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Abstract Support vector machine (SVM) is a compara-

tively new machine learning algorithm for classification,

while logistic regression (LR) is an old standard statistical

classification method. Although there have been many

comprehensive studies comparing SVM and LR, since they

were made, there have been many new improvements

applied to them such as bagging and ensemble. Recently,

bagging and ensemble learning have become hot topics,

widely used to improve the generalization performance of

single learning algorithm. Therefore, comparing classifica-

tion performance between SVM and LR using bagging and

ensemble is an interesting issue. The average of estimated

probabilities’ strategy was used for combining classifiers in

this paper. Different evaluation metrics assess different

characteristics of machine learning algorithm. It is possible

for a learning method to perform well on one metric, but be

suboptimal on other metrics. Therefore this study includes a

variety of criteria to evaluate the classification performance

of the learning methods: accuracy, sensitivity, specificity,

precision, F-score and the area under the receiver operating

characteristic curve. This has not been included in previous

studies of SVM, owing to the fact that it did not support

estimated probabilities at that time. Other metrics used in

medical diagnosis, such as, Youden’s index (c), positive and

negative likelihoods (q?, q-) and diagnostic odds ratio

were evaluated to convey and compare the qualities of the

two algorithms. This study is distinct by its inclusion of a

comprehensive statistical analysis for the results of the

SVM and LR algorithms on various data sets.

Keywords Support vector machine (SVM) �
Logistic regression (LR) � Machine learning algorithm �
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1 Introduction

Logistic regression (LR) [1, 2] is a multivariable method

devised for dichotomous outcomes. It is a standard statis-

tical classification method which is particularly appropriate

for models involving disease state (healthy/diseased),

decision making (yes/no), or mortality (dead, living). It is

widely used in binary classification problems in applied

sciences such as medicine, biology and epidemiology. It

has been widely applied due to its simplicity and great

interpretability. Logistic regression needs special require-

ments regarding the data under consideration, such as, little

or no collinearly among the independent variables and

linearity of the independent variables with the logit. In

contrast, SVM [3, 4, 5] recently, has become a very popular

machine learning tool for classification. It is easy and

uncomplicated as compared to LR. Nowadays, SVM is

used intensively in data mining, which is a general term for

the science of extracting useful information from large

databases or data sets.

There are many empirical studies for comparing machine

learning algorithms; these studies also include the com-

parison of LR and SVM. For example, Perlich et al. [6]

constructed a curve analysis comparison between the

decision trees and logistic regression using bagging,

STATLOG [7] presented a study that included several

machine learning algorithms and LR but it did not include

SVM, [8] presented a study that compared logistic regres-

sion (LR), probabilistic neural network (PNN) and support

vector machine (SVM) classifiers for discriminating
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between normal and Parkinson disease (PD). There are

various other pair comparison studies including LR and/or

SVM such as: LeXu and Gao [9] who presented a study that

compares logistic regression with artificial neural network

(ANN) on power distribution system, Chen et al. [10]

constructed a comparison study between SVM and back

propagation neural networks in forecasting the six major

Asian stock markets. There are numerous studies in medical

fields too, such as Song et al. [11] who performed Com-

parative Analysis of Logistic Regression and ANN for

Computer-aided Diagnosis of Breast Masses. All these

studies provide comparisons pair classifiers using only one

dataset for a single problem. To the best of our knowledge,

the only comparison between SVM and LR has been done

for the prediction of hospital mortality in critically ill

patients with hematological malignancies [12]. This com-

parison focuses only on the mortality prediction model. In

this study the authors divided the data set into training and

testing sets, the dataset they used has only 350 instances.

None of the previous studies used statistical analysis for

evaluating the performance of the classifiers under com-

parison. Moreover, there are plenty of new improvements

that have been applied to the classification methods to

improve their performance, such as, bagging and ensemble.

The classifiers’ performance needs to be compared after

incorporating the improvements.

The aim of this paper is to construct a standard, com-

prehensive comparative study between SVM and LR on

multiple data sets. Recently, combining multiple classifiers

has been a very active research technique. It is widely

accepted that combining multiple classifiers can achieve

better classification performance than a single classifier

[13, 14], therefore, the bagging [15] predictors method has

been used. Bagging is a method for generating multiple

versions of a predictor and using these to get an aggregated

predictor. The main idea of bagging is to make various

samples of the training set. A classifier is generated for

each of these training set samples by a selected learning

algorithm. So, for k samples of the training data set we get

k particular classifiers. There are many strategies for

aggregating these classifiers. In this paper, the average of

the estimated probabilities’ strategy was used for aggre-

gation. A variety of performance metrics have been used:

accuracy, sensitivity, specificity, precision and F-score, to

asses the algorithms’ performances. These standard metrics

were combined with other metrics that measure other

properties, such as, failure avoidance and class discrimi-

nation. These metrics are Youden’s index, positive and

negative likelihoods and diagnostic odds ratio (DOR),

which may be useful in discovering unseen characteristics

of the algorithm’s performance. Furthermore, The receiver

operating characteristic (ROC) analysis has been used in

this study, which is a more powerful evaluation tool and

has not been included in previous studies. The statistical

significant difference between each pair of ROC curves

was tested using the Mann–Whitney nonparametric test.

Statistical evaluation of experimental results is an essential

part of the comparison validation, in this study, a detailed

concept of using statistical analysis in comparing two

algorithms has been given.

2 Classification methods

The most widely studied and well understood learning

protocol is supervised learning, where a learning algorithm

uses labeled instances to formulate a predictive model [16].

Logistic regression and support vector machine are two

supervised classification methods which are broadly used.

Logistic regression is a parametric method to analyze

dichotomous response variable and finds the relationship

between the response variable and the independent vari-

ables. It has been widely applied in medicine fields, but

seldom used in machine learning studies. Support vector

machine is also a parametric method which has been

broadly used in machine learning studies. Recently, it has

been extensively used in classification problems and suc-

cessfully applied to many real fields [17, 18].

2.1 Support vector machine

Support vector machine (SVM) [3–5] is a comparatively

new classification method. It has drawn much attention in

recent years [19]. The concept of SVM is as follows: input

vectors x are mapped to a very high dimension feature

space z through some nonlinear mapping UðxÞ; z ¼ UðxÞ.
In this space, an optimal separating hyperplane is con-

structed. For a given training dataset with n samples

(x1, y1), (x2, y2), …, (xn, yn), where xi is a feature vector in

a d-dimensional feature space Rd and yi 2 f1, + 1g is the

corresponding class label. The task is to find a classifier

with a decision function f (x, w, b) = wTUðxÞ þ b, SVM

finds an optimal hyperplane with the maximal margin that

separates the data points into two classes. To find the

optimal separating hyperplane having maximal margin, a

learning machine should

min
1

2
wT w i ¼ 1; . . .; n ð1Þ

Subject to

yi½wTUðxiÞ þ b� � 1 i ¼ 1; . . .; n ð2Þ

where w is the normal vector for the ‘‘separating’’

hyperplane, ðW ;UðxiÞÞ þ b = 0, this can be transferred

into its dual form by minimizing the following primal

lagrangian
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Ldðw; b; aÞ ¼
1

2
wT w�

Xn

i¼1

aifyi½wTUðxiÞ þ b� � 1g ð3Þ

In respect to w and b by using oLd=ow ¼ 0 and

oLd=ob ¼ 0, i.e., by exploiting

oLd

ow
¼ 0; w ¼

Xn

i¼1

aiyiUðxiÞ ð4Þ

oLd

ob
¼ 0;

Xn

i¼1

aiyi ¼ 0 ð5Þ

Substituting w from (4) and using (5), this lead to the

following dual lagrangian problem

LdðaÞ ¼
Xn

i¼1

ai �
1

2

Xn

i;j¼1

yiyjaiajkðxi; xjÞ ð6Þ

where, kðxi; xjÞ ¼ UTðxiÞUðxjÞ is a Mercer’s kernel that allows

us to calculate the dot product in high-dimensional space

without explicitly knowing the nonlinear mapping. The LdðaÞ
in (6) should be solved subject to the following constraints:

ai� 0 i ¼ 1; . . .; n

Xn

i¼1

aiyi ¼ 0
ð7Þ

In a more general case, when the problem is not

separable or is judged too costly to separate due to an

overlapping of training data points, the constraints in

solving dual lagrangian problem in (6) change to the

following constraints:

0� ai� c i ¼ 1; . . .; n

Xn

i¼1

aiyi ¼ 0
ð8Þ

where ða1; . . .; anÞ are the weights assigned to the training

sample xi. If ai [ 0, xi is called a support vector. c is a

‘‘regulation parameter’’ used to trade-off the training

accuracy and the model complexity so that a superior

generalization capability can be obtain. There are different

forms of kernel function, however, support vector machine

(SVM) with the Gaussian (RBF) kernel has been popular

for practical purposes, since it can handle the case when the

relation between classes and features is nonlinear, and it

also has less parameter than other nonlinear kernels such as

the polynomial kernel [20–22], therefore, RBF kernel

function which is given in Eq. (9) is used in this paper.

kðxi; xjÞ ¼ exp �
xi � xj

�� ��2

2r2

 !
ð9Þ

After the lagrangian variables (a1; . . .; an) calculated by

solving (6) subject to (8) and using (4), the decision

function can be formulated as follows:

f ðxÞ ¼ wTUðxÞ þ b ¼
Xn

i¼1

aiyikðx; xiÞ þ b

 !
ð10Þ

where x is the d-dimensional vector of the test examples

and b is the SVM bias term which depends upon the

applied kernel, it can be implicitly part of the kernel

function. It will be found by fulfilling the requirements that

the values of a decision function at the support vectors

should be the given yi, (yi = ±1). i.e. f(xs) = ys = ±1. For

the given Pattern xp, if f(xp) [ 0, Pattern xp belongs to class

(y = ?1), otherwise, it belongs to class (y = -1).

2.2 Logistic regression

Logistic regression (LR) [1, 2] is a well known statistical

approach to model dichotomous (binary) data; logistic

regression is a member of generalized linear models. In

logistic regression, a single outcome variable yi, where

i ¼ 1; . . .; n, each yi takes only two values 0 or 1 (but not

both), so it follows a Bernoulli Probability density function

pðyiÞ ¼ ðpiÞyið1� piÞ1�yi : that takes the value 1 with

probability pi and 0 with probability (1 - pi). Our interest

is in yi = 1 with the interest probability pi, which varies

over the observations as an inverse logistic function of a

vector xi, which includes a constant (x0) and k explanatory

variables (x1,…, xk). Its function can be given as follows:

yi�BernoulliðpiÞ
p ðyi ¼ 1Þ ¼ pi ¼ ð1þ e�xbÞ�1

ð11Þ

where b ¼ ðb0; b
0
1Þ
0
is a (k ?1) 9 1 vector that contains the

parameters that need to be estimated, b0 is an intercept

term corresponding to x0 and b is (k 9 1) vector with

elements corresponding to the explanatory variables. The

odd ratio of y = 1 is p(y = 1)/(1 – p (y = 1) = pi/(1 - pi).

By using this odd ratio; the following transformation can be

obtained.

logitðyi ¼ 1Þ ¼ ln½odd� ¼ ln
pi

1� pi

� �
¼ bxi ð12Þ

The above logit function can be expressed in matrix

form as follows:

logit½pðy ¼ 1Þ� ¼ xb ð13Þ

The importance of the transformation in (13) is that it

has many of the desirable properties of the linear regression

model. The logit is linear in the parameters vector b. These

parameters will be estimated using the maximum

likelihood function. The maximum likelihood function of

Bernoulli density function is Lðpi=yiÞ ¼ ðpiÞyið1� piÞ1�yi .

By assuming independence over the observations, the

maximum likelihood function for y ¼ y1; . . .; yn can be

written as follows:

Int. J. Mach. Learn. & Cyber. (2013) 4:13–24 15

123



Lðb=yÞ ¼
Yn

i¼1

ðpiÞyið1� piÞ1�yi ð14Þ

By taking the logarithm, the log-likelihood will be

Lðb=yÞ ¼
Xn

i¼1

½yi lnðpiÞ þ ð1� yiÞ lnð1� piÞ� ð15Þ

After estimating the parameters, the significance of each

of these parameters will be assessed by comparing the

observed values of the response variable to the predicted

values obtained from the model with and without the

variable in the model. In logistic regression this comparison

is based on the log likelihood function defined in (15). This

can be obtained by using the following statistic:

G ¼ �2
likelihood with out the variable

likelihood with the variable

� �
ð16Þ

This statistic will be compared with v2ða; 1Þ to test the

hypothesis whether the parameter is equal to zero or not, if

G [ v2ða; 1Þ, then the parameter is not significant and

should be deleted from the model. There are several

selection procedures used to construct the best fitting

model such as forward selection which looks at each

explanatory variable individually and selects the single

explanatory variable that fits the data the best on its own as

the first variable included in the model, among the

remaining variables the one that adds the most is

included. This is repeated until none of the remaining

variables will add significantly. Backward selection starts

with a model that contains all of the explanatory variables,

and then a variable that, if removed, would cause the

smallest change in the overall fit of the model is removed.

This continues until all variables in the model are

significant. For assessing the goodness-of-fit for the

model, there are several goodness-of-fit tests that can be

obtained by comparing the overall difference between the

observed and fitted values. Among these tests Pearson Chi-

Square v2 and Deviance D test are used the most. Suppose

the number of the covariate patterns is j, let j \ n, let mi

denote the number of (yi = 1) among these patterns. The

Pearson statistic is defined as follows:

v2 ¼
Xn

i¼1

ðyi � mip̂iÞ2

mip̂ið1� p̂iÞ
ð17Þ

And the residual deviance statistic is defined as follows:

D ¼ 2
Xn

i¼1

yi ln
yi

mip̂i

� �
þ ðmi � yiÞ ln

ðmi � yiÞ
mið1� p̂iÞ

� �� �

ð18Þ

It is clear that the above two statistics rely on the

principle of comparing observed yi to predicted mip̂i values

and they should be small if the model fits the data well.

These two statistics are compared to the value of v2ða; n�
k � 1Þ to judge their statistical significance. These statistics

are used when j \ n. Their results are invalid when j * n

[1, 23]. In this case there are other alternative statistics that

can be used, such as Osius and Rojek statistic, Farrington

statistic and Hosmer–Lemeshow statistic.

The predicted label for the logistic regression model will

equal to 1 if p̂i is greater than or equal to some threshold

(the default is 0.5), as shown below:

if ðpðy ¼ 1ÞÞ� 0:5 the instance 2 class ðy ¼ 1Þ
if ðpðy ¼ 1ÞÞ\0:5 the instance 2 class ðy ¼ 0Þ

ð19Þ

3 Materials and methods

3.1 The data sets

The data sets used in this study were composed of 13 data

sets with binary class attributes, 11 from the UCI repository

(ftp to ics.uci.edu/pub/machine learning-databases) and 2

from the LIB-SVM data: classification (binary class) at

(http://www.csie.ntu.edu.tw/*cjlin/libsvmtools/datasets).

These data sets are of different sizes, six of them are

almost balanced and the remaining seven are unbalanced.

Table 1 gives a numerical summary of the data sets.

3.2 Bagging and aggregating classifier decisions

Ensembles of classifiers represent one of the main research

directions in machine learning [24]. Empirical studies

showed that both in classification and regression problems

ensembles are often much more accurate than the indi-

vidual base learner that make them up [25], recently there

have been different ensemble methods. Bagging [15] is one

of the most important recent developments in classification

methodology. This method was proposed by Leo Breiman

in 1996. Using bagging in many classification algorithms

results in high improvement in performance and gives

substantial gains in accuracy. Breiman shows that bagging

works well for unstable procedures where a small change

in the training data set can result in large changes in pre-

dictions (e.g., neural networks, decision trees). Although

SVM is a stable classification method, its performance can

generally be improved by bagging [26, 25]. Bagging has

been applied widely to machine learning techniques, but it

has rarely been applied to statistical tools such as logistic

regression [6].

Bagging works by sequentially applying a selected

classification algorithm in respect to modifications of the

training data set. So for each sub sample of the training

data a classifier should be created.

16 Int. J. Mach. Learn. & Cyber. (2013) 4:13–24
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Our experiment was done according to the following

bagging algorithm.

(i) Initialization of the training data set T.

(ii) Divide the training data set T into two sets T1 and T2,

based on the data classes.

(iii) Draw two random samples (bootstraps) with replace-

ment from T1 and T2 with the same proportions

(some of the examples can be selected repeatedly

and some may not be selected at all).

(iv) Mix the two samples (bootstraps) together to repre-

sent the new training data set, in this way the

proportions of the classes will be the same as in the

original data set, and all the training data sets will be

of the same size.

(v) Train a particular classifier using this sub training

data set by a selected Learning algorithm.

(vi) By repeating the previous steps K times, K classifiers

will be obtained.

Any instance in the training data set T has the proba-

bility [1 - (1 - 1/K)K] of being selected, at least once in

the K times randomly selected instances from the training

data set. For a large k, as in this experiment where

k = 100, this probability will approximately equal to 0.634

which means that each sub training sample contains about

63.4% unique instances from the original training data set.

In this way we can build classifiers with samples that are

not identical.

After, each classifier is trained independently for each

algorithm. We have to aggregate their results in an

appropriate combination approach. Some combination

strategies are suggested by previous studies. First, the

simplest one is a majority vote which can be used where

only class’s labels are considered. Second, for the case of

continuous-valued outputs like posteriori probabilities are

available, the average of the estimated probabilities can be

an appropriated strategy. In this case the decision is made

according to the mean of posteriori probabilities of the

combined classifiers. Third is the average of estimated

parameters, where the final classifier is obtained by aver-

aging the coefficients of the combined classifiers. Since

both SVM and LR support estimated probabilities, the

average of estimated probabilities’ strategy has been used.

Each training set (bootstrap) generates estimated proba-

bilities p̂ðj=xÞ, which is an object with prediction vector x

belonging to class j. Then the class corresponding to x is

estimated as arg maxj p̂ðj=xÞ. The bagging ensemble is

obtained by averaging the p̂ðj=xÞ over all bootstrap repli-

cations to obtain p̂Beðj=xÞ, and then uses the estimated class

arg maxj p̂Beðj=xÞ as a final prediction. This estimate was

computed in all the classification examples in this paper.

The resulting misclassification rate was always virtually

identical to the voting misclassification rate [15].

3.3 Performance measures

Central to constructing, deploying, and using classification

method is the question of method performance assessment.

The support vector machine and logistic regression are now

used in many domains, and different performance measures

are appropriate for each domain. The different performance

metrics measure different tradeoffs in the predictions made

by algorithm and it is possible for learning algorithm to

perform well on one metric, but be suboptimal on other

metrics, because of this it is important to evaluate algo-

rithms on a broad set of performance metrics. Therefore, in

this comparative study a variety of performance metrics

has been used. The performance metrics were divided in to

three. The first one is the common metrics that are well

known and have been widely used in machine learning

Table 1 Summary of the data

sets
Data set Data size Number

of variables

Nominal Total Data type

Page block 5,473 10 0 10 Unbalanced

Cod-rna (sample) 5,136 8 0 8 Balanced

Spam 4,601 57 0 57 Unbalanced

Chest 3,196 36 36 73 Balanced

Car evaluation 1,594 6 6 21 Unbalanced

Contraceptive 1,474 9 7 24 Balanced

German number 1,000 24 0 24 Unbalanced

Pima diabetes 768 8 0 8 Unbalanced

Breast cancer 683 10 0 10 Unbalanced

Credit approval 650 14 7 34 Balanced

Ionosphere 351 34 0 34 Unbalanced

Liver disorder 345 6 0 6 Balanced

Heard Scale 270 13 0 13 Balanced
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comparisons which are threshold metrics. The default is

0.5. These metrics only consider the prediction above or

below the threshold (0.5). These metrics are: accuracy

(ACC), the number of correct predictions on the test data is

divided by the number of test data instances, sensitivity

(SN), specificity (SP): assesses the effectiveness of the

algorithm on positive and negative classes respectively,

F-score is a composite measure benefits algorithm with

higher sensitivity and challenges algorithm with higher

specificity, precision is the assessment of the predictive

power of the algorithm for positive or negative classes.

Secondly, new suggested metrics other than those common

metrics have been used to assess the performance of the

algorithm. The goal of using these metrics is to evaluate the

performance of the algorithm in other ways. These new

suggested measures are used in the medical area, and they

are: Youden’s index (c), likelihoods ratio (LR) and diag-

nostic odds ratio (DOR).

Youden’s index (c) (1950) measures the ability of an

algorithm to avoid failure. It equally weights the algo-

rithm’s performance in negative and positive examples, it

can be expressed as:

c ¼ senstivity� ð1� specitificityÞ ð20Þ

A high value of c indicates better ability to avoid failure

[27].

Positive and negative likelihoods (LRS) [28] are familiar

epidemiologic measures, used to select appropriate diag-

nostic test and are useful and helpful for comparing two

algorithms. Their advantages over sensitivity and speci-

ficity are to evaluate the algorithm’s performance with

respect to both classes. The values of the positive (q?) and

negative (q-) can be expressed as:

qþ ¼ sensitivity

ð1� specificityÞ ; q� ¼ ð1� sensitivityÞ
specificity

ð21Þ

A higher positive likelihood and a lower negative

likelihood indicate better performance on positive and

negative classes respectively [28]. Here it should be

mentioned that if q? \ 1 likelihood metrics should not be

used. The relationship between the likelihoods and the

performance of the two algorithms A and B is as follows [28]:

Diagnostic odds ratio (DOR) [29] is also a global per-

formance measure. It has been suggested as a superior

measure of diagnostic discrimination and it is used in

medicine for the comparison of diagnostic accuracies

between two or more diagnostic tests. Similarly this mea-

sure can be used in machine learning to measure the

algorithm’s performance and compare them. It evaluates

how the algorithm distinguishes between positive and

negative examples. It is calculated using the following

equation:

DOR ¼ sensitivity=ð1� sensitivityÞ
ð1� specificityÞ=specificity

ð22Þ

Combining these three metrics with the common metrics

helps to obtain balanced evaluation of the algorithm’s

performance. Thirdly to assess the algorithm’s performance

with respect to their estimated probabilities, the area under

the ROC (receiver operating characteristic) curve (AUC) is

used [30, 31] which compares visually the algorithm’s

performance averaged across all possible probability

thresholds. The ROC curve plots observed sensitivity

versus (1-specificity) for all possible classification

thresholds. It also measures the ability of the algorithms

to separate the instances of the different classes. The power

of the ROC curve comes from the fact that it characterizes

the performance of a classification model as a curve rather

than a single point. The important statistical property of

(AUC) is that it is equivalent to the probability that the

classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative instance which is

equivalent to the Mann-Whitney statistic [32]. A high value

of the statistic test indicates that the probability ranking is

generally better. Thus we used the area under the ROC

curve for comparing class probability estimators of the two

algorithms. To test the statistical difference between each

pair of ROC curves of the two algorithms, the Wilcoxon test

as an appropriate nonparametric test was used [33, 31].

3.4 Statistical comparison methods

Although there is no specific procedure for comparing

algorithms over multiple data sets, there are different sta-

if qA
þ[ qB

þ and qA
�\qB

� implies A is superior over all:

if qA
þ\qB

þ and qA
�\qB

� implies A is superior for confirmation of negative examples:

if qA
þ[ qB

þ and qA
�[ qB

� implies A is superior for confirmation of postive examples:

if qA
þ\qB

þ and qA
�[ qB

� implies A is inferior overall:

18 Int. J. Mach. Learn. & Cyber. (2013) 4:13–24
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tistical tests and common-sense techniques to test whether

the two algorithms are significantly different or not. The

key question of using the statistical test is the suitability

and the assumptions that should be satisfied. In this paper,

the paired sample T test as a parametric test and the wil-

coxon signed-ranks test as a nonparametric test have been

used.

3.4.1 Paired sample T test

The paired T test is used to compare two population

means where there are two samples in which observations

in one sample can be paired with observations in the other

sample. It is used in this paper to test the statistical dif-

ference between the two algorithms over the various

evaluation measures. The hypothesis is whether the

average difference in their Performance over the data sets

is significantly different or not. Let c1j and c2j be the

metric scores of the two algorithms on the j-th data set

and let dj be the difference c2j - c1j. The T statistics is

computed as ( �d=s �d) and is distributed according to T

distribution with N -1 degrees of freedom, where N is

the number of the data sets. Paired T test is true and can

be safely used even if the variances of the two random

variables under comparison are not homogeneous. How-

ever it may be less effective if the two random variables

under comparison are not distributed normally [34]. In

addition, the Paired T test requires the minimum sample

size (number of the data sets) to be *30. To ensure that

the variable is normally distributed, there are many tests

that can be used such as the Kolmogorov–Smirnov test.

All these tests that are used for checking the normality

assumption are affected by the sample size; therefore it

would be useless to check the normality of the samples

that are less than 30.

3.4.2 Wilcoxon signed-ranks test

The alternative test to the paired T test is the Wilcoxon

signed-ranks test which is a nonparametric test. It does not

need the assumptions of homogeneity and normality and it

will not be affected by the sample size [35]. Therefore, it

can be appropriated when the paired T test’s assumptions

are violated. The Wilcoxon signed-ranks test ranks the

differences in performance measurement of the two algo-

rithms for each data set, ignoring the signs, and compares

the ranks for the positive and the negative differences. The

differences are ranked according to their absolute values;

average ranks are assigned in case of ties. Let R? be the

sum of ranks for the data set, in which the second algorithm

outperformed the first. Let R- be the sum of ranks for the

opposite. Ranks of di = 0 are split evenly among the two

sums. Let T = min (R?, R-), then the test statistics is

computed as follows:

Z ¼
T � 1

4
ðNðN þ 1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

24
NðN þ 1Þð2N þ 1Þ

q ð23Þ

The statistics in (23) is distributed approximately

normally. The null hypothesis is rejected if Z [ Z(a/2).

4 Experimental set up

The bagging method is used to construct the experiment.

As shown previously, a random sample (bootstrap) was

drawn with replacement from the original data set to form a

training set. Each training set contains approximately 66%

of the data from the original data set. The support vector

machine (SVM) with the Gaussian (RBF) kernel and LR

were used in this experiment for classification. With the

methods like cross-validation, the relevant parameters of

SVM can be chosen more scientifically, so they are widely

used to choose the optimal parameters for SVM [36],

hence, with each bootstrap 10 fold cross validation (CV)

was used to determine the best values of c and C [37].

Normally Cross validation (CV) is used to estimate the

generalization capability on new samples that are not in the

training dataset. A k-fold cross validation randomly splits

the training dataset into k approximately equal-sized sub-

sets, leaving out one subset, builds a classifier on the

remaining samples, and then evaluates classification per-

formance on the unused subset [38–40]. This process was

repeated k times for each subset to obtain the CV perfor-

mance over the training dataset. The best values were

determined for each training set. The training set with its

associated best values was used to construct the support

vector machine model. This model generated estimated

probabilities p̂ðj=xÞ. This procedure repeated 100 times.

Finally we have 100 SVM classifiers. They were combined

by taking the average of the p̂ðj=xÞ to obtain p̂Beðj=xÞ. The

same procedure was used for LR to construct 100 models.

For the categorical variables we have deleted any training

data set that does not include all the categorical variables,

so all the testing and training data sets include all the

categorical variables. The 2-way interactions between the

independent variables were added to the model, the cor-

relation and collinearly were checked before the analysis.

The quartile method was used to assess the relationship

between the continuous variables and the outcome to check

whether the categorization for continuous variables was

needed. The backward selection procedure was used with

0.05 as the default significance level. After the estimated

class arg maxj p̂Beðj=xÞ was calculated for support vector

machine and logistic regression, the various evaluation

Int. J. Mach. Learn. & Cyber. (2013) 4:13–24 19

123



metrics were computed for both of them. The ROC curves

were constructed using p̂Beðj=xÞ. The paired T test and the

Wilcoxon signed-ranks test were applied to the all perfor-

mance measures. The probabilities multiplication rule was

used to combine the results of the paired T test and the

Wilcoxon signed-ranks test on those performance mea-

sures, to obtain the final decision.

5 Results and discussions

The results of the support vector machine were carried out

by using LIBSVM (3.0–1) [41] software package, available

at http://www.csi.ntu.edu.tw/*cjlin/libSVM under matlab

(7.8.0347- R2009a) interface, while the results of multiple

logistic regression were carried out using spss.16.0 (SPSS

Inc, Chicago, IL, USA). The statistical tests were also

calculated by using spss.16.0.

5.1 Performances by measures

The results of the support vector machine and logistic

regression on the data sets for each common and new

suggested performance measures are shown in Tables 2

and 3 respectively. For each table the first six rows repre-

sent the results for the balanced data sets. Each metric

value in these tables represents the average of the 100

classifiers for the corresponding data set. The area under

Table 2 The results of the performance measures for SVM

Data set The performance measures

Accuracy Sensitivity Specificity F-score Precision AUC c q? q- DRP

Cod (sample) 0.861 0.944 0.777 0.872 0.811 0.921 0.72 4.221 0.073 58.061

Chest 0.997 0.997 0.995 0.997 0.996 1.000 0.993 217.62 0.002 108,810

Contra 0.731 0.844 0.579 0.782 0.729 0.783 0.422 2.000 0. 270 7.4074

Credit 0.875 0.888 0.865 0.866 0.845 0.946 0.753 6.569 0.129 50.9226

Liver 0.768 0.662 0.845 0.706 0.755 0.828 0.507 4.270 0.399 10.7018

Heard 0.900 0.946 0.842 0.913 0.882 0.943 0.788 5.979 0.063 94.9049

Page 0.960 0.977 0.810 0.978 0.978 0.983 0.788 5.163 0.028 184.393

Spam 0.927 0.882 0.957 0.905 0.930 0.978 0.839 20.322 0.123 165.220

Car 0.990 0.996 0.984 0.986 0.989 0.999 0.980 297.77 0.016 18,610.6

Breast 0.980 0.980 0.978 0.971 0.959 0.995 0.960 43.656 0.017 2,568.00

Diabetes 0.839 0.668 0.932 0.744 0.840 0.910 0.599 9.822 0.356 27.5899

Number 0.871 0.670 0.957 0.757 0.870 0.914 0.627 15.630 0.345 45.3044

Ionosphere 0.966 0.964 0.968 0.973 0.982 0.994 0.932 30.380 0.037 821.081

Table 3 The results of the performance measures for LR

Data set The performance measures

Accuracy Sensitivity Specificity F-score Precision AUC c q? q- DRP

Cod (sample) 0.953 0.962 0.944 0.954 0.945 0.991 0.906 17.037 0.040 425.925

Chest 0.981 0.981 0.981 0.982 0.983 0.997 0.962 51.646 0.020 2,582.3

Contra 0.726 0.826 0.590 0.776 0.731 0.771 0.419 2.029 0.294 6.901

Credit 0.883 0.922 0.851 0.877 0.837 0.945 0.772 6.176 0.092 67.130

Liver 0.760 0.676 0.825 0.710 0.737 0.822 0.501 3.860 0.393 9.822

Heard 0.900 0.933 0.858 0.912 0.891 0.951 0.791 6.588 0.077 85.558

Page 0.962 0.992 0.696 0.979 0.966 0.975 0.689 3.269 0.011 297.182

Spam 0.932 0.894 0.957 0.912 0.931 0.979 0.851 20.772 0.111 187.135

Car 0.960 0.969 0.935 0.920 0.910 0.991 0.900 30.573 0.067 456.313

Breast 0.974 0.966 0.978 0.963 0.958 0.997 0.944 42.913 0.034 1,262.147

Diabetes 0.789 0.610 0.886 0.668 0.741 0.858 0.494 5. 335 0.442 11.312

Number 0.793 0.543 0.903 0.610 0.703 0.827 0.439 5.520 0.513 10.760

Ionosphere 0.952 0.973 0.913 0.963 0.952 0.991 0.886 11.149 0.029 384.448
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the curves (AUC), shown in these tables, were calculated

using the average of the estimated probabilities among all

of the 100 classifiers.

5.2 The ROC curve analysis

As described above, the average of the estimated proba-

bilities has been used to construct the ROC curves for SVM

and LR. Figures 1 and 2 show the ROC curves for credit

approval and Pima Indian diabetes as an example of bal-

anced and unbalanced data sets respectively. From Fig. 1,

the two ROC curves for the credit approval for the SVM

and LR are almost the same, which is the situation in most

of the balanced data sets. From Fig. 2, the ROC curve for

the Pima Indian diabetes is higher for the SVM; however,

some of the other unbalanced data sets have almost similar

curves for SVM and LR. The relationship between the area

under these ROC curves of SVM and LR is depicted in

Fig. 3. Figure 3 represents the AUCs of each data set,

using the same order in Table (1) for SVM and LR; it

shows that the most pairs of AUCs of SVM and LR for

each data set lie closely.

The Wilcoxon signed-ranks test with a = 0.05 for the

balanced data sets shows no significant difference between

the ROC curves of the SVM and LR since all the p values

are in the range (0.078, 0.475). However, for the unbal-

anced data sets, it shows significant difference for the

German number and page block data sets, where their

p values are less than 0.025.

5.3 The statistical tests analysis

The Paired T test and the Wilcoxon signed-ranks test are

used to see whether the two algorithms perform equally

well or not. Because we have no guarantee for normality

assumption and also because of the relatively small samples

number, we applied both the paired T test and the Wilcoxon

signed-ranks test. The results are shown in Tables 4 and 5.

Each value in these tables represents the p value of the

corresponding measure among all the data sets.

Multiplication rule [42] is used to combine theses

results, since all these tests are independent, this rule can be

used to obtain one p value to make the final statistical

decision. The formula of this rule, in case of independency

is as follows:

p \
n

i¼1

� �
¼ p

Yn

i¼1

 !
ð24Þ

This means that the probability of no statistically

significant difference between the algorithms is equivalent

to the probability of no statistically significant difference

between all their performance measures. The p value is

defined as the probability of H0 is true, thus according to the

above rule the p value for no significant difference between

the two algorithms is equal to the product of all the p values.

The p value for the Paired T test is (5.387 9 10-6), while

the p value for the Wilcoxon signed-ranks test is

Fig. 1 ROC curve for credit approval

Fig. 2 ROC curve for Pima Indian

Fig. 3 The relationship between RUCs of SVM and LR for the data

sets
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(1.4 9 10-8). Similarly, a is the probability of rejecting H0

when it is actually true. So the a value of testing no

significant difference between the two algorithms is equal to

(0.025)10 = (9.536743 9 10-17).

5.4 Discussion

The results show that using several performance measures

with different data sets can help in understanding and

comparing the performance of the algorithms. Moreover,

the results show that, it is not always reliable to compare

algorithms using their performance measures scores only.

Regarding, the comparison that has been done in this paper,

for the balanced data sets, it has been found that support

vector machine and logistic regression have much close

overall performance measures in most of the data sets. For

the Hared–Scale data set, which is the smallest one, the two

classifiers performed equally in accuracy, sensitivity,

specificity, precision, F-score and AUC. This indicates that

the two algorithms can perform equally well in the small

data sets. Also the results obtained, using the unbalanced

data sets, show that overall the common performance

measures is almost the same for the support vector machine

and logistic regression. However, support vector machine

achieves higher values in some unbalanced data sets. For

the semi unbalanced spam data set, the two classifiers

performed equally well. In the highly imbalanced data sets

(German number and page block), logistic regression is

found to be biased towards the majority class. However,

this would not have a major effect on the general algo-

rithms’ performance. When comparing the ROC curves, for

the results of the balanced data sets, we found the mini-

mum p value is (0.078) for the credit approval dataset. This

indicates that there is no significant difference between the

two classifiers on these data sets. While for the comparison

of the ROC curves, the results of the unbalanced data sets

show the only significant difference between the two

classifiers is found when we used German number and page

block data sets, because their p values are less than 0.025.

Generally, according to the results of ROC curves, the two

classifiers have equal performance. However, support

vector machine outperforms LR in the highly unbalanced

data sets. Because there is no evidence that our sample

satisfies the normality assumption, both Paired T test and

the Wilcoxon signed-ranks test are used. The results of the

Paired T test with a = 0.05 show that there is no significant

difference in the overall performance measures. Also the

results of the Wilcoxon signed-ranks test with a = 0.05

show that there is no significant difference in the overall

performance measures. Moreover, the general p values of

the Paired T test and the Wilcoxon signed-ranks test are

higher than the level of significance (a) for rejecting the

null hypothesis. This indicates that there is no statistical

significant difference between the SVM and LR, and both

of them perform equally well.

6 Conclusion

This study has empirically compared two familiar classi-

fiers; support vector machine and multiple logistic

regression using bagging and ensemble over various dif-

ferent sizes of balanced and unbalanced data sets. The

comparison was done in a different manner than the

manner of most machine learning comparisons. This study

represents a standard comparison. It includes numerous

statistical analyses for several algorithm performance

measures which enable us to make a warranted and veri-

fied conclusion. This study shows that, generally, the SVM

and LR over all the performance measures have equal

performance for balanced and unbalanced data. However,

support vector machine may work better for the highly

unbalanced data sets. The study also views that there are

some measures higher in one classifier than in the other in

some data sets, consequently, it is not appropriate to draw

a conclusion from studies with one data set, that one

classifier is better than the other. There is no golden

standard for making such comparisons and the tests that

are performed often have no statistical foundations.

Logistic regression has higher interpretability while sup-

port vector machine is considered to be a black box pre-

dictor. It neither makes its prediction implicit nor gives

Table 4 Paired T test’s results

Measure Accuracy Sensitivity Specificity F-score Precision RUC c q? q- DRP

p value 0.486 0.280 0.475 0.274 0.282 0.450 0.283 0.155 0.211 0.259

Table 5 Wilcoxon signed-ranks test’s results

Measure Accuracy Sensitivity Specificity F-score Precision RUC c q? q- DRP

p value 0.158 0.382 0.130 0.263 0.093 0.141 0.124 0.075 0.294 0.196
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incite in the rules governing its prediction, which is not the

case in LR. Therefore, in the case of considering classi-

fication only, each of them can be used while when the

interpretation is necessary such as in many medical stud-

ies, logistic regression should be used.
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