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Abstract Combining multiple clusterers is emerged as a

powerful method for improving both the robustness and the

stability of unsupervised classification solutions. In this

paper, a framework for cascaded cluster ensembles is

proposed, in which there are two layers of clustering. The

first layer is considering about the diversity of clustering,

and generating different partitions. In doing so, the samples

in input space are mapped into labeled samples in a label

attribute space whose dimensionality equals the ensemble

size. In the second layer clustering, we choose a clustering

algorithm as the consensus function. In other words, a

combined partition is given by using the clustering algo-

rithm on these labeled samples instead of input samples. In

the second layer, we use the reduced k-means, or the

reduced spectral, or the reduced hierarchical linkage

algorithms as the clustering algorithm. For comparison,

nine consensus functions, four of which belong to cascaded

cluster ensembles are used in our experiments. Promising

results are obtained for toy data as well as UCI data sets.

Keywords Unsupervised learning � Clustering ensemble �
k-means clustering

1 Introduction

Clustering analysis is an important tool for image pro-

cessing, remote sensing, data mining, biology, and pattern

recognition [1, 2]. The idea of ensemble can be found in

many fields [3–5]. Cluster ensembles have been introduced

as a more accurate alternative to individual clustering

algorithms [6].

Two major themes in ensembles are combination rules

of the ensemble votes and the diversity of clusterers.

Firstly, we consider how to build diverse yet accurate

individual clusterers, or to select clustering algorithms for

the ensemble. Various methods have been proposed for

getting the diversity of clusterers, such as random initial-

ization of the clustering algorithm, resampling the data

[7, 8], resampling the features of the data [8], etc. Finally,

we need to know how to combine the outputs of multiple

clusterers, or to construct a consensus function. There are

several approaches for constructing consensus functions,

such as the relabeling method [7–10], the feature-based

approach [11, 12], the hyper-graph approach [8] and

others.

In [12], a consensus function based on quadratic mutual

information (QMI) was presented and reduced to the

k-means clustering in the space of specially transformed

cluster labels. Here we focus on these label attributes

instead of some transformed partition attributes.

In this paper, a framework for cascaded cluster ensem-

bles is proposed, in which there are two layers of cluster-

ing. The first layer deals with the diversity of clustering,

and generates different partitions. In doing so, the samples

in input space are mapped into labeled samples in a label

attribute space whose dimensionality equals the ensemble

size. In the second layer clustering, we choose a clustering

algorithm as the consensus function. In other words,
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a combined partition is given by using the clustering

algorithm on these labeled samples instead of input sam-

ples. We also give some reduced clustering algorithms,

e.g., k-means, spectral, and hierarchical single-linkage, for

the second layer clustering. We have two main contribu-

tions. One is that a framework of cascaded cluster

ensembles is presented. The other is that some traditional

clustering algorithms are reduced and adapted for re-

clustering.

The rest of this paper is organized as follows. In Sect. 2,

we review the related work on consensus functions, such as

relabeling methods and hypergraph methods. Section 3

presents the framework for cascaded cluster ensembles. We

also discuss reduced clustering algorithms, such as k-

means, spectral, hierarchical single-linkage algorithms, for

the second layer clustering. We apply cascaded cluster

ensembles to toy and UCI data sets in Sect. 4 and conclude

our paper in Sect. 5.

2 Related work

Notation. Let the set of N unlabeled samples be X ¼
fx1; . . .; xNg; where X 2 R

d; and d is the dimensionality of

sample space. Assume that there are L partitions P ¼
fP1; . . .;PLg for X ; where L is the ensemble size or the

number of clusterers, and Pi 2 R
N is the label vector of X

obtained by the i-th individual clusterer. Labels take value

from 1 to k, where k is the number of clusters. L clusterers

give a set of labels for each sample xi; i ¼ 1; . . .;N

xi ! yi ¼ fP1ðxiÞ; . . .;PLðxiÞg ð1Þ

where Pj(xi) denotes a label assigned to xi by the j-th

clusterer, and yi called labeled samples corresponding to xi

is all L labels assigned to xi by all individual clusterers.

Denote Y ¼ fy1; . . .; yNg be a set of labeled samples in a

label attribute space Y:

We want to give xi an optimal label yi
* or P�ðxiÞ: The

goal is to find a combined partition P* by using a consensus

function. There are many consensus functions available,

which are briefly described as follows.

2.1 Relabeling methods

These methods are also called direct approaches or voting

approaches, such as two bagged clustering procedures in

[10], path based clustering in [9], bagging-based selective

cluster ensemble (BBSCE) in [7].

Assume that the set of L partitions P is generated. Since

no assumption is made about the correspondence between

the labels produced by individual clusterers, the label

PjðxiÞ maybe differs from PlðxiÞ: Relabeling method is

firstly to relabel partitions according to a fixed reference

partition which can be selected from these partitions. The

complexity of relabeling two partitions is O(k3) if the

Hungarian method is employed. The total complexity of

relabeling process should be O((L - 1)k3). Finally rela-

beling method is to find the best partition P* by some

combination rules such as the voting rule.

In [7], the selective weighted voting rule is presented for

getting the best partition. The mutual information between

the reference partition and other partitions is taken as the

weights of these partitions. If the weights are larger than

the average weight, the corresponding partitions are used to

determine a single consensus clustering.

2.2 Hypergraph methods

These methods are to construct a hypergraph representing

partitions from the clusterers and cutting the redundant

edges. A hypergraph contains of vertices and hyperedges.

Vertices denote samples in X and each hyperedge

describes a set of samples belonging to the same cluster.

Here, the cluster ensemble problem is casted into an opti-

mization problem of finding the k-way minimum-cut of a

hypergraph.

Strehl and Ghosh [8] proposed three different con-

sensus functions for ensembles. The cluster-based simi-

larity partitioning algorithm (CSPA) generates a graph

from a similarity matrix and reclusters it using the sim-

ilarity-based clustering algorithms. The hypergraph par-

titioning algorithm (HGPA) represents each cluster by a

hyperedge in a graph and uses minimal cut algorithms to

find good hypergraph partitions. The meta-clustering

algorithm (MCLA) is to group and collapse related

hyperedges and assign each sample to the collapsed

hyperedge in which it shares most strongly. By doing so,

MCLA can determine soft cluster-membership values for

each sample. By using CSPA and MCLA as consensus

functions, a new selective clustering ensemble algorithm

was proposed in [13].

The computational complexity of CSPA, HGPA and

MCLA are O(kN2L), O(kNL) and O(k2NL2), respectively.

2.3 Feature-based methods

A unified representation of multiple clusterings was given

in [11] and [12]. The outputs from the multiple clusterers

are treated as L new features. The next problem is how to

get a clustering by using these new features. A probabilistic

model consensus using a finite mixture of multinominal

distribution was proposed in [11] and [12]. The consensus

problem is casted into the maximum-likelihood problem

which is solved by the EM algorithm. A consensus function
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based on quadratic mutual information (QMI) was also

presented and reduced to the k-means clustering in the

space of specially transformed cluster labels.

2.4 Pairwise methods

In pairwise methods, consensus functions operate on the

co-association matrix which can be taken as a similarity

matrix for the data points. A voting-k-means algorithm was

proposed in [14] where the combination of partitions is

performed by transforming data partitions into a co-asso-

ciation matrix. The data points should be linked into a

clusters if their corresponding co-association values exceed

a given threshold. Fred and Jain [15] adopted a hierarchical

clustering to the co-association matrix instead of a fixed

threshold.

3 Cascaded cluster ensembles

In this section, we discuss cascaded cluster ensembles.

Here are two main contributions. One is to give a frame-

work of cascaded cluster ensembles. The other is to pro-

pose reduced versions for some traditional clustering

algorithms and apply them to re-clustering.

Figure 1 gives the framework of cascaded cluster

ensembles. There are L individual clusterers in the first

layer clustering. The goal of the first layer is to generate

different partitions, or P1;P2; . . .;PL: In the second layer

clustering, different partitions are combined to an optimal

partition by using some clustering algorithm, such as k-

means.

3.1 First layer clustering

In this layer, we consider about the diversity of clustering,

or generating different partitions. There are several meth-

ods available for getting diverse partitions:

1. Using different clustering algorithms such as k-means,

fuzzy k-means, mixture of Gaussian, graph partitioning

based, statistical mechanics based, etc., [8].

2. Using randomness or different parameters of some

algorithms, e.g., initialization and various values of k

for k-means clustering algorithm [6, 15, 16].

3. Using different data subsets, such as bootstrap samples

[7, 8], and feature subsets [8, 17, 18].

The only constraint in our frame is that k is fixed to a

constant. X 1;X 2; . . .;XL; the inputs of the first layer can be

different data subsets if the same type of individual

clusterers are used, and be the same data set if the different

types of individual clusterers are exploited. The outputs of

the first layer are different partitions P1;P2; . . .;PL:

3.2 Second layer clustering

From Fig. 1, we can see that the inputs of the second layer

clustering are P1;P2; . . .;PL which are called partition

attributes. For a sample xi; its original attributes is itself xi;

and its label attributes yi can be expressed as (1). Note that

the label attributes are all represented by integers, say

1; . . .; k: An optimal partition P* can be obtained by using

any clustering algorithm on these labeled samples. Here the

consensus function is a clusterer.

In the label attribute space, we can use different clus-

tering algorithm to handle the second layer clustering

problem, including k-means, fuzzy k-means, spectral,

hierarchical clustering, and so on.

Firstly, we illustrate why we consider a clustering algo-

rithm as the consensus function by using a simple example.

Suppose that there are seven points belonging to three classes.

Three individual clusterers are used to generate three different

partitions shown in the left hand of Table 1. Inspection of

these label attributes for seven samples reveals that the label

attributes of x1; x2 and x3 are identical, x4 and x5 are

also identical, and x6 and x7 are some different. Given

that centers of three classes be (2, 3, 1)T, (1, 2, 3)T and

(3, 1, 2)T, respectively, the right hand of Table 1 shows the

Individual
clusterer 1

Individual
clusterer 2

Individual
clusterer L

k-means
clusterer

The first layer
clustering

The second layer
clustering

1

2

L

1P

2P

LP

*P

Fig. 1 Framework of cascaded ensembles

Table 1 Illustrative example problem with k = 3, l = 7, L = 3

Partitions x1 x2 x3 x4 x5 x6 x7

P1 2 2 2 1 1 3 3

P2 3 3 3 2 2 1 3

P3 1 1 1 3 3 2 2

Label attributes y1 y2 y3 y4 y5 y6 y7

Centers x1 x2 x3 x4 x5 x6 x7

(2, 3, 1)T 0 0 0 3 3 3 2

(1, 2, 3)T 3 3 3 0 0 3 3

(3, 1, 2)T 3 3 3 3 3 0 1
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Hamming distance between samples to these centers. In

information theory, the Hamming distance between two

strings (or vector) of equal length is the number of positions

for which the corresponding symbols (or figures) are differ-

ent. By simply observing these Hamming distances, we can

sure that x1; x2 and x3 belong to the same cluster, x4 and x5

belong to another cluster, and x6 and x7 are in the same cluster.

From the example, we can see that there still exist

similarities in points belonging to the same cluster even if

P1;P2; . . .;PL are different partitions generated by L indi-

vidual clusterers. Therefore, we can directly adopt this

information to combine L partitions using a clusterer.

Although [12] uses the k-means clustering algorithm, the

data clustered locate in a transformed spaces instead of the

label attribute space.

Next we discuss how to use these clustering algorithms

in the second layer clustering. Note that most of label

attributes are identical, such as y1; y2 and y3 in our

example. Hence, we do not need process all labeled sam-

ples. So the first step that we need do is to select all distinct

labeled samples from the set Y: Let Y ¼ yj

� �n

i¼1
be the set

of distinct labeled samples, where n \ N. The Hamming

distance between yi and yj is at least 1. In the following,

some detail clustering algorithms are discussed.

3.2.1 Reduced k-means algorithm

In the label space, k-means clustering algorithm with the

Hamming distance metric is one simple choice. It is well

known, the k-means clustering algorithm is sensitive to

initialization, which could be used in the first layer clus-

tering for increasing diversity but should be avoided in the

second layer clustering. Thus it is necessary to consider the

selection of initial centers for k-means algorithm. Now Y is

the candidate set for selecting the initial centers fcigk
i¼1:

After we get these centers, we can directly compute the

Hamming distance between a labeled sample yj to those

centers. Once we find that the minimal Hamming distance is

that between cm and yj; the corresponding label m should be

assigned to the sample xj: The reduced k-means clustering

used in the second layer clustering is shown in Algorithm 1.

3.2.2 Reduced spectral clustering

Remember that all attributes of labeled samples are only

expressed by positive integers. We compute the Hamming

distance matrix H between these distinct labeled samples.

Namely,

Hij ¼ hðyi; yjÞ; i; j ¼ 1; . . .; n ð2Þ

where hð�; �Þ denotes the Hamming distance function, and

H is a symmetrical matrix and can be taken as a dissimi-

larity matrix. Return to the above example, Table 2 shows

the Hamming distances between four distinct labeled

samples. We can see that the maximum Hamming distance

is three which equals the ensemble size. The reduced

spectral clustering used in the second layer clustering is

shown in Algorithm 2.

3.2.3 Reduced hierarchical clustering

Hierarchical clustering creates a hierarchy of clusters for

which may be represented in a tree structure called a

dendrogram. The root of the tree consists of a single cluster

containing all samples, and the leaves correspond to indi-

vidual samples. According to the definition of the distance

between one cluster and another cluster, there have three

different hierarchical clustering algorithms, such as single-

linkage, complete-linkage and average-linkage clustering.

Here we take the single-linkage clustering as an example,

and show its reduced version in Algorithm 3.

Table 2 Illustrative example problem with k = 3, ‘ = 7, L = 3

(2, 3, 1)T (1, 2, 3)T (3, 1, 2)T (3, 3, 2)T

(2, 3, 1)T 0 3 3 2

(1, 2, 3)T 3 0 3 3

(3, 1, 2)T 3 3 0 1

(3, 3, 2)T 2 3 1 0
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4 Simulation

In order to validate the performance of cascaded cluster

ensembles, we perform experiments on two toy [12] and

seven UCI data sets [19] described in Table 3, where true

natural clusters are known, and compare them with five

other methods for cluster ensembles.

The performance criterion is the same as [12]. The

performance of all methods is evaluated by matching the

optimal partition P* with the known partitions of data sets

and expressed as the clustering error. Table 3 also gives the

average clustering errors of these data sets, which are

obtained by running 30 k-means clustering algorithms

independently.

All numerical experiments were performed on the per-

sonal computer with a 1.8 GHz Pentium III and 1 G bytes

of memory. This computer runs on Windows XP, with

Matlab 7.1 installed.

4.1 Selection of algorithms and their parameters

The k-means clustering is used to generate the different

partitions in the first layer clustering. The diversity of the

partitions is obtained by using different data subsets,

including bootstrap samples and feature subsets. The

following parameters for the first layer are especially

important.

• k: the number of clusters. We set it as the same as the

true class number.

• L: the ensemble size or the number of individual

clusterers. Its value varies in the set ½5; 10; 15; . . .; 50�:
• r: the bootstrap sampling ratio (the ratio of the

bootstrap sample number to the total sample number

N), or the feature sampling ratio (the ratio of the feature

number of subset to the whole feature number d). r

takes only three values, or 25, 50 and 75%.

After we get different partitions, five other consensus

functions besides clusterer consensus functions in cascaded

cluster ensembles are adopted, including BBSCE, CSPA,

MCLA, the EM and QMI algorithms. BBSCE in [7] is a

relabeling method. The code of CSPA and MCLA in [8] is

available at http://www.strehl.co. The code of the EM and

QMI algorithms was provided by Dr. A. Topchy. In cas-

caded cluster ensembles, we choose the k-means, spectral,

and hierarchical single-linkage (H-single) and complete-

linkage (H-complete) clusterers as consensus functions,

respectively. Thus there are nine consensus functions. In

the second layer clustering, k takes the same value as that

in the first layer clustering.

4.2 Experiments with bootstrap sampling method

In this part, the diversity of the partitions in the first layer

clustering is obtained by using the bootstrap sampling

method which are obtained by randomly sampling with

replacement from the original data set. Here r denotes the

bootstrap sampling ratio. The number of samples with

whole features for individual clusterers in the first layer

clustering takes value from dN � 0:25e; dN � 0:5e;f dN �
0:75eg; where d�e rounds � to the nearest integers towards

infinity. For each data set, we perform 30 independent runs.

Only the average errors on 30 runs are reported.

4.2.1 Toy data sets

Two artificial data sets, Half-rings and two-spirals shown

in Fig. 2, are traditionally difficult for any centroid-based

clustering algorithm [12]. Table 4 shows the average

clustering error rate (%) for the Half-rings data set with 25,

50 and 75% bootstrap sampling ratio, respectively. The

average clustering error rate in bold type in each column of

Table 4 is the best one of the corresponding algorithm with

different bootstrap sampling ratio.

For different bootstrap sampling ratio, most methods

obtain the similar results, except for BBSCE. In a nutshell

about the Half-rings data set H-single gets the best per-

formance 19.83%, followed by spectral clustering 20.65%.

Table 3 Description of data sets used in experiments

Data set No. of

features (d)

No. of

class (k)

No. of

samples (N)

Av. k-means

error (%)

Half-rings 2 2 400 24.54

2-spirals 2 2 200 41.66

Glass 9 6 213 51.57

Liver 6 2 345 45.79

Musk 166 2 476 46.4

Soy 208 17 289 55.46

Vote 16 2 435 13.56

Wdbc 30 2 569 9.85

Wpbd 33 2 198 40.93
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Table 4 Average clustering error rate (%) for the ‘‘Half-rings’’ data set with bootstrap samples

L Type of consensus function

BBSCE CSPA MCLA EM QMI Clusterer

k-means Spectral H-single H-complete

Bootstrap sampling ratio 25%

5 27.48 28.75 23.85 22.06 23.75 22.75 24.32 21.63 21.68

10 29.53 28.17 21.53 21.29 21.68 22.33 25.18 21.26 20.88

15 28.22 28.48 23.12 22.21 23.35 22.32 27.46 19.83 21.67

20 29.18 28.08 22.81 21.67 21.51 22.90 25.75 21.43 22.14

25 29.29 28.20 22.30 21.53 21.31 22.33 23.49 20.74 21.07

30 27.76 28.08 22.48 21.51 21.33 23.05 22.23 21.17 21.86

35 28.78 28.13 21.83 21.16 20.80 22.16 23.11 20.63 22.03

40 30.63 28.03 22.27 21.51 21.37 21.34 21.47 21.23 21.8

45 29.88 28.10 22.45 21.81 21.83 23.44 22.46 21.33 22.29

50 28.59 27.98 22.27 21.52 21.71 22.17 22.50 20.38 20.86

Bootstrap sampling ratio 50%

5 27.18 28.16 23.05 22.44 22.33 22.14 26.39 20.96 21.68

10 27.73 28.26 22.92 23.35 24.26 22.82 26.48 21.43 23.02

15 29.03 28.34 22.62 22.04 22.64 22.28 23.57 20.67 22.03

20 30.54 28.14 22.30 21.24 22.17 22.95 23.41 21.89 21.87

25 30.92 28.23 21.85 20.86 20.84 22.31 23.61 20.61 21.57

30 30.30 28.24 21.56 21.01 21.49 22.03 22.63 21.14 21.46

35 30.08 28.28 22.37 22.43 22.00 23.83 23.01 21.42 21.88

40 29.53 28.14 22.48 20.97 20.71 22.04 20.65 21.06 21.77

45 27.80 27.97 21.93 21.20 20.98 21.52 21.58 21.07 20.96

50 29.24 27.99 22.30 21.40 21.26 21.53 22.69 20.61 21.88

Bootstrap sampling ratio 75%

5 24.42 28.70 22.84 23.39 23.65 22.05 24.26 21.28 21.51

10 26.87 28.18 21.88 22.23 23.06 23.28 23.40 20.96 21.28

15 28.22 28.40 23.48 21.47 21.94 22.12 23.93 21.27 21.40

20 29.71 28.28 21.89 21.06 21.77 22.23 25.01 21.80 21.74

25 29.02 28.13 22.18 21.57 21.75 23.19 24.81 20.73 21.82

30 28.64 28.13 22.30 22.06 21.17 22.57 22.89 20.71 22.52

35 30.38 28.13 22.37 20.80 21.88 22.19 23.40 20.93 22.07

40 28.26 28.04 22.19 21.41 21.09 21.77 23.49 20.46 21.68

45 27.78 28.05 21.88 20.86 21.26 21.97 21.83 21.82 22.48

50 28.93 27.97 22.01 22.19 21.20 22.88 22.26 21.11 22.10
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Fig. 2 Two toy data sets
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For the two-spirals data sets, we only report the best

performance of all algorithms under different bootstrap

sample ratios, and the corresponding ensemble size in

Table 5 due to space limitations. The average clustering

error rate in bold type in each column of Table 5 is the best

one under the same bootstrap sampling ratio. Under dif-

ferent bootstrap sample ratios, spectral clusterer, QMI, and

k-means get the best performance 38.35, 38.62 and

38.07%, respectively.

Thus in both toy data sets, the bootstrap sample ratio

plays a little role on the performance of mostly algorithms.

Moreover ensembles of very large size are less important.

4.2.2 UCI data sets

Due to space limitation, Table 6 only reports the average

best results of all algorithms on UCI data sets with different

bootstrap sample ratios and different ensemble sizes, where

the error in bold type in each row is the best one for the

corresponding data set. From this table, we can see that H-

single is better than other methods. BBSCE has the best

accuracy on the Wdbc data set, which is only 0.2% higher

than the next highest H-Complete consensus function (see

the first and ninth columns of Table 6). MCLA achieves

the best accuracies on the Vote data set, but its advantage is

very slight. The k-means consensus function has about 3%

higher in accuracy than the next highest CSPA (see the

second and the seventh columns of Table 6) on the Soy

data set. The advantage of spectral consensus function on

the Musk data set is not so obvious, only 0.3% higher than

the H-Single clusterer. The H-Single consensus function

performs well on the Glass, Liver and Wpbd data sets. It

achieves almost 10% higher in accuracy than the next

highest spectral consensus function (see the seventh and

eighth columns of Table 6) on the Wpbc data set.

4.3 Experiments with feature subset method

Here, the diversity of the partitions in the first layer clus-

tering is assured by using the feature subset method which

are obtained by randomly sampling with replacement from

the original data feature set. Here r denotes the feature

Table 5 Results for the ‘‘two-spiral’’ data set with bootstrap samples

Algorithm 25% sample

ratio

50% sample

ratio

75% sample

ratio

Error rate

(%)

L Error rate

(%)

L Error rate

(%)

L

BBSCE 42.35 5 41.73 5 40.33 10

CSPA 40.15 5 40.38 15 40.92 5

MCLA 39.28 25 38.98 40 38.20 5

EM 38.77 30 38.65 30 38.17 5

QMI 39.15 40 38.62 5 38.35 10

k-means 39.00 45 38.93 30 38.07 45

Spectral 38.35 35 39.35 30 39.37 45

H-Single 46.27 50 46.13 50 43.60 35

H-Complete 39.20 20 38.67 35 38.50 35

Table 6 Average clustering error rate (%) for seven UCI data sets with bootstrap samples

Data set BBSCE CSPA MCLA EM QMI k-means Spectral H-single H-complete

Glass 52.15 61.42 59.52 55.90 57.02 55.56 51.25 50.16 55.20

Liver 44.21 46.82 45.50 45.53 44.59 44.68 43.82 42.17 44.71

Musk 44.52 45.46 45.46 45.60 44.85 45.18 44.29 44.59 45.28

Soy 46.47 42.47 87.49 43.19 44.23 39.77 44.98 47.32 43.36

Vote 17.72 14.19 13.29 13.30 13.32 13.31 14.32 13.33 13.30

Wdbc 6.92 15.01 7.21 7.21 7.17 7.17 11.39 7.19 7.11

Wpbd 38.79 42.21 38.60 38.72 38.13 38.35 33.23 24.90 37.78

Table 7 Average clustering error rate (%) for seven UCI data sets with feature subset

Data set BBSCE CSPA MCLA EM QMI k-means Spectral H-Single H-Complete

Glass 53.15 58.83 57.15 54.22 56.11 51.95 50.55 53.27 52.38

Liver 45.24 46.34 45.40 46.21 45.27 44.83 42.53 42.12 44.48

Musk 44.89 45.20 45.45 45.57 45.17 44.47 44.52 43.36 44.45

Soy 47.43 40.47 89.08 43.07 43.81 39.53 47.14 49.10 43.49

Vote 15.13 14.11 13.21 13.38 13.39 13.57 14.26 36.93 13.40

Wdbc 7.33 14.47 7.33 7.18 7.19 7.12 7.64 27.04 7.04

Wpbd 38.75 41.70 38.45 39.24 38.82 38.08 29.53 24.21 36.11
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sampling ratio. The number of samples with a part of

features for individual clusterers in the first layer clustering

is N, while the dimensionality of feature subset takes value

from dd � 0:25e; dd � 0:5e; dd � 0:75ef g: For each data

set, we also perform 30 independent runs and only report

the average clustering errors on 30 runs.

Table 7 summarizes the average best results of all

algorithms on UCI data sets with different feature sampling

ratios and different ensemble sizes, where the error in bold

type in each row is the best one for the corresponding data

set. From this table, we can see that H-single is better than

other methods. MCLA achieves the best accuracies on the

Vote data set, but its advantage is very slight. The k-means

consensus function also achieves 0.94% higher in accuracy

than the next highest CSPA (see the second and the seventh

columns of Table 7) on the Soy data set. On the Glass data

set, the spectral consensus function gets the best accuracy

which is 1.4% higher than the next highest k-mean clu-

sterer. The H-Single consensus function performs well on

the Liver, Musk, and Wpbd data sets, which is 0.41, 1.1

and 5.32% than the next corresponding highest consensus

function, respectively.

From all experimental results, we have a conclusion that

the framework of cascaded cluster ensembles is feasible

and promising. But which clustering algorithm should we

exploit in the second layer clustering? It is difficult to

answer it. From the result analysis, we know the reduced

hierarchical single-linkage has good performance in our

experiments. As is known, however, each clustering algo-

rithm has its own drawback and could not perform well on

all types of data. In the reduced k-means clustering, the

selected k centers may be not the optimal ones. The

spectral clustering does not get the best performance,

which does not mean that it is bad one. Here we used the

standard k-means clustering in the spectral clustering,

which may be one reason for explaining its results.

5 Conclusions

A framework for cascaded cluster ensembles is proposed, in

which there are two layer clustering. The goal of the first

layer is to generate different partitions. The first layer is a

necessary step for all cluster ensembles. Various methods

(consensus functions) were proposed to combine these

different partitions to an optimal partition. Here we focus on

taking clustering algorithms as consensus functions, which

actually is the second layer clustering. In the view of

mapping, the first layer could map the samples in the input

space into a label attribute space spanned by labeled sam-

ples whose dimensionality equals the ensemble size. Some

clustering algorithm is performed on these labeled samples

instead of input samples. The clustering problem in the

second layer can be solved by existing clustering algo-

rithms, such as k-means, fuzzy k-means, spectral, hierar-

chical clustering, and so on. We also give some reduced

clustering algorithms, e.g., k-means, spectral, and hierar-

chical single-linkage, for the second layer clustering. An

experimental comparison with other consensus functions

shows that clusterer consensus functions have compared

performance, where the reduced hierarchical single-linkage

clustering methods perform well in our experiments.

In the second layer, we just use the reduced traditional

clustering algorithms. There provide some new clustering

algorithms, such as algorithms in [20–22]. Thus, we try to

use some new stable clustering algorithm in the second

layer in the future.
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