from each cor-

responding class and their sum is divided by the total

number of instances. Although calculation of ROCA for

multiclass problems is not frequent, the stated method is

accepted in the literature [31].

Root-mean-squared-error (RMSE) is widely used in

regression problems; however, it can also be adapted for

classification problems. RMSE measures how much pre-

dictions deviate from the true values. For C classes, let

p1, p2, …, pC be the probability values of the predicted

classes (such that pi is the probability that class i is pre-

dicted with respect to the total number of instances, and all

the probabilities sum to 1), and a1, a2, …, aC be the

probability values of the actual classes (such that the true

class is 1 and the others are 0). RMSE is defined as [39]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

z¼1

XC

j¼1
½ðpj � ajÞ2=C�;

r

where N is the number of instances. Smaller RMSE values

indicate better performance.

SAR is an aggregate performance metric that has been

shown to have better correlation with ten other prominent

performance metrics than any component metric alone

[10, 11]. It is an average of the prediction accuracy, area

under the ROC curve, and root-mean-squared-error. That is,

SAR ¼ ðACC þ ROCAþ ð1� RMSEÞÞ
3

;

and a higher value of SAR indicates better performance.

2.3 Ensemble designs

The global–local hybrid ensemble (GLHE) is designed

using a decision tree classifier as its global learner and a

nearest neighbor classifier as its local learner. Specifically,

the global learner is J48 (a port of the C4.5 decision tree

classifier) and the local learner is IBk (an instance-based

nearest-neighbor classifier [1]). J48 is a re-implementation

of C4.5 release 8 (which develops a decision tree based

classifier from a set of training data through information

entropy measure) in Java for Weka and employs both

C4.5’s confidence-based post-pruning (default) and sub-

tree raising.

The categorization of J48 as global and IBk as local is

in conformity with multiple references in the literature

[26, 33]. There are obviously many different learning

algorithms that could be used to satisfy the global–local

learner requirement of GLHE, some of which may produce

better performance (e.g. multi-layer perceptrons for global

learning and radial basis functions for local learning).

However, initial exploratory in-house assessments indicated

that the simplicity and efficiency of J48 and IBk would allow

for a large-scale experimentation study while capturing the

important factors of the GLHE design.

Although GLHE is a generic ensemble design, our

choice of relatively simple learning algorithms (e.g. C4.5

and IBk) over complex ones (e.g. artificial neural networks,

Bayesian nets or support vector machines) for empirical

evaluation further supports a pursuance of simplicity. This

ad-hoc approach could be improved with in-depth testing

Fig. 2 Example results of the statistical significance tests
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and analysis of diversity. Both the selection of learning

algorithms and the set of classifiers for each promotes

reduced complexity in the ensemble design—an important

goal of classifier design in general.

The heterogeneous diversity of the GLHE design comes

from the use of two different types of base learning algo-

rithms—one global and one local. The homogenous

diversity of GLHE is achieved by varying the parameter

settings for each learner to create multiple classifier

instances. This requires three steps. First, the target number

of classifiers from each learner is set. In this study, three

classifiers are used from each learner. This sufficiently

allows homogeneous tendencies to be incorporated while

keeping the total number of base classifiers at a manage-

able level. Second, the base parameter value settings for

each learner is established. For J48, the base parameters are

Weka’s default. For IBk, the base parameters are Weka’s

default with the exception of distance weighting which has

a value of ‘‘1/distance’’. Third, for each learner different

parameter value settings are employed to create the mul-

tiple base classifier instances. For J48, the type of pruning

is changed: these are standard pruning, reduced error

pruning, and no pruning (unpruned). For IBk, the number

of nearest-neighbors is changed: the employed values are 1,

5, and 10.

The next step in the design of GLHE is determining the

ensemble combination method to be used. Three ensemble

techniques or architectures were considered as follows:

• Voting—a simple combination scheme of the base-

classifier predictions to derive the final ensemble

prediction. In this study, the average of probabilities

combination rule is used [15].

• StackingC [36]—stacking uses meta-classification of a

dataset created with the prediction values of the base-

classifiers as features and the original values as the

class [40]. The meta-classifier derives a final prediction

from this. StackingC is more efficient with a reduced

number of features in the created dataset. In this study,

linear regression is used as the meta-classifier.

• Grading [35]—another meta-classification approach

that employs an opposite approach to Stacking. A

new dataset is created for each base-classifier, with

instances containing the original features, but the class

indicates whether the base-classifier’s prediction was

correct. The meta-classifier predicts which base-classi-

fier will be correct. In this study, IBk (an instance-based

K-nearest-neighbor classifier) with ten nearest-neigh-

bors is used as the meta-classifier.

A comparison of the prediction accuracies of GLHE for

Voting, StackingC, and Grading techniques was performed

on the 46 datasets listed in Table 1. The average ranks and

statistical significance thresholds for this comparison are

shown in the graph of Fig. 3. Since StackingC has the

lowest average rank, it is used as the control for the

Bonferroni–Dunn test. Voting and Grading are right at

the statistical significance threshold, so it is safe to

conclude that StackingC has the best prediction accuracy

performance of the three GLHE ensembles. Therefore, it

is used for comparison with the data manipulation

ensembles.

The design of data manipulation ensembles was based on

two ensemble techniques, namely bagging and AdaBoost,

and six learning algorithms. The base learning algorithms

and their parameterizations used (default WEKA values

unless otherwise stated) are as follows:

• J48—a port of the C4.5 decision tree classifier.

• IBk—an instance-based nearest-neighbor classifier

(distance weighting of ‘‘1/distance’’ and 5 nearest-

neighbors).

• NB—naı̈ve Bayes classifier (supervised discretization).

• PART—creates rules from partial C4.5 trees.

• KStar—an instance-based entropy-based classifier.

• SMO—sequential minimal optimization algorithm for

training a support vector machine classifier.

Six bagging and AdaBoost (AdaBoost.M1 in WEKA)

ensembles are produced from the six learning algorithms,

namely J48, IBk, NB, PART, KStar, and SMO. The labels

‘‘Bag-’’ and ‘‘Boost-’’ are pre-pended to the learning

algorithm names (e.g. bagging of J48 is called Bag-J48).

Ten iterations are performed for each ensemble except for

those with SMO on the ‘‘splice’’ dataset, for which only

five iterations could be performed due to memory limita-

tions of Weka.

2.4 Simulation results: GLHE versus non-ensemble

classifiers

This phase of the simulation study entailed comparing

prediction accuracy performances of GLHE and individual

(non-ensemble) classifiers based on J48, IBk, NB, PART,

Fig. 3 Prediction accuracy comparison of the GLHE ensembles
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KStar, and SMO for all 46 UCI Machine Learning

Repository datasets presented in Table 1. Simulation

results are summarized in Fig. 4, where GLHE has all six

base learners and the StackingC as the meta learner, and

detailed for prediction accuracy values in Table 2. The

Type I error for all tests is a = 0.05. The null hypothesis of

Iman–Davenport test is rejected, indicating there is statis-

tically significant differences among the performances of

the classifiers. The post hoc Bonferroni–Dunn test is then

conducted for each comparison with the GLHE as the

control, resulting in the proposed ensemble design being

statistically better performing than all except SMO. The

GLHE scored the first place for 19 of the 46 datasets,

second place for 7 datasets, third place for 11 datasets,

fourth place for 3 datasets, fifth place for 4 datasets, sixth

place for 1 dataset, and never came in the seventh place for

any of the datasets. These results clearly indicate that the

prediction accuracy performance of GLHE tends to be

leading (e.g. claimed the top 3 places for 37 out of 46

datasets) and shows much less variation with respect to

dataset or problem domain variation, and hence suggesting

a more robust performance profile compared to any non-

ensemble classifier listed in Table 2. These results also

respond to the expectation that an ensemble should perform

better when compared to non-ensemble classifiers.

2.5 Simulation results: GLHE versus data manipulation

ensembles

Simulation data for each bagging and boosting ensemble

classifier evaluated are presented in terms of prediction

accuracy and SAR values in Tables 5, 6, 7 and 8 in the

appendix. The design of these ensembles was as presented

earlier in Sect. 2.3. The same data is however summarized

herein per the requirements of the statistical significance

tests performed for comparison purposes. Accordingly, the

results are presented in comparison groups. The Type I

error for all tests is a = 0.05. For all comparisons con-

ducted, the null hypothesis of the Iman–Davenport test has

been rejected, so the classifiers within each group do not

perform equivalently. The post hoc Bonferroni–Dunn test

is then conducted for each comparison with the GLHE

design as the control (unless otherwise stated).

The average ranks and statistical significance tests for

GLHE, bagging, and AdaBoost ensembles for the pre-

diction accuracy metric are shown in Figs. 5 and 6,

respectively, where k represents the number of ensembles

evaluated and N is the number of data sets. For both data

manipulation ensemble types, GLHE has the lowest

average rank, while its performance is statistically better

than those of bagging and boosting ensembles with IBk,

NB, and KStar as the learning algorithms. Performance

results based on the SAR metric, on the other hand, pro-

jects quite a different perspective. Figures 7 and 8 give

the average ranks of and statistical test results for the

bagging and AdaBoost ensembles, respectively, for the

SAR metric. GLHE is only statistically better than KStar

and SMO bagging ensembles. Bag-PART has a slightly

lower rank (better performance) than GLHE. In Fig. 8,

GLHE has the lowest average rank, with AdaBoost IBk,

NB, KStar, and SMO ensembles performing statistically

worse.

Results of the statistical significance tests for com-

parison between GLHE and data manipulation ensembles

are summarized in Table 3. Each entry corresponds to a

comparison between GLHE StackingC and a data

manipulation ensemble, specified by the column label

that represents the ensemble technique and the row label

that shows the base learning algorithm used. For exam-

ple, with regards to prediction accuracy, GLHE is sta-

tistically the same as bagging with PART, and better than

bagging with IBk. Comparison to data manipulation

ensembles shows that the GLHE design’s prediction

accuracy is statistically better than those of three of six

bagging ensembles. Considering the same metric, GLHE

performs better than three AdaBoost versions (namely

IBk, NB and KStar as learners) while scores the same

with the rest. For the SAR metric, GLHE scores the same

with four versions of bagging while surpassing the per-

formance for the other two. The GLHE outperforms four

AdaBoost versions and ties with the other two. In none of

the cases, GLHE lags the performance of any bagging or

boosting variant. The results in Table 3 indicate that

GLHE exhibits a more robust performance, in the sense

that it maintains consistently its competitive classifica-

tion performance over a large set of problem domains or

data sets, compared to the data manipulation ensem-

bles—especially those with IBk, NB, KStar and SMO as

their base learning algorithms. This finding establishes

GLHE as desirable over data manipulation ensembles for

the situations where a consistently high-performing

classifier is needed to operate for a large set of problem

domains.

k = 7 
N = 46 

Iman-Davenport: 
F(6,270) = 2.13 
FF = 6.11 

Bonferroni-Dunn: 
CD = 1.19 

Fig. 4 Average ranks for prediction accuracy for the StackingC

GLHE and its base classifiers. CD thresholds are for the ensemble
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Table 2 Prediction accuracy values for GLHE and six other non-ensemble classifiers

Single learner classifiers (non-ensemble) GLHE

J48 IBk NB PART KStar SMO StackingC

Anneal 98.44 97.88 96.44 98.22 95.77 97.44 98.55

Audiology 77.88 67.70 73.45 78.32 79.20 81.86 77.43

Autos 81.95 75.12 64.88 77.56 73.17 71.22 84.39

Balance-scale 76.64 88.00 72.32 83.52 88.48 87.68 90.88

Breast-cancer 75.52 72.73 71.68 71.33 73.43 69.58 72.03

Breast-w 94.56 97.00 97.14 93.85 95.42 97.00 96.57

Car 92.70 93.22 85.57 95.60 87.43 93.45 94.44

cmc 52.14 45.76 51.05 49.15 50.24 48.20 50.44

Colic 82.88 79.35 76.36 80.43 69.57 79.89 84.24

Credit-a 86.09 85.94 86.52 85.36 78.99 84.93 86.38

Credit-g 70.50 74.20 76.00 70.20 69.40 75.10 74.50

Diabetes 73.83 73.18 74.35 75.26 69.14 77.34 74.61

Echocardiogram 95.95 93.24 97.30 95.95 91.89 93.24 98.65

Glass 66.82 71.96 70.56 68.22 75.23 56.07 68.69

Haberman 72.88 69.28 72.55 69.61 74.18 73.53 73.53

Heart-c 77.56 81.19 83.83 79.87 74.59 84.16 81.19

Heart-h 80.95 81.97 84.01 80.95 77.89 82.65 80.27

Heart-statlog 76.67 78.52 81.11 73.33 75.19 84.07 78.52

Hepatitis 83.87 85.16 83.23 84.52 81.94 85.16 83.23

Hypothyroid 99.58 93.40 98.22 99.42 94.67 93.61 99.58

Ionosphere 91.45 84.90 89.17 91.74 84.62 88.60 91.74

Iris 96.00 95.33 92.67 94.00 94.67 96.00 96.00

kr-vs-kp 99.44 96.31 87.89 99.06 97.03 95.43 99.44

Labor 73.68 85.96 85.96 78.95 89.47 89.47 80.70

Lymphography 77.03 85.14 84.46 76.35 85.14 86.49 82.43

Monk2 63.11 79.13 62.77 79.80 83.31 65.61 82.30

mushroom 100.00 100.00 95.83 100.00 100.00 100.00 100.00

Page-blocks 97.04 96.14 93.38 97.11 97.00 92.89 97.42

Pendigits 96.53 99.30 87.58 96.83 99.24 97.91 99.31

Satellite 85.83 90.68 81.63 86.98 90.69 86.88 91.38

Segment 96.93 96.15 91.30 96.23 97.06 93.07 97.58

Sick 98.81 96.37 97.16 98.62 95.92 93.85 98.81

Solar-flare-c 84.31 82.00 78.83 83.59 83.66 84.31 84.16

Solar-flare-m 95.10 93.59 90.78 94.38 94.38 95.10 95.03

Solar-flare-x 99.14 98.92 96.04 98.99 98.92 99.14 99.06

Sonar 71.15 85.58 80.29 80.29 84.62 75.96 86.06

Soybean 91.51 90.34 92.97 91.95 87.99 93.85 92.68

Splice 94.08 82.13 95.30 92.73 79.03 93.45 94.58

Tic-tac-toe 85.25 99.27 69.77 95.08 95.92 98.54 99.27

Tumor 39.82 44.84 50.15 40.71 37.76 46.90 45.43

Vehicle 72.46 73.29 60.05 71.51 71.39 74.35 73.05

Vote 96.32 92.64 90.11 94.71 93.33 96.09 96.32

Vowel 81.52 96.77 60.10 76.67 98.99 71.41 99.29

Waveform 75.08 78.94 79.86 77.42 73.48 86.68 82.24

Wine 93.75 94.89 97.16 92.61 98.30 98.86 96.02

Zoo 92.08 95.05 93.07 92.08 96.04 96.04 95.05
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3 Diversity analysis

In this section, a diversity analysis will be performed to

explore the relationship between ensemble performance

and ensemble diversity in light of the simulation results

presented in the previous section.

3.1 Diversity creation methods

There are three ways in which diversity can be created

among the base classifiers of an ensemble [9, 12].

• Data manipulation—multiple classifiers are generated

from a single learning algorithm through variations of

the training data (e.g. different samples of instances

and/or different samples of features).

• Homogeneous—multiple classifiers are generated from

a single learning algorithm through variations of the

parameters (e.g. neural networks with different initial

weight values). As with data manipulation ensembles,

the performance of homogeneous ensembles may suffer

from being limited to a single learning algorithm.

• Heterogeneous (hybrid)—multiple classifiers are gen-

erated from two or more learning algorithms (i.e. C4.5

and naı̈ve Bayes). Consensus in the literature is that

heterogeneous ensembles are more effective at produc-

ing diversity, and consequently have more robust

prediction accuracy performance [7]. Certain learning

algorithms may be experts in an instance space, while

others are possibly inexpert. Multiple learning algo-

rithms may help to protect the ensemble from being

burdened by poor performance of any single one.

However, heterogeneous ensembles pose higher level

difficulty compared to data manipulation or homoge-

nous ensembles due the apparent need to train, test,

validate and deploy multiple learning algorithms.

3.2 Measuring diversity: pairwise measures

Pairwise measures consider the classifier population defi-

nition of diversity and evaluate the diversity between two

k = 7

N = 46

Iman-Davenport:

F(6,270) = 2.13

FF = 4.56

Bonferroni-Dunn:

CD = 1.19

Fig. 5 Average ranks of accuracy for StackingC GLHE and bagging

ensembles. CD thresholds for GLHE

k = 7
N = 46

Iman-Davenport:
F(6,270) = 2.13
FF = 8.82

Bonferroni-Dunn:
CD = 1.19

Fig. 6 Average ranks of accuracy for StackingC GLHE and

AdaBoost ensembles. CD thresholds for GLHE

k = 7
N = 46

Iman-Davenport:
F(6,270) = 2.13
FF = 9.67

Bonferroni-Dunn:
CD = 1.19

Fig. 7 Average ranks of SAR for StackingC GLHE and bagging

ensembles. CD thresholds for GLHE

k = 7
N = 46

Iman-Davenport:
F(6,270) = 2.13
FF = 11.23

Bonferroni-Dunn:
CD = 1.19

Fig. 8 Average ranks of SAR for StackingC GLHE and AdaBoost

ensembles. CD thresholds for GLHE

Table 3 Summary of statistical significance tests for GLHE Stack-

ingC relative to data manipulation ensembles

Learning algorithms Prediction accuracy SAR

Bagging AdaBoost Bagging AdaBoost

J48 = = = =

IBk [ [ = [
NB [ [ = [
PART = = = =

KStar [ [ [ [
SMO = = [ [

The cells indicate how well GLHE performs in the comparison. The

‘[’, ‘\’, and ‘=’ symbols indicate that GLHE has better, worse, or

equal average rank, respectively
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classifiers at a time. The pairwise diversity measure of

interest is the disagreement measure (Dis). The disagree-

ment measure was created specifically for characterizing

the diversity between two classifiers. It counts the number

of times that one classifier was correct and the other

incorrect—an intuitive concept of diversity [37]. For two

classifiers, Di and Dj, the disagreement measure is defined

as

Disi;j ¼
N10 þ N01

N
:

The value of Dis ranges between 0 and 1, where 0

indicates no difference and 1 indicates the highest possible

diversity.

Since pairwise measures consider only two classifiers at

a time, an ensemble of k classifiers produces k(k - 1)/2

pairwise diversity values. To get a single value, the average

across all pairs is taken (i.e. divide the sum of pairwise

measures by the number of pairwise diversity values). The

average Dis measure is referred to as Disav.

3.3 Visualizing diversity: classifier projection space

Pekalska et al. [29] propose the classifier projection space

(CPS) as a 2-dimensional representation of classifiers such

that the points correspond to classifiers and the relative

pairwise diversities are preserved by the Euclidian dis-

tances between the points. They suggest that this method is

more appropriate in situations of an ensemble containing

both similar and diverse base-classifiers, since in such a

case the values may simply average out.

Given k classifiers, a k 9 k dissimilarity matrix N is

created such that the value of each entry in the matrix is the

pairwise measure of diversity between classifiers associ-

ated with the row and column labels for that entry. An

illustrative dissimilarity matrix for four classifiers is shown

in Table 4. In this case, higher values indicate higher

diversity, thus the diagonal entries of the matrix are all 0.

Furthermore, the matrix is symmetric so only the top half is

shown.

A Sammon mapping [34] is a nonlinear multidimen-

sional scaling projection onto a space <m; where m is 2 or

3, such that the distances are preserved. For the purposes of

CPS, let m be 2. An error function, called stress, is defined

that measures the difference between the original dissimi-

larities and Euclidean distances. Let N be the k 9 k dis-

similarity matrix with nij as elements, and ~N be the distance

matrix with ~nij as elements for a projected configuration

where i, j = 1, 2, …, k. The stress is computed as [29]:

S ¼ 1
Pk�1

i¼1

Pk
j¼iþ1 n2

ij

X

k�1

i¼1

X

k

j¼iþ1

ðnij � ~nijÞ2:

An initial distance matrix configuration must be used,

and then the process proceeds in an iterative manner until a

distance matrix configuration corresponds to a (local)

minimum. An implementation of the Sammon mapping for

Matlab under the GNU General Public License can be

found at [13], which is the implementation used in this

paper.

The resulting matrix from the Sammon map can be

graphed such that the distance between the points reflects

the relative diversity between the classifiers. The relative

distance between two points represents the diversity

between two classifiers. So, the further apart two points are,

the more diverse those same points are from each other.

The diversity matrix shown in Table 4 is put through the

Sammon mapping, and the resulting CPS is shown in

Fig. 9. Notice that points D3 and D4, those classifiers with

the highest pairwise diversity values in Table 4, are the

furthest away from each other. Alternately, points D2 and

D4 have the lowest diversity values and are correspond-

ingly the closest to each other. Whereas traditionally, a

single average value of diversity would be reported for a

given set of pairwise diversity measures, it is obvious that

such a graph gives a simple and accurate view of the

diversity measures. Furthermore, a ‘‘TRUE’’ point can be

graphed that denotes all predictions being correct (e.g. the

Table 4 An example dissimilarity matrix of pairwise diversity

measures for four classifiers

D1 D2 D3 D4

D1 0 0.69 0.85 0.71

D2 – 0 0.73 0.55

D3 – – 0 0.98

D4 – – – 0 Fig. 9 An example CPS for the classifiers with the diversity matrix

from Table 4
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closer a classifier is to TRUE, the better prediction per-

formance it has). Although this is not shown in Fig. 9, the

TRUE point is used in the following diversity analysis.

3.4 Diversity analysis of GLHE and data manipulation

ensembles

Three datasets are considered in this analysis—anneal,

pendigits, and waveform—which were chosen to represent a

variety of instance counts and class sizes. Each graph contains

three J48 and three IBk points to represent the GLHE design,

and four other points to specify the remaining learning algo-

rithms in the data manipulation ensembles.

The diversities for the anneal dataset are presented in

Fig. 10. Note that the J48 and IBk points are clustered

together, each on one side of the TRUE point. The other

classifiers are spread throughout the space further away

from the TRUE point, especially KStar and NB. This graph

further exposes the volatility of performance for a data

manipulation ensemble if in fact a low-performing learning

algorithm is chosen such as the KStar for the anneal

dataset. Figure 11 shows the diversities for the pendigits

dataset. Once again, GLHE’s local classifiers based on IBk

and the KStar are clustered tightly around the TRUE point

while the others are spread out. The last diversity presentation

is of the waveform dataset, given in Fig. 12. Here, all of the

classifiers tend to be more evenly distributed in the space—

even the J48 and IBk classifiers spread out. Three IBk-based

local classifiers are within comparatively close range of the

TRUE point while the J48-based classifiers are far away. The

former appears to compensate for the latter set of classifiers for

the performance of the GLHE in this case.

Base classifier instances of GLHE tend to be closer to

the TRUE classification point in the CPS graphs for all

three datasets compared to other base classifiers which

helps indicate, at least in part, the performance superiority

of the GLHE over the data manipulation ensembles. It is

also important however to note that current research is

cautious not to put too much emphasis on diversity–per-

formance relationship [23, 24, 38].

The visualizations of diversity suggest that co-existence

of global and local learning algorithms offer high levels of

diversity among its six instantiations of base learners.

GLHE possesses higher levels of diversity due to two

Fig. 10 Base learning algorithms in the CPS per the disagreement

measure for anneal dataset. Each point represents a classifier while

triple instances of J48 and IBk (as in GLHE) are shown, and the

distance between the points indicate their pairwise diversity. The

TRUE point has all predictions correct

Fig. 11 Base learning algorithms in the CPS per the disagreement

measure for pendigits dataset. Each point represents a classifier while

triple instances of J48 and IBk (as in GLHE) are shown, The TRUE

point has all predictions correct

Fig. 12 Base learning algorithms in the CPS per the disagreement

measure for waveform dataset. Each point represents a classifier

while triple instances of J48 and IBk (as in GLHE) are shown. The

TRUE point has all predictions correct
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Table 5 Prediction accuracy performance of the bagging ensembles

Bag-J48 Bag-IBk Bag-NB Bag-PART Bag-KStar Bag-SMO

Anneal 98.89 97.44 96.33 98.66 95.99 97.44

Audiology 79.65 68.58 71.68 82.30 79.20 78.32

Autos 84.88 74.15 68.78 80.49 73.66 72.68

Balance-scale 82.24 88.48 81.60 86.40 88.16 87.84

Breast-cancer 73.43 74.48 72.03 70.28 74.13 68.53

Breast-w 95.85 97.28 97.14 95.85 95.57 96.71

Car 93.11 93.97 85.34 96.99 87.02 93.45

cmc 54.11 45.76 51.26 52.48 50.85 49.36

Colic 82.34 79.35 76.09 80.71 69.29 82.07

Credit-a 85.36 86.67 86.09 85.94 79.28 85.22

Credit-g 74.00 75.10 75.70 74.10 71.10 75.30

Diabetes 74.09 72.14 76.95 74.35 69.27 77.47

Echocardiogram 95.95 93.24 97.30 95.95 91.89 93.24

Glass 71.03 71.03 70.56 73.83 75.70 55.61

Haberman 73.20 71.24 74.51 71.24 73.53 73.53

Heart-c 79.21 82.84 84.49 83.83 75.58 85.15

Heart-h 78.91 81.97 83.33 80.95 78.91 82.99

Heart-statlog 80.00 78.89 82.96 77.78 74.81 84.44

Hepatitis 83.23 83.23 83.87 83.87 81.94 85.81

Hypothyroid 99.58 93.53 98.17 99.66 94.51 93.58

Ionosphere 93.16 85.19 89.17 92.02 84.90 89.17

Iris 95.33 96.00 93.33 95.33 94.67 96.00

kr-vs-kp 99.44 96.46 87.83 99.37 97.09 95.87

Labor 84.21 84.21 87.72 82.46 91.23 87.72

Lymphography 79.05 85.81 87.16 85.81 84.46 85.81

Monk2 64.27 77.96 62.60 84.98 79.30 65.61

Mushroom 100.00 100.00 95.80 100.00 100.00 100.00

Page-blocks 97.33 96.13 93.40 97.53 97.02 93.26

Pendigits 98.02 99.29 87.85 98.68 99.19 98.02

Satellite 90.05 90.66 81.60 91.06 90.66 86.81

Segment 97.40 96.36 91.21 97.36 97.01 92.86

Sick 98.73 96.00 97.11 98.62 95.92 93.93

Solar-flare-c 84.31 80.85 78.69 83.51 83.51 84.31

Solar-flare-m 95.10 93.45 91.00 94.74 94.74 95.10

Solar-flare-x 99.14 98.70 96.33 99.06 98.92 99.14

Sonar 74.52 85.10 75.96 77.40 84.13 76.92

Soybean 93.27 90.78 92.53 92.97 87.85 93.27

Splice 94.48 82.95 95.30 93.70 79.12 94.73

Tic-tac-toe 93.31 99.06 70.29 99.48 95.50 98.54

Tumor 42.18 45.13 49.56 44.54 38.35 48.67

Vehicle 76.60 72.22 62.41 75.06 71.39 74.94

Vote 96.32 92.64 90.11 95.86 93.56 95.40

Vowel 90.40 96.26 65.86 89.60 98.79 70.10

Waveform 81.30 79.02 80.34 83.14 73.70 86.72

Wine 95.45 96.02 98.86 94.32 97.73 97.73

Zoo 93.07 94.06 94.06 92.08 96.04 95.05
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Table 6 SAR performance of the bagging ensembles

Bag-J48 Bag-IBk Bag-NB Bag-PART Bag-KStar Bag-SMO

Anneal 97.79 96.55 95.12 97.39 94.94 88.46

Audiology 87.82 83.11 84.44 88.99 87.42 84.26

Autos 87.26 81.17 77.72 85.37 80.11 77.57

Balance-scale 82.00 85.79 80.66 85.96 85.28 82.07

Breast-cancer 64.39 65.39 65.84 63.88 64.93 61.85

Breast-w 92.05 93.54 93.43 92.45 92.05 92.28

Car 92.12 91.25 86.74 95.26 87.88 86.29

cmc 60.26 53.43 59.11 59.48 58.44 56.68

Colic 75.00 75.38 70.62 74.05 68.83 75.97

Credit-a 81.92 81.47 81.59 82.30 75.47 78.94

Credit-g 69.03 69.06 71.22 69.90 64.95 68.38

Diabetes 70.71 68.86 72.68 71.78 64.55 68.46

Echocardiogram 91.94 89.67 94.11 91.94 87.51 87.91

Glass 78.41 78.51 78.32 80.35 81.89 66.67

Haberman 63.86 62.70 66.93 62.20 67.21 59.30

Heart-c 80.73 82.72 84.36 83.93 77.69 81.70

Heart-h 81.11 82.97 84.08 82.84 79.47 80.22

Heart-statlog 76.19 75.44 78.85 76.58 72.98 77.45

Hepatitis 76.40 77.16 79.62 78.74 74.53 78.33

Hypothyroid 98.28 85.11 96.56 98.37 92.70 74.49

Ionosphere 88.58 82.96 84.40 87.66 80.56 82.56

Iris 92.14 93.73 91.56 92.16 92.81 88.70

kr-vs-kp 97.48 91.55 84.34 97.40 91.95 91.79

Labor 77.07 83.34 84.27 79.36 87.69 84.67

Lymphography 80.29 84.07 85.10 84.21 83.86 81.48

Monk2 61.63 76.35 56.49 81.35 73.71 52.32

Mushroom 100.00 99.91 92.67 99.96 99.97 100.00

Page-blocks 95.56 94.00 92.35 95.79 95.26 78.95

Pendigits 97.35 98.63 90.88 97.84 98.55 90.20

Satellite 91.43 92.02 85.47 91.90 91.92 84.33

Segment 96.53 95.70 92.00 96.51 96.29 86.95

Sick 96.18 90.57 92.44 96.04 91.72 75.75

Solar-flare-c 73.55 75.81 77.41 79.03 78.20 68.49

Solar-flare-m 78.07 86.14 85.34 85.99 87.42 71.24

Solar-flare-x 81.42 91.55 90.79 92.33 91.88 75.03

Sonar 73.24 81.73 73.43 74.69 81.14 73.98

Soybean 94.96 93.91 94.55 94.94 92.61 90.43

Splice 91.68 83.51 93.14 91.28 80.78 87.95

Tic-tac-toe 88.92 91.87 67.31 95.82 89.09 94.78

Tumor 66.35 68.80 71.89 68.02 65.63 69.64

Vehicle 80.60 77.42 69.85 80.19 76.08 76.26

Vote 92.33 89.57 85.97 92.24 90.28 91.36

Vowel 92.35 95.55 80.28 91.85 98.03 79.71

Waveform 82.39 80.79 80.95 83.66 76.26 83.20

Wine 92.31 93.81 96.36 91.88 95.89 89.82

Zoo 93.40 94.22 94.49 93.05 95.59 87.69
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Table 7 Prediction accuracy performance of the AdaBoost ensembles

Boost-J48 Boost-IBk Boost-NB Boost-PART Boost-KStar Boost-SMO

Anneal 99.55 97.88 99.55 99.33 95.77 99.33

Audiology 84.96 71.24 77.88 84.51 77.88 82.74

Autos 86.34 73.66 68.78 82.44 73.66 77.07

Balance-scale 78.88 88.00 75.68 82.08 76.32 87.68

Breast-cancer 69.58 70.63 64.69 70.63 65.38 69.58

Breast-w 95.71 97.00 95.99 94.85 93.99 96.71

Car 96.06 93.22 89.86 98.67 92.99 93.57

cmc 50.78 44.94 51.05 48.88 46.50 48.07

Colic 82.88 74.18 77.17 80.43 67.93 80.16

Credit-a 84.20 85.94 86.81 83.33 78.26 83.77

Credit-g 69.60 74.20 76.30 71.90 69.60 75.00

Diabetes 72.40 73.18 74.35 74.35 67.97 77.34

Echocardiogram 94.59 93.24 95.95 94.59 90.54 91.89

Glass 74.30 71.96 70.56 75.23 74.77 57.01

Haberman 70.26 67.97 72.55 67.32 69.93 73.86

Heart-c 82.18 81.19 84.49 78.55 72.94 84.82

Heart-h 78.57 79.59 84.35 79.59 76.53 82.31

Heart-statlog 80.37 78.52 81.11 80.37 70.74 84.07

Hepatitis 85.81 83.23 85.81 83.87 77.42 81.29

Hypothyroid 99.58 88.28 98.78 99.60 95.15 94.99

Ionosphere 93.16 84.90 90.88 92.88 87.75 88.60

Iris 93.33 95.33 92.00 95.33 94.00 98.00

kr-vs-kp 99.50 96.31 94.96 99.62 96.50 97.18

Labor 89.47 84.21 82.46 85.96 82.46 84.21

Lymphography 81.08 85.14 83.78 79.73 83.11 83.78

Monk2 77.46 79.13 62.77 88.98 75.13 69.12

Mushroom 100.00 100.00 100.00 100.00 100.00 100.00

Page-blocks 97.06 96.02 95.92 97.08 96.23 92.89

Pendigits 99.12 99.30 92.83 98.96 98.94 98.15

Satellite 90.58 90.68 81.63 90.80 89.28 86.88

Segment 98.48 96.15 93.98 98.31 96.84 93.29

Sick 99.18 95.49 97.53 98.91 96.39 94.41

Solar-flare-c 83.01 82.00 78.83 83.59 83.15 84.31

Solar-flare-m 93.30 93.38 90.78 93.30 92.94 95.10

Solar-flare-x 98.70 98.49 98.20 98.78 98.63 99.06

Sonar 77.88 85.58 80.29 80.29 85.58 75.96

Soybean 92.83 90.34 92.83 94.44 86.97 92.68

Splice 93.17 82.13 93.73 94.01 78.97 93.86

Tic-tac-toe 95.61 99.27 79.81 98.95 98.01 97.91

Tumor 40.12 42.18 50.15 42.77 35.40 46.90

Vehicle 76.24 73.29 60.05 76.60 69.74 74.35

Vote 95.86 93.33 95.17 94.94 91.72 95.63

Vowel 93.33 96.77 60.10 91.41 98.59 78.79

Waveform 80.48 78.94 79.86 81.84 70.30 86.68

Wine 97.16 94.89 96.59 94.32 97.16 97.73

Zoo 95.05 95.05 93.07 94.06 97.03 96.04
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Table 8 SAR performance of the AdaBoost ensembles

Boost-J48 Boost-IBk Boost-NB Boost-PART Boost-KStar Boost-SMO

Anneal 98.76 96.81 98.46 98.14 93.78 98.20

Audiology 89.98 82.22 86.34 90.07 85.92 88.01

Autos 87.69 77.25 77.50 85.59 78.39 79.99

Balance-scale 79.41 84.93 75.98 82.04 77.92 87.22

Breast-cancer 60.36 58.36 59.88 61.55 56.31 61.65

Breast-w 91.26 93.46 91.98 90.66 89.08 91.90

Car 94.07 91.04 89.58 96.88 91.24 92.33

cmc 56.72 48.38 58.37 55.75 52.37 54.24

Colic 74.67 68.85 70.82 73.72 63.10 73.47

Credit-a 79.28 78.58 81.61 78.63 71.69 80.26

Credit-g 63.78 68.57 69.11 65.46 61.05 68.61

Diabetes 66.64 69.07 68.23 69.50 59.93 70.42

Echocardiogram 89.72 90.30 93.91 89.78 84.49 89.88

Glass 80.32 78.33 77.82 79.96 79.26 65.20

Haberman 60.58 57.19 62.69 58.92 61.84 64.49

Heart-c 81.53 81.69 82.81 79.67 72.85 83.67

Heart-h 79.30 79.75 83.14 79.83 74.87 83.72

Heart-statlog 74.64 74.94 73.46 74.80 66.00 78.05

Hepatitis 76.97 73.01 76.05 76.18 68.30 73.54

Hypothyroid 98.26 80.60 96.81 98.25 91.81 90.05

Ionosphere 87.81 82.83 85.36 87.78 80.91 81.73

Iris 89.27 93.50 88.42 91.77 90.31 95.62

kr-vs-kp 97.51 91.58 91.12 97.80 92.40 93.96

Labor 82.07 78.43 76.87 80.90 78.03 76.70

Lymphography 80.92 83.88 81.67 79.34 80.63 81.15

Monk2 71.64 77.38 54.06 84.47 68.81 67.42

Mushroom 100.00 100.00 99.98 100.00 99.97 100.00

Page-blocks 95.07 90.75 93.79 95.16 93.84 90.09

Pendigits 98.36 98.65 93.76 98.18 98.11 97.47

Satellite 91.16 91.96 85.04 91.28 90.01 87.23

Segment 97.27 95.58 93.81 97.15 95.76 93.28

Sick 96.41 87.20 92.74 95.87 90.67 89.51

Solar-flare-c 76.86 74.76 73.64 76.67 76.10 77.09

Solar-flare-m 84.31 83.24 82.35 84.31 84.16 85.16

Solar-flare-x 85.76 81.26 88.86 90.55 88.39 90.61

Sonar 73.89 82.00 73.75 76.25 80.67 72.20

Soybean 94.55 92.42 94.64 95.40 90.76 94.36

Splice 89.76 82.96 90.87 90.90 78.41 89.67

Tic-tac-toe 92.35 91.99 77.00 96.47 94.89 95.06

Tumor 63.61 65.21 68.22 66.06 62.98 66.19

Vehicle 78.78 77.63 68.08 78.85 72.34 77.91

Vote 91.98 87.64 91.30 90.61 86.71 92.03

Vowel 94.24 96.24 77.26 93.06 97.79 86.74

Waveform 79.98 80.31 79.89 80.99 70.92 84.39

Wine 94.31 92.99 94.00 91.09 94.41 94.38

Zoo 93.45 94.61 94.27 92.61 95.87 88.07
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sources as indicated by these diversity visualization graphs.

The first one is the presence of both global and local base

learners: global learner J48 and local learner IBk clusters are

located apart from each other, which translates into large

pairwise diversity. Secondly, each separate instantiation of

either base learner in GLHE, namely J48 and IBk, creates

additional diversity, although not as large as it is between a

global instance and local instance of a base learner. The

inherently high levels of diversities for the GLHE is likely to

be a major source of performance enhancement compared to

the data manipulation ensembles discussed in this study

although it is most likely not the only major one.

4 Conclusions

This paper presented a comparative performance study of

global–local hybrid classification ensemble with data

manipulation ensembles based on simulation and diversity

analysis. The simulation study employed 46 datasets from

the UCI Machine Learning Repository. Statistical signifi-

cance tests were employed to compare the performance of

one ensemble with that of another. Diversity analysis

employed the dissimilarity measure and the classifier pro-

jection space methodology to analyze the inherent diversi-

ties which each ensemble possessed. Simulation results

indicated that global–local hybrid ensemble offers superior

performance in terms of prediction accuracy and SAR

metrics compared to six data manipulation ensembles based

on bagging and boosting variants. Global–local hybrid

ensemble was shown to have prediction accuracy better

than three of the bagging and boosting ensembles while also

demonstrating an equivalent performance with the rest. In

terms of the SAR metric, global–local hybrid ensemble had

better performance than two bagging and four boosting

ensembles while scoring a tie with the rest. The diversity

analysis further provided support and explanation for the

performance superiority of global–local hybrid ensemble.

Global–local hybrid ensemble projects a more robust per-

formance profile when compared to boosting and bagging

ensembles when a large number of problem domains or,

equivalently, data sets are considered.

Appendix: Classification performance for data

manipulation ensembles

See Tables 5, 6, 7 and 8.
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