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Abstract In this study, we develop a two-stage capaci-

tated facility location model with fuzzy costs and demands.

The proposed model is a task of 0–1 integer two-stage

fuzzy programming problem. In order to solve the problem,

we first apply an approximation approach to estimate the

objective function (with fuzzy random parameters) and

prove the convergence of the approach. Then, we design a

hybrid algorithm which integrates the approximation

approach, neural network and particle swarm optimization,

to solve the proposed facility location problem. Finally, a

numerical example is provided to test the hybrid algorithm.

Keywords Location � Two-stage fuzzy programming �
Fuzzy variable � Neural network � Particle swarm

optimization

1 Introduction

Since the original study by Cooper [9], facility location

problems (FLP) as a crucial and generic engineering opti-

mization model have being attracting an increasing number

of people. The key issue of FLP is to find the optimal sizes

to open facilities among a given set of potential sites to meet

the objective of profit maximization or cost minimization.

Regarding FLPs with deterministic parameters, capaci-

tated FLP in which the capacities of facilities are limited,

was originally discussed by Murtagh and Niwattisyawong

[30] which is considered as one of studies of the most

importance in the filed of FLP, and later on, more and more

studies along this direction (capacitated FLP) have been

reported in the literature [1, 4, 14]. Since it was proved by

Megiddo and Supowit [29] that FLP is NP-hard, a series of

analytical methods and programming techniques as well as

heuristic algorithms have been developed to solve the

FLPs. For instance, Love [27] discussed one-dimensional

facility location–allocation problem using dynamic pro-

gramming. Gong et al. [15] designed a hybrid evolutionary

method for solving obstacle location–allocation problem.

Lozano et al. [28] discussed the application of Kohonen

maps to solve a class of location–allocation problems.

Ernst and Krishnamoorthy [14] combined the simulated

annealing and random descent method.

In real applications, many parameters of FLP, such as

demands of clients, the costs of operating the facilities,

may be of uncertainties, e.g., randomness and fuzziness.

These distinct uncertainties yields the stochastic FLP and

fuzzy FLP, respectively. For stochastic scenarios, readers

may refer to [5, 24–26]. Due to the development of fuzzy

theory [12, 13, 21, 31, 40, 41], a number of pieces of

research brought this tool into the FLP. Darzentas [11]

discussed various facility location problems by fuzzy logic

methods. Bhattacharya et al. [2] considered facilities

located under multiple fuzzy criteria, and proposed a fuzzy

goal programming approach to deal with the problem. Ishii

et al. [16] developed a location model considering the

satisfaction degree with respect to the distance from the

facility for each customer and preference of the site in an

urban area. In the above-mentioned studies, the parameters

of FLP are deterministic, and fuzzy theory are just used to
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solve classical mathematical programming effectively, the

problems were static ones in nature. Apart from those

researches, Zhou and Liu [42] modeled three types of

capacitated location–allocation problem with fuzzy

demands according to different decision criteria. Wen and

Iwamura [39] presented an a-cost FLP with fuzzy demands

under Hurwicz criterion. In these two papers, the costs for

establishing and operating the facilities and the size of the

facilities are all assumed fixed, and since the potential region

where the location are to be chosen are assumed to be con-

tinuous, the proposed FLP in [39, 42] are both continuous

type of fuzzy programming problems.

This paper addresses a more realistic fuzzy capacitated

FLP in which both the demands of clients and the variable

costs of facilities can be fuzzy, and the decision is a 0-1 integer

vector which consists of the optimal location and size of the

new facilities. What is more, when process the decision-

making in FLP, we assume that the decisions are made in two

stages so as to maximize expected total profit. The first-stage

decision, location decision, is made before the values of fuzzy

parameters are realized, and the second-stage decisions, dis-

tribution pattern can be taken after the realization of the fuzzy

parameters are observed. The optimal value of the problem

depends on the realization of the fuzzy parameters and the

first-stage decisions. It is a dynamic process.

The rest of the paper is organized as follows. Section 2

recalls some basic concepts of fuzzy variable. In Sect. 3,

the model is formulated. Section 4 discusses an approxi-

mation method to the expected objective value of second-

stage programming, and proves the convergence of the

approximation. Then, a hybrid algorithm is designed in

which the approximation approach, neural network (NN)

and PSO are fused to solve the proposed FLP. A numerical

example is provided in Sect. 5 to illustrate the effectiveness

of the hybrid algorithm. Section 6 draws the conclusions.

2 Fuzzy variable

Given a universe C; let Pos be a possibility measure

defined on the power set PðCÞ of C: Then, triplet

ðC;PðCÞ; PosÞ is called a possibility space. A function n ¼
ðn1; n2; . . .; nnÞ : C! <n is said to be an n-ary fuzzy vec-

tor. As n = 1, n is called a fuzzy variable. The function

lnðtÞ ¼ Pos c 2 CjnðcÞ ¼ tf g
¼ min

1� i� n
Pos c 2 CjniðcÞ ¼ tif g ð1Þ

for any t ¼ ðt1; . . .; tnÞ 2 <n is said to be the possibility

distribution of n, or the joint possibility distribution of

ni; i ¼ 1; 2; . . .; n:
For fuzzy variable n with possibility distribution ln, the

possibility, necessity and credibility of event {n B r} can

be given respectively by

Posfn� rg ¼ sup
t� r

lnðtÞ;

Necfn� rg ¼ 1� sup
t [ r

lnðtÞ;

Crfn� rg ¼ 1

2
Posfn� rg þ Necfn� rg½ �:

ð2Þ

Based on credibility measure, the expected value of a fuzzy

variable is defined below [21]:

Definition 1 Let n be a fuzzy variable defined on a

possibility space ðC;PðCÞ; PosÞ: The expected value of n is

defined as

E½n� ¼
Z1

0

Crfc j nðcÞ� rgdr �
Z0

�1

Crfc j nðcÞ� rgdr

ð3Þ

provided that one of the two integrals is finite.

Example 1 Let n be a triangular fuzzy variable (2, 3, 4).

Calculate the expected value E[n].

Recall the possibility distribution of triangular fuzzy

variable n = (2, 3, 4) is

lnðtÞ ¼
t � 2; if 2� t\3

4� t; if 3� t\4

0; otherwise.

8<
: ð4Þ

From (2), for any r C 0, we can compute

Crfn� rg ¼ 1

2
sup
t� r

lnðtÞ þ 1� sup
t\r

lnðtÞ
� �

¼
1; if r� 2

ð4� rÞ=2; if 2\r� 4

0; otherwise.

8><
>:

For any r \ 0, we have

Crfn� rg ¼ 1

2
sup
t� r

lnðtÞ þ 1� sup
t [ r

lnðtÞ
� �

� 0:

It follows from Definition 1 that

E½n� ¼
Z1

0

Crfn� rgdr ¼ 2þ
Z4

2

4� r

2
dr ¼ 3:

Particularly, for a discrete fuzzy variable n with the

following possibility distribution:

lnðtÞ ¼

l1 if t ¼ a1

l2 if t ¼ a2

..

.

ln if t ¼ an

0 otherwise:

8>>>>><
>>>>>:

Without any loss of generality, we assume that

a1� a2� � � � � an; i.e., ai is the ith smallest outcome
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value of n. Then the expected value defined by (3) reduces

to the following form [21]:

E½n� ¼
Xn

i¼1

piai; ð5Þ

where the weights pi
0s are determined by

pi ¼
1

2
max

i

j¼1
lj �max

i�1

j¼0
lj

� �
þ 1

2
max

n

j¼i
lj � max

nþ1

j¼iþ1
lj

� �
ð6Þ

(l0 = 0,ln?1 = 0) for i ¼ 1; . . .; n; and satisfy the

following constraints

pi� 0; and
Xn

i¼1

pi ¼ max
n

i¼1
li ¼ 1:

Example 2 Let n be a fuzzy variable with the following

possibility distribution

lnðtÞ ¼

0:7 if t ¼ 1

1 if t ¼ 3

0:8 if t ¼ 5

0 otherwise:

8>><
>>:

Calculate the expected value of n.

By (6), we have

p1¼
1

2
ð0:7�0Þþ1

2
ðmaxf0:7;1;0:8g�maxf1;0:8gÞ¼0:35;

p2¼
1

2
ðmaxf0:7;1g�0:7Þþ1

2
ðmaxf1;0:8g�0:8Þ¼0:25;

p3¼
1

2
ðmaxf0:7;1;0:8g�maxf0:7;1gÞþ1

2
ð0:8�0Þ¼0:40:

It follows from (5) that E[n] = 1 9 0.35 ? 3 9 0.25 ? 5

9 0.40 = 3.10.

3 Model formulation

A FLP with fuzzy costs and demands may be described as

follows: assume that there are m clients having uncertain

demand which is a fuzzy vector for some given commod-

ity. The firm can open some new facilities in potential sites

i ¼ 1; 2. . .; n; the cost of each facility consists of fix

opening and operating cost and variable operating cost, the

later is a fuzzy variable. Each client can be supplied from

an open facility where the commodity is made available.

No more than 100% of a client’s demand can be served, but

the possibility exists that not all demand is served. The

total supply from one facility to all clients can not exceed

the capacity of the facility. The distribution pattern i.e., the

quantities distributed form facilities to clients, is not fixed,

it is adapted to the realization of fuzzy event with respected

to the demand and variable operating cost. The problem of

the firm is to choose the best locations for facilities to open

to maximize profit or minimize costs.

In order to model the problem, we give the following

notations:

i ¼ 1; 2; . . .; n : the index of facilities;

j ¼ 1; 2; . . .;m : the index of clients;

dj: fuzzy demand of client j for a given commodity;

rj: the unit price charged to clint j;

xi: decision variable which is a binary variable equal to

one if facility i is open and zero otherwise;

si: the capacity of facility i;

ci: the fixed cost for opening and operating facility i;

vi: the unit variable operating cost of facility i, which is a

fuzzy variable;

yij: the quantity supplied to client j from facility i.

tij unit transportation cost from i to j.

All variable operating cost vi; i ¼ 1; 2; . . .; n and the

demands dj; j ¼ 1; 2; . . .;m are fuzzy variables defined on

a possibility space ðC;PðCÞ; PosÞ; and for any c 2 C; vi(c)

and dj(c) are the realizations of vi and dj, respectively, for

each i and j.

Under the above assumptions and notations, taking the

objective as maximization of expected profit, we can for-

mulate a capacitated fuzzy FLP as follows:

max �
Pn
i¼1

cixi þ E max
Pn
i¼1

Pm
j¼1

ðrj � viðcÞ � tijÞyij

" #

subject to xi 2 f0; 1g; i ¼ 1; 2; . . .; n;Pn
i¼1

yij� djðcÞ; j ¼ 1; 2; . . .;m;

Pm
j¼1

yij� sixi; i ¼ 1; 2; . . .; n;

yij� 0; j ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m:

ð7Þ

In order to clarify the dynamic process of the problem

more detailedly, we suppose that the decision variables of

the model are divided into two categories. The location

decision vector x ¼ ðx1; x2; . . .; xnÞ is the first-stage

decision which must be taken before the outcome of

fuzzy event c is revealed, here the outcome of fuzzy event

refers to the realizations of fuzzy demands and fuzzy

operating cost

nðcÞ ¼ ðd1ðcÞ; . . .; dmðcÞ; v1ðcÞ; . . .; vnðcÞÞ: ð8Þ

In the second stage, the demands of all clients are known.

As a consequence, the second-stage decision variables yij

for i ¼ i; 2; . . .; n and j ¼ 1; 2; . . .;m; which represent the

distribution pattern, can be adjusted to the realization of the

fuzzy event c.

Following this scheme, we present a two-stage fuzzy

FLP, in which there are two optimization problems to be
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solved. By assuming x and c to be fixed, the second-stage

problem can be formulated as follows:

max
Pn
i¼1

Pm
j¼1

ðrj � viðcÞ � tijÞyij

subject to
Pn
i¼1

yij� djðcÞ; j ¼ 1; 2; . . .;m;

Pm
j¼1

yij� sixi; i ¼ 1; 2; . . .; n;

yij� 0; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m:

ð9Þ

Let Q(x, n(c)) be the optimal value of problem (9) at fixed x

and n(c), it is usually called second-stage value function

(abbreviated as SSVF) in two-stage fuzzy programming

theory [22]. Furthermore, if we define expected second-stage

value function (abbreviated as ESSVF)

QEðxÞ ¼ E Qðx; nÞ½ �; ð10Þ

where E½�� is the expected value operator with respect to fuzzy

vectorn, then it represents the expected total revenue obtained

from the severed clients, given the first-stage decision x.

Based on the above notations, the first-stage of the FLP

can be formulated as follows:

max �
Pn
i¼1

cixi þQEðxÞ

subject to xi 2 f0; 1g; i ¼ 1; 2; . . .; n:
ð11Þ

Combining the problems (9) and (11) yields the two-

stage fuzzy FLP. It is equivalent to the problem (7).

Particularly, if fuzzy vector n in problem (9)–(11) is a

discrete one that takes the following values

bn1 ¼ bd1
1 ; . . .; bd1

m; bv1
1; . . .; bv1

n

� �
with possibility l1 [ 0;

bn2 ¼ bd2
1 ; . . .; bd2

m; bv2
1; . . .; bv2

n

� �
with possibility l2 [ 0;

� � � � � �bnN ¼ bdN
1 ; . . .; bdN

m ; bvN
1 ; . . .; bvN

n

� �
with possibility lN [ 0;

and maxN
k¼1 lk ¼ 1: Without any loss of generality, we

assume that for any fixed x the SSVF Q(x, n(c)) satisfies the

condition Qðx; bn1Þ�Qðx; bn2Þ� � � � �Qðx; bnNÞ; then the

value of the ESSVF QEðxÞ at x is computed by the formula

QEðxÞ ¼
XN

k¼1

pkQðx; bnkÞ; ð12Þ

where

Qðx; bnkÞ ¼ max
Pn
i¼1

Pm
j¼1

ðrj � bvk
i � tijÞyij

subject to
Pn
i¼1

yij� bdk
j ; j ¼ 1; 2; . . .;m;

Pm
j¼1

yij� sixi; i ¼ 1; 2; . . .; n;

yij� 0; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m;

ð13Þ

and the corresponding weights pi
0s are given by formula

(6). The following example is provided to depict the pro-

cess of solving the problem (9)–(11) in a simple discrete

fuzzy vector scenario.

Example 3 Let n = 2, m = 1, (r1, r2) = (5, 4), (s1, s2) =

(2, 2), (t1, t2) = (3, 2), (c1, c2) = (0.1, 0.3). If fuzzy operat-

ing cost v1 takes the values 1 and 2 with possibilities 0.5 and

1, respectively, and v2 takes the values 3 and 4 with possi-

bilities 0.25 and 1, respectively, and fuzzy demand d: 3,

then problem (9)–(11) can be built as

max�0:1x1 � 0:3x2 þ E Qðx; nÞ½ �
subject to xi 2 f0; 1g; i ¼ 1; 2:

ð14Þ

where

Qðx; nðcÞÞ ¼ max 2y1 þ 2y2 � v1ðcÞy1 � v2ðcÞy2

subject to y1 þ y2� 3;
0� y1� 2x1;
0� y2� 2x2:

ð15Þ

By the assumptions, we know fuzzy vector n = (d, v1,

v2) is discrete, and

bn1 ¼ 3;1;3ð Þ with possibilityl1 ¼minf0:5;0:25g ¼ 0:25;bn2 ¼ 3;1;4ð Þ with possibilityl2 ¼minf0:5;1g ¼ 0:5;bn3 ¼ 3;2;3ð Þ with possibilityl3 ¼minf1;0:25g ¼ 0:25;bn4 ¼ 3;2;4ð Þ with possibilityl4 ¼minf1;1g ¼ 1:

We note that the first-stage decision variable x takes four

values in all: (0, 0), (1, 1), (1, 0) and (0,1). And, fuzzy

vector n have four realizations (3, 1, 3), (3, 1, 4), (3, 2, 3)

and (3, 2, 4) for each value of x. The process of the solution

of this problem can be divided roughly into three steps:

Firstly, calculate the SSVF Qðx; n̂Þ by solving a second-

stage programming (15) for each value of x and realization n̂
of n. Secondly, compute the ESSVF QEðxÞ ¼ E Qðx;nÞ½ � for

each x through formula (12). Thirdly, find the optimal

solution by solving the first-stage programming (14). The

detailed solution process is given below.

In the case of x = (0, 0), straightforwardly, we have the

optimal second-stage solution y1
* = y2

* = 0, and the sec-

ond-stage value Qð0; 0; bnkÞ ¼ 0 for k = 1, 2, 3, 4. Hence,

E[Q(0, 0, n)] = 0, and the objective value of the model at

x = (0,0) is 0.

For the case that x = (1, 1), we can compute respec-

tively that the second-stage value Qð1; 1; bnkÞ; k ¼ 1; 2; 3; 4

as follows. For bn1 ¼ 3; 1; 3ð Þ with possibility l1 = 0.25,

we have the second-stage programming is

Qð1; 1; bn1Þ ¼ max y1 � y2

subject to: y1 þ y2� 3;
0� yi� 2; i ¼ 1; 2:

68 Int. J. Mach. Learn. & Cyber. (2013) 4:65–74

123



Clearly, the optimal second-stage solution is y1
* = 2, y2

* = 0.

Hence, Qð1; 1; bn1Þ ¼ 2 with possibility l1 = 0.25. By the

same reasoning, we can calculate

Qð1; 1; bn2Þ ¼ 2 with possibility l2 ¼ 0:5;

Qð1; 1; bn3Þ ¼ 0 with possibility l2 ¼ 0:25;

Qð1; 1; bn4Þ ¼ 0 with possibility l2 ¼ 1:

That is

0 ¼ Qð1; 1; bn4Þ ¼ Qð1; 1; bn3Þ\Qð1; 1; bn2Þ ¼ Qð1; 1; bn1Þ
¼ 2:

Furthermore,

p1 ¼ 0:5� ð1� 1Þ þ 0:5� 0:25 ¼ 0:125;
p2 ¼ 0:5� ð1� 1Þ þ 0:5� ð0:5� 0:25gÞ ¼ 0:125;

p3 ¼ 0:5� ð1� 1Þ þ 0:5� ð0:5� 0:5Þ ¼ 0;
p4 ¼ 0:5� 1þ 0:5� ðmaxf1; 0:25; 0:5; 0:25g

�maxf0:25; 0:5; 0:25gÞ ¼ 0:75:

As a consequence,

E½Qð1; 1; nÞ� ¼ 0� 0:75þ 0� 0þ 0:125� 2þ 0:125� 2

¼ 0:5;

and the objective value at x = (1,1) of the model is

-0.1 - 0.3 ? 0.5 = 0.1.

If x = (0, 1), we can calculate Qð0; 1; bnkÞ ¼ 0 for

k = 1, 2, 3, 4. Thus, E[Q(0, 1, n)] = 0 and the objective

value of the model at x = (0,1) is -0.3.

If x = (1, 0), we can calculate

Qð1; 0; bn1Þ ¼ 2 with possibilityl2 ¼ 0:25;

Qð1; 0; bn2Þ ¼ 2 with possibilityl2 ¼ 0:5;

Qð1; 0; bn3Þ ¼ 0 with possibilityl2 ¼ 0:25;

Qð1; 0; bn4Þ ¼ 0 with possibilityl2 ¼ 1;

hence, we only need to compute

p1 ¼ 0:125; p2 ¼ 0:125:

Furthermore,

E½Qð1; 0; nÞ� ¼ 0:125� 2þ 0:125� 2 ¼ 0:5;

and the objective value of the model at x = (1,0) is 0.4.

Comparing the objective values for all the values of the

first-stage decision x, we obtain the optimal value of this

model is 0.4 with the optimal solution x* = (x1
*, x2

*)

= (1, 0).

Observing the problem (9)–(11), we can see the fact that

the complexity of the problem is directly related to the

number of location decisions and the possible realizations

of fuzzy variables. In other words, the problem size rapidly

increases with the number of xi and the realizations of n. In

fact, as illustrated in Example 3, for each first-stage deci-

sion x, there are different realizations nðcÞ; c 2 C; and for

each pair (x, n(c)) we have to solve the second-stage pro-

gramming (9), which is a linear programming. Therefore, it

is very difficult to obtain the analytical expression of the

ESSVF QEðxÞ: Furthermore, since the fuzzy operating cost

vi and fuzzy demand dj involved in problem (9)–(11) are

usually continuous which are defined through possibility

distributions with infinite support, the model is inherently

an infinite-dimensional optimization problem that can not

be solved directly and exactly. As a consequence, algo-

rithms designed to solve such a problem must rely on

intelligent computing and some approximation scheme.

Solution procedure will be discussed in the next section.

4 Solution procedure

In this section, using an scheme proposed by Liu [23], we

shall approximate fuzzy variables with infinite supports by

finitely supported ones, which enable us to solve the infinite-

dimensional optimization model by solving a finite-dimen-

sional problem. Furthermore, in order to accelerate the

solution process, we employ an neural network (NN) based

on the approximation scheme to simulate the ESSVF. Finally,

to avoid getting stuck at a local optimal solution, we suggest a

heuristic algorithm, which incorporates approximation

approach, NN and PSO, to solve the problem (9)–(11).

4.1 Approximation approach

From the discussion of Sect. 3, we know that in order to

solve the problem (9)–(11), it is required to evaluate the

ESSVF

QEðxÞ ¼ E½Qðx; nÞ�; ð16Þ

where n is the fuzzy vector described in (8).

For any given decision x, we compute QEðxÞ by the

following approach.

Assume that n ¼ ðd1; . . .; dm; v1; . . .; vnÞ is a continuous

fuzzy vector whose support is

N ¼
Ym
j¼1

½aL
j ; a

U
j � �

Yn

i¼1

½bL
i ; b

U
i � ð17Þ

where [aj
L, aj

U] is the support of dj and [bi
L, bi

U] is that of vi.

Then we employ the method proposed in ([23]) to

approximate the possibility distribution of n by a sequence

of possibility distributions of discrete fuzzy vectors ffmg:
For each integer l, we define the discrete fuzzy vector

fl ¼ ðfl;1; . . .; fl;m; fl;mþ1; . . .; fl;mþnÞ as follows:

For each j 2 1; 2; . . .;mf g and i 2 1; 2; . . .; nf g; define

fuzzy variables fl;j ¼ gl;jðdjÞ and fl;mþi ¼ gl;mþiðviÞ; for l ¼
1; 2; . . .; where gl,j(dj)’s and gl,m?i(vi)’s are given respec-

tively as follows,
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gl;jðujÞ ¼ sup
k

l

�� k 2 Z; s.t.
k

l
\uj

� �
; uj 2 ½aL

j ; a
U
j �

and

gl;mþiðuiÞ ¼ sup
k

l

�� k 2 Z; s.t.
k

l
\ui

� �
; ui 2 ½bL

i ; b
U
i �

Z is the set of integers.

According to the above definitions, for each j, as dj takes

its values in the interval [aj
L, aj

U], the fuzzy variables fl;j

takes values k
l for k ¼ ½l � aL

j �; ½l � aL
j � þ 1; . . .; ½l � aU

j � with ½��
the integer part of �. Moreover, for each k, fuzzy variable

fl;j only takes the value k
l as dj takes its values in k

l ;
kþ1

l

	 

.

Consequently, for each c 2 C; we have

fl;jðcÞ � djðcÞ
�� ��\ 1

l
; j ¼ 1; 2; . . .;m:

By the same analysis, we can obtain

fl;mþiðcÞ � viðcÞ
�� ��\ 1

l
; i ¼ 1; 2; . . .; n:

Note that fl and n are m ? nary fuzzy vectors, and

fd
l;j; f

v
l;i and dj, vi are their components, respectively, we

have

kflðcÞ�nðcÞk

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

ðfl;jðcÞ�djðcÞÞ2þ
Xn

i¼1

ðfl;mþiðcÞ�viðcÞÞ2
vuut �

ffiffiffiffiffiffiffiffiffiffiffi
mþn
p

l

ð18Þ

for all c 2 C: That implies the sequence fflg of fuzzy

vectors converges to infinite-supported fuzzy vector n
uniformly. The sequence fflg of finite-supported fuzzy

vectors is referred to as discretization of the fuzzy vector n.

In the following, we provide an example to show the

discretization process described above.

Example 4 Consider the triangular fuzzy variable

n = (2, 3, 4) in Example 1, define a sequence of discrete

fuzzy variables fl ¼ glðnÞ; where the function gl is defined

by

glðuÞ ¼ sup
k

l
jk 2 Z; s:t:

k

l
\u

� �
; u 2 ½2; 4�:

Determine the possibility distributions of the discrete fuzzy

variables fl for l ¼ 1; 2; . . .:

Let l = 1. Then f1 takes only two values: 2 and 3. As n
takes its values in [2, 3), f1 takes the value 2 only, and f1

takes the value 3 as n takes its values in [3,4). Hence,

l1ð2Þ ¼ Posff1 ¼ 2g ¼ Posf2� n\3g ¼ 1;

l1ð3Þ ¼ Posff1 ¼ 3g ¼ Posf3� n\4g ¼ 1:

That is, discrete fuzzy variable f1 takes values 2 and 3 with

possibility 1 each.

Let l = 2. Then f2 takes four values, 2, 5
2
; 3 and 7

2
; as n

takes it values in the intervals ½2; 5
2
Þ; ½5

2
; 3Þ; ½3; 7

3
Þ and ½7

3
; 4Þ;

respectively. Therefore

l2ð2Þ ¼ Pos f2 ¼ 2f g ¼ Pos 2� n\
5

2

� �
¼ 1

2
;

l2

5

2

� �
¼ Pos f2 ¼

5

2

� �
¼ Pos

5

2
� n\3

� �
¼ 1:

l2ð3Þ ¼ Pos f2 ¼ 3f g ¼ Pos 3� n\
7

2

� �
¼ 1;

l2

7

2

� �
¼ Pos f2 ¼

7

2

� �
¼ Pos

7

2
� n\4

� �
¼ 1

2
:

That is, f2 takes values 2, 5
2
; 3 and 7

2
with possibilities 1

2
; 1,

1 and 1
2
; respectively.

Generally, fl takes 2l values i
l ; i ¼ 2l; 2lþ 1; . . .; 4l� 1:

The possibility that fl takes value i
l is

ll

i

l

� �
¼ Pos

i

l
� n\

iþ 1

l

� �

¼
iþ1

l � 2; if 2l� i� 3l� 1

4� i
l ; if 3l� i� 4l� 1

0; otherwise.

8<
:

We now replace the possibility distribution of n by that

of its discretization fl; and approximate the ESSVF QEðxÞ
by E½Qðx; flÞ� for each given decision x. For each given

integer l, the fuzzy vector fl takes finite number of values,

which are denoted by

bfk
l ¼ ðbfk

l;1; . . .;bfk
l;m;
bfk

l;mþ1; . . .;bfk
l;mþnÞ; k ¼ 1; 2; . . .;K:

Then, we denote

mk ¼ minfll;1ðbfk
l;1Þ; . . .; ll;mðbfk

l;mÞ; ll;mþ1ðbfk
l;mþ1Þ; . . .;

ll;mþnðbfk
l;mþnÞg

for k ¼ 1; 2; . . .;K; where ll,i are the possibility distribution

of fl;i for i ¼ 1; 2; . . .;m;mþ 1; . . .;mþ n; respectively.

For each k, we solve the second-stage linear programming

problem (9) through simplex algorithm [8, 10] and obtain

the optimal value Qðx;bfk
l Þ; whose possibility is mk.

Rearrange the subscript k of mk and Qðx;bfk
l Þ such that

Qðx;bf1
l Þ�Qðx;bf2

l Þ� � � � �Qðx;bfK
l Þ:

Calculate the wights pk; k ¼ 1; 2; . . .;K by formula (6).

After that, the expected value E½Qðx; flÞ� is computed by

the formula

Q ¼
XK

k¼1

pkQðx;bfk
l Þ: ð19Þ

70 Int. J. Mach. Learn. & Cyber. (2013) 4:65–74

123



The following Theorem 1 will show that E½Qðx; flÞ� con-

verges to QEðxÞ; as l!1: As a consequence, the original

ESSVF QEðxÞ can be approximated by E½Qðx; flÞ� through

the formula (19), provided l is sufficiently large. The pro-

cess to compute the ESSVF is summarized as

Algorithm 1: Approximation approach

Step 1. Generate K points bfk
l ¼ bfk

l;1; . . .;bfk
l;mþn

� �
uni-

formly from the support N of n for k ¼ 1; 2; . . .;K:

Step 2. Solve the second-stage linear programming (9)

via simplex algorithm, and obtain the optimal value

Qðx;bfk
l Þ for k ¼ 1; 2; . . .;K:

Step 3. compute the possibility of Qðx;bfk
l Þ by setting

mk ¼ minfll;1ðbfk
l;1Þ; . . .; ll;mþnðbfk

l;mþnÞg for k¼1;2;...;K:

Step 4. Rearrange the subscript k of mk and Qðx;bfk
l Þ such

that Qðx;bf1
l Þ�Qðx;bf2

l Þ� � � � �Qðx;bfK
l Þ:

Step 5. Calculate the wights pk; k ¼ 1; 2; . . .;K by

formula (6).

Step 6. Return the value of Q through the estimation

formula (19).

The convergence of Algorithm 1 is ensured by the following

theorem.

Theorem 1 Consider the problem (9)–(11). Suppose the

fuzzy cost and demand vector n is a continuous fuzzy vector

with support (17), and fl’s are the discretization of the fuzzy

vector n, then for any given feasible decision x, we have

lim
l!1

E½Qðx; flÞ� ¼ QEðxÞ:

Proof Since the problem (9)–(11) is a two-stage fuzzy

programming, and the second-stage programming (9) can

be expressed in the form given below:

max VðcÞT y
subject to Wy ¼ H � TðcÞx

y� 0

where V is a matrix containing rj, tij and fuzzy costs vi(c)

for i ¼ 1; 2; . . .; n; T a matrix containing si and fuzzy

demands dj(c), H is the matrix of slack variables, and

matrix W only consists of 0 and 1. Noting that matrix W is

fixed, together with the fact that n is a continuous fuzzy

vector with a compact support (17) and that fl’s are the

discretization of n, by the properties of two-stage fuzzy

programming with fixed recourse [22], we can obtain

lim
l!1

E½Qðx; flÞ� ¼ QEðxÞ:

The proof is complete. h

4.2 Estimating the ESSVF by NN

So far, we have discussed the approximation approach for

the ESSVF QEðxÞ: It is easy to see that the approach is a

time-consuming process though it’s convergence can be

ensured by Theorem 1, since in each iteration of simula-

tion, we have to solve the linear programming (9) many

times in the second stage. To speed up the solution process,

in this paper, we employ the fast BP algorithm [18] to train

a feedforward NN to estimate QEðxÞ: The training data set

can be generated by the approximation approach of QEðxÞ
discussed in Sect. 4.1 Therefore, much time can be saved

during the solution process since it is not necessary to

evaluate QEðxÞ by the approximation approach. We use the

NN with input layer, one hidden layer and output layer

connected in a feedforward way, in which there are n

neurons in input layer representing the input value of

decision variables, p neurons in hidden layer, and 1 neuron

in output layer representing the value of the ESSVF. In

addition, the number p in the hidden layer can be deter-

mined by pruning algorithm [6]. Let ðxk; ykÞ j k ¼f
1; 2; . . .;Ng be a set of input-output data generated by

fuzzy simulations. The training process is to find the best

weight vector w that minimizes the following error

function

ErrðwÞ ¼ 1

2

XN

k¼1

jFðxk;wÞ � ykj2; ð20Þ

where F(xk, w) is the output function of the NN. As for

more details on NN and its applications, the reader can

refer to [3, 7, 35, 36, 37].

4.3 A hybrid algorithm

Particle swarm optimization (PSO) developed by Kennedy

and Eberhart [19] is an evolutionary computation technique

which uses collaboration among a population of simple

search agents (called particles) to find optima in function

spaces. In PSO, a potential solution to a problem is rep-

resented as a particle i having current position xid and the

direction vid in which the particle will travel. Each particle i

maintains a record of the position of its previous best

performance in a vector pid. The variable g is the index of

the particle with best performance so far in the population.

An iteration comprises evaluation of each particle, then

stochastic adjustment of vid in the direction of particle i0s
best previous position pid and the best previous position pgd

of any particle in the population. The direction vector vid is

updated first and then added to xid according to the for-

mulas given below [32]:

vid ¼ x 	 vid þ c1 	 rand() 	 ðpid � xidÞ
þ c2 	 rand() 	 ðpgd � xidÞ; ð21Þ

xid ¼ xid þ vid ð22Þ

where i is the ith particle, c1 and c2 are random num-

bers independently generated in the interval [0,4] which
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represent the weighting of the stochastic acceleration terms

that pull each particle towards pid and pgd positions,

respectively, rand() is a uniform random number in the

interval [0,1], and x is the inertia weight whose value

decreases linearly as the number of iterations of the algo-

rithm increases. PSO has demonstrated great success in

providing good solutions to many complex optimization

problems and has received more and more attention during

the past decade. The reader who are interested in detailed

discussion about PSO and its applications may refer to [17,

19], [20, 32–34, 38).

In order to use a PSO algorithm to solve the location

problem (9)–(11) more effectively, we define the following

function:

uðtiÞ ¼
1; if ti [ 0:5
0; if ti� 0:5

�
ð23Þ

for i ¼ 1; 2; . . .; and denote uðtÞ ¼ ðuðt1Þ; . . .;uðtnÞÞ;
where t ¼ ðt1; . . .; tnÞ 2 ½0; 1�n: Hence, the problem (9)–

(11) can be solved by solving the following modified

model:

max �
Pn
i¼1

ciuðtiÞ þ QEðuðtÞÞ

subject to ti 2 ½0; 1�; i ¼ 1; 2; . . .; n;
ð24Þ

where QEðuðtÞÞ ¼ E½QðuðtÞ; nÞ� and

QðuðtÞ; nðcÞÞ ¼ max
Pn
i¼1

Pm
j¼1

ðrj � viðcÞ � tijÞyij

subject to
Pn
i¼1

yij� djðcÞ; j ¼ 1; 2; . . .;m;

Pm
j¼1

yij� siuðtiÞ; i ¼ 1; 2; . . .; n;

yij� 0; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m:

ð25Þ

Clearly, the original problem (9)–(11) and modified

problem (24, (25) correspond the same optimal value,

and the optimal solution of problem (9)–(11) can be

presented by that of problem (24, (25) using (23):

x	 ¼ ðx	1; . . .; x	nÞ ¼ ðuðt	1Þ; . . .;uðt	nÞÞ: ð26Þ

In the following, we incorporate approximation approach,

NN and PSO to produce a hybrid algorithm for solving the

FPR problems. First, we generate a training data set for an

ESSVF QEðxÞ by approximation approach. Then, using the

generated input-output data, we train an NN by fast BP

algorithm to estimate QEðxÞ: We repeat this BP algorithm

until the error for all vectors in the training set is reduced to

an acceptable value or perform the specified number of

epochs of training. After that, we use new data (which are

not learned by the NN) to test the trained NN. If the test

results are satisfactory, then we stop the training process;

otherwise, we continue to train the NN. After the NN is

well-trained, it is embedded into a PSO. During the solution

process, the output values of the trained NN are used to

represent the approximate values of QEðxÞ: This process of

the hybrid algorithm for solving the problem (9)–(11) is

summarized as follows.

Algorithm 2 A Hybrid Algorithm

Step 1. Generate a set of input-output data for an ESSVF

QEðxÞ through Algorithm 1;

Step 2 Train an NN to approximate QEðxÞ by the

generated data;

Step 3. Initialize a population of particles (potential

solutions) at random, set pid equal to xid for each particle

i, and find pgd for the population;

Step 4. Update all the particles by formulas (21) and

(22);

Step 5. Calculate the objective values for all particles by

the trained NN, and evaluate each particle according to

the objective value;

Step 6. Update the pid for each particle, and the pgd for

the population, respectively;

Step 7. Repeat Step 4 to Step 6 for a given number of

generations;

Step 8. Return the particle pgd as the optimal solution of

modified problem (24, (25), and obtain the optimal

solution of original problem (9)–(11) through formula

(26).

5 A numerical example

Suppose a firm intends to open new facilities in six

potential sites, whose fixed costs and variable operating

costs are given in Table 1, and there are five clients whose

demands are triangular fuzzy variables given below

d1 ¼ ð12; 13; 14Þ; d2 ¼ ð10; 12; 14Þ; d3 ¼ ð14; 15; 16Þ; d4

¼ ð12; 14; 16Þ; d5 ¼ ð9; 10; 12Þ:

Example 5 Consider the following two-stage fuzzy facil-

ity location problem

Table 1 Capacities and fixed costs of six facilities

Facility site i Capacity si Fixed cost ci Variable cost vi

1 10 3 (4, 5, 6)

2 14 1 (1, 2, 3)

3 8 2 (2, 3, 4)

4 9 1 (3, 4, 6)

5 12 2 (3, 4, 5)

6 10 3 (4, 5, 6)
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max �3x1 � x2 � 2x3 � x4 � 2x5 � 3x6 þQEðxÞ
subject to x1; x2; . . .; x6 2 f0; 1g;

ð27Þ

where QEðxÞ ¼ E½Qðx; nÞ� and

Qðx; nðcÞÞ ¼ max
P6
i¼1

P5
j¼1

ðrj � viðcÞ � tijÞyij

subject to
Pn
i¼1

yij� djðcÞ; j ¼ 1; 2; . . .; 5;

Pm
j¼1

yij� sixi; i ¼ 1; 2; . . .; 6;

yij� 0; i ¼ 1; 2; . . .; 6; j ¼ 1; 2; . . .; 5;

ð28Þ

and the values of rj - tij, for i ¼ 1; 2; . . .; 6; j ¼ 1; 2; . . .; 5
are given by matrix

M ¼ rj � tij

� 

6�5
¼

3 4 3 6 5

4 3 2 5 6

4 5 3 5 4

4 6 5 4 6

3 4 6 5 6

4 5 6 5 2

0
BBBBBB@

1
CCCCCCA
:

To solve this problem, for any feasible solution x, we

generate 3,000 sample points via approximation approach to

evaluate the ESSVF QEðxÞ: That is, we are first required to

solve the second-stage programming (28) 3,000 times and

obtain the SSVF Q(x, n(ci)) for i ¼ 1; 2; . . .; 3; 000: Then

the value of QEðxÞ at x can be computed by formula (19).

Furthermore, we generate 2,000 input-output data by

using the method mentioned above to train an NN to

estimate the ESSVF QEðxÞ: After the NN is well trained, it

is embedded into a PSO algorithm to produce a hybrid

algorithm (Algorithm 2) to search for the optimal solution.

As have described in Sect. 4.3, for problem (27), (28), we

replace all the xi 2 f0; 1g by uðtiÞ 2 ½0; 1�; for i ¼
1; 2; . . .; 6; where uð�Þ is given by formula (23). Hence,

t ¼ ðt1; t2; . . .; t6Þ is considered as the particle in the PSO,

and the optimal solution of the problem is given by

x	 ¼ ðuðt	1Þ;uðt	2Þ; . . .;uðt	6ÞÞ:
In this paper, parameters of PSO c1 and c2 are set equal

to 2, the population size Psize = 4, the maximum genera-

tion Gmax = 60, and using the method of (Shi and Eberhart,

1998a) that inertia weight decreases linearly from about 0.9

to 0.4 during a run, x is given by

w ¼ 0:5 	 ðGmax � GnÞ=Gmax þ 0:4;

where Gn the number of current generation. A run of the

hybrid algorithm (Algorithm 2) shows the optimal location

decision is

x	 ¼ ðx	1; x	2; . . .; x	6Þ ¼ ð1; 1; 1; 1; 1; 0Þ

whose objective value is 53.798394. In Table 2, we can

compare the results at different generations of particles. It

follows from Table 2 that the algorithm converges at the

generation of 20. Furthermore, in order to test the effec-

tiveness of the algorithm, we reset the Psize = 100 to

achieve an ergodic search, and obtain the global optimal

solution which is right x* = (1, 1, 1, 1, 0) with objective

value 53.798394. That is, the hybrid algorithm searches out

the global optimal solution at the generation of 20 with

population size 4, which implies the high effectiveness of

the algorithm.

6 Concluding remarks

This paper puts forth a novel and realistic capacitated two-

stage FLP with fuzzy costs and demands. Since the prob-

lem is a 0–1 integer two-stage fuzzy programming, and the

possibility distributions of fuzzy costs and demands own

infinite support, the proposed FLP can not be solved

directly and exactly. Therefore, in order to tackle this

complicated model, first, an approximation method of the

location problem is employed, and the convergence of the

method is proved. After that, a hybrid algorithm which

integrates the approximation approach, neural network and

particle swarm optimization is designed to solve the

problem. Finally, a numerical example is provided to test

the effectiveness of the hybrid algorithm. With the pro-

posed model, the approximately optimal location can be

determined when the location problems are with imprecise

cost and demand parameters, or they are directly provided

by the experts.

There is much room for further development based on

this study, for instance, a more complex situation could be

more interesting by considering a hybrid continuous-dis-

crete location region, in that case, the solution should be

totally different and much more difficult.
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Table 2 Comparison solutions of Example 5.1

Psize c1 c2 Gen Optimal solution Objectivevalue

4 2.0 2.0 5 (0, 1, 0, 1, 1, 0) 45.844616

4 2.0 2.0 10 (0, 1, 1, 1, 1, 1) 49.420930

4 2.0 2.0 16 (0, 1, 1, 1, 1, 0) 52.207808

4 2.0 2.0 20 (1, 1, 1, 1, 1, 0) 53.798394

4 2.0 2.0 40 (1, 1, 1, 1, 1, 0) 53.798394

4 2.0 2.0 60 (1, 1, 1, 1, 1, 0) 53.798394
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