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Abstract Feature selection is quite an important process

in gene expression data analysis. Feature selection methods

discard unimportant genes from several thousands of genes

for finding important genes or pathways for the target

biological phenomenon like cancer. The obtained gene

subset is used for statistical analysis for prediction such as

survival as well as functional analysis for understanding

biological characteristics. In this paper we propose a null

space based feature selection method for gene expression

data in terms of supervised classification. The proposed

method discards the redundant genes by applying the

information of null space of scatter matrices. We derive the

method theoretically and demonstrate its effectiveness on

several DNA gene expression datasets. The method is easy

to implement and computationally efficient.

Keywords Feature selection � Null space � DNA

microarray gene expression data � Classification accuracy �
Biological significance

1 Introduction

The feature selection methods have drawn widespread

attention in the field of gene expression data analysis [3, 7,

9, 11, 12, 16–18, 21–23, 25]. One of its important appli-

cations is in the human cancer classification. It provides the

basis to identify crucial genes related to human cancers.

The DNA microarray gene expression data are widely used

for human cancer classification problem. The microarray

gene expression data consist of large number of genes

(dimensions) compared to the number of samples or feature

vectors. The high dimensionality of the feature vectors

degrades the generalization performance of the classifier

and increases its computational complexity. This problem

is popularly known as the small sample size (SSS) problem

in the literature [10]. The feature selection method can be

used here to retain only a few useful features and discard

others, thereby, reducing the complexity in addition to

finding important genes. Different approaches used in

feature selection can be broadly grouped into two catego-

ries: filter approach and wrapper approach.1 The filter

approach is classifier independent whereas the wrapper

approach is classifier dependent. Wrapper methods try to

optimize the performance of a specific classifier and select

the features yielding the best generalization performance.

On the generalization, recently, some new techniques

[27, 28, 30] based on maximizing the uncertainty or com-

bining multiple reducts of rough sets have been proposed to

improve the generalization of the classifier. In addition, some

feature selection methods with genetic algorithm have been

proposed in the literatures [5, 26].
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In this paper we propose a feature selection method

based on null linear discriminant analysis (LDA) technique

[4]. The null LDA method is a feature extraction method,

however, we have extended the notion to the feature

selection domain. The proposed method falls under the

wrapper approach category and is computationally effi-

cient, simple and easy to implement. In this research, it has

been applied on a number of DNA microarray gene

expression data to show its classification effectiveness. In

addition, the biological significance of the selected genes

from the proposed method is also presented.

2 Proposed gene selection method

The null LDA technique [4] finds the orientation or

transformation matrix W in two stages. In the first stage,

data is projected on the null space of within-class scatter

matrix SW ; i.e., SWW ¼ 0. Then in the second stage it finds

W that maximizes the transformed between-class scatter

matrix WTSBW
�
�

�
�. The second stage is commonly imple-

mented through the principal component analysis (PCA)

method. Thus, in the null space method W is found as

W ¼ arg max
jWTSW Wj¼0

jWTSBWj

The orientation W projects the vectors on the reduced

feature space. The training vectors of a given class get

merged into a single vector in this reduced feature space;

i.e., class-conditional variances of the features in the

reduced feature space are zero. The orientation W ¼ w1;½
w2; . . .;wh� has h column vectors, where 1 B h B c–1 and c

is the number of class or state of the nature. When the

dimensionality d of the original feature space is very large

in comparison to the number of training vectors n, the

evaluation of null space becomes nearly impossible as

the eigenvalue decomposition of such a large d 9 d matrix

leads to serious computational problems. However, there

are methods available for efficiently computing the

orientation W [14, 29].

In order to introduce our gene selection method, let us

first consider the two-class case. Let --v be a set of n training

vectors in a d-dimensional feature space. The set --v can be

subdivided into two subsets --v ¼ x1
1; x

1
2; . . .; x1

n1

n o

and --v ¼

x2
1; x

2
2; . . .; x2

n2

n o

; where subset vi belongs to i-th class and

consists of ni number of samples such that n = n1 ? n2;

and the training vector xi
j represents j-th sample in i-th

class. Let li be the centroid of --vi and l be the centroid of --v.

Since the training vectors of a class get merged into a

single vector in the reduced feature space, we can write

training vectors of class-1 as:

y ¼ wTx1
j for j ¼ 1. . .n1; ð1Þ

Where w 2 R
d is any column vector of W. Using Eq. 1,

we get

wT x1
1 � x1

2

� �

¼ 0 ð2Þ

If we retain x1
1 in Eq. 2 and subtract it by the remaining

samples of the same class then we will get in total n1 - 1

homogeneous equations; i.e., wT x1
1 � x1

j

� �

¼ 0 for j = 2

… n1. It can be seen from the Appendix section that the

projection of any sample of a given class onto the null

space of SW is independent of sample selection. Thus, we

retain the first sample of a class without affecting the

statistical stability. Now taking the average of these n1 - 1

equations, we get

1

n
wT n1x1

1 �
Xn1

j¼1
x1

j

� �

¼ 0

or wT n1

n
x1

1 �
n1

n
l1

h i

¼ 0

ð3Þ

In a similar way, equation for class-2 can be written as

wT n2

n
x2

1 �
n2

n
l2

h i

¼ 0 ð4Þ

Since mean of all the training vector can be given as

l ¼ n1l1 þ n2l2ð Þ=n; the summation of Eqs. 3 and 4 will

give

wT �x� lð Þ ¼ 0; ð5Þ

where �x ¼ n1x1
1 þ n2x2

1

� �

=n: Eq. 5 can be written for all

the d features in the summation form as

Xd

j¼1

wj �xj � lj

� �

¼ 0 ð6Þ

where wj, �xj and lj are the features of w, �x and l

respectively. It can be observed from Eq. 6 that if the j-th

component is very small; i.e., wj �xj � lj

� ��
�

�
� � 0; it will not

contribute much in making the overall sum equal to zero

and thus the j-th component or j-th feature can be discarded

without sacrificing much information. If wj �xj � lj

� ��
�

�
� is

arranged in descending order such that

w1 �x1 � l1ð Þj j � w2 �x2 � l2ð Þj j � � � � � wd �xd � ldð Þj j

then by discarding the bottom features (for which

wj �xj � lj

� ��
�

�
� � 0) will not affect much the qualitative

importance of the retained top r features.

The two-class case can be easily extended to the multi-

class case. If there are c classes and the number of training

vectors per class is ni where i = 1, 2,…, c then �x in Eq. 5

can be computed as
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�x ¼ 1

n

Xc

i¼1

nix
i
1 where n ¼

Xc

i¼1

ni ð7Þ

and l is the mean of all the training vectors. We derived the

method by using the first training vector from each class.

However, one can take any training vector from each of the

classes.

The selected number of features should be in the range

n - c \ r \ d, as r B n - c will make the within-class

scatter matrix non-singular and null LDA method can-

not be applied on that case. There are several ways of

computing the value of r. One way is to find the argument

of median of wj �xj � lj

� ��
�

�
� for j = 1 … d; i.e., r1 ¼

arg medianj¼1...d wj �xj � lj

� ��
�

�
�

� �

; this will discard approxi-

mately 50% features. The reduction can be continued

further as r2 ¼ arg medianj¼1...r1
wj �xj � lj

� ��
�

�
�

� �

. This pro-

cedure will discard approximately 75% of features. Alter-

natively, cross-validation procedure (illustrated later in this

section) can be applied to find the optimum r value from

the training data set. The method is summarized in Table 1.

The proposed gene selection method does not evaluate

the performance of every single gene. It takes all the genes

and evaluates the best genes. Therefore, the genes can be

selected with very low computational complexity, O(dn2).

The effectiveness of the method is discussed in the

experimentation section.

If the optimum value of r is required then k-fold cross

validation procedure can be used [20]:

Step 1 Partition training data randomly into k roughly

equal segments.

Step 2 Hold out one segment as validation data and the

remaining k - 1 segments as learning data from the

training data.

Step 3 Select r (where n - c \ r \ d) and apply the

proposed method (shown in Table 1) using learning data

to find top r features.

Step 4 Use validation data to compute classification

accuracy for a range of values of r. Store the obtained

classification accuracies.

Step 5 Repeat steps 1–4 N times.

Step 6 Evaluate average classification accuracy over

N repetitions.

Step 7 Plot a curve of average classification accuracy as

a function of r.

Step 8 The argument of maximum average classification

accuracy will be the optimum r value.

3 Experimentation

Four DNA microarray gene expression datasets2 are uti-

lized in this work to show the effectiveness of the proposed

method. The description of the datasets is given as follows:

Acute leukemia dataset [12]: this dataset consists of

DNA microarray gene expression data of human acute

leukemia for cancer classification. Two types of acute

leukemia data are provided for classification namely acute

lymphoblastic leukemia (ALL) and acute myeloid leuke-

mia (AML). The dataset is subdivided into 38 training

samples and 34 test samples. The training set consists of 38

bone marrow samples (27 ALL and 11 AML) over 7,129

probes. The testing set consists of 34 samples with 20 ALL

and 14 AML, prepared under different experimental con-

ditions. All the samples have 7,129 dimensions and all are

numeric.

SRBCT dataset [15]: the small round blue-cell tumor

dataset consists of 83 samples with each having 2,308

genes. This is a four class classification problem. The

tumors are Burkitt lymphoma (BL), the Ewing family of

tumors (EWS), neuroblastoma (NB) and rhabdomyosar-

coma (RMS). There are 63 samples for training and 20

samples for testing. The training set consists of 8, 23, 12

and 20 samples of BL, EWS, NB and RMS respectively.

The test set consists of 3, 6, 6 and 5 samples of BL, EWS,

NB and RMS respectively.

MLL leukemia dataset [2]: this dataset has three classes

namely ALL, MLL and AML. The training set contains 57

leukemia samples (20 ALL, 17 MLL and 20 AML)

whereas the test set contains 15 samples (4 ALL, 3 MLL

and 8 AML). The dimension of MLL dataset is 12,582.

Lung Dataset [13]: this dataset contains gene expression

levels of malignant mesothelioma (MPM) and adenocar-

cinoma (ADCA) of the lung. There are 181 tissue samples

(31 MPM and 150 ADCA). The training set contains 32 of

them, 16 MPM and 16 ADCA. The rest of 149 samples are

used for testing. Each sample is described by the expres-

sion values of 12,533 genes.

In order to study the performance of the proposed fea-

ture selection method, we first evaluate the classification

Table 1 Gene selection method

Step 1. Compute orientation or transformation vector w 2W using

null LDA method

Step 2. Compute �x using Eq. 7 and mean of training vectors l

Step 3. Arrange wj �xj � lj

� ��
�

�
� in descending order for j = 1 … d

Step 4. Select the top r features

2 Most of the datasets are downloaded from the Kent Ridge Bio-medical

Dataset (KRBD) (http://datam.i2r.a-star.edu.sg/datasets/krbd/). The

datasets are transformed or reformatted and made available by KRBD

repository and we have used them without any further preprocessing.

Some datasets which are not available on KRBD repository are down-

loaded and directly used from respective authors’ supplement link.

The URL addresses for all the datasets are given in the Reference

Section.
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accuracy on the original feature set using null LDA method

and nearest neighbor classifier (with Euclidean distance

measure). Then we select the features using the proposed

method and apply null LDA method and nearest neighbor

classifier to see if there is any degradation in the classifi-

cation accuracy. The results are summarized in Table 2.

It can be observed from Table 2 that for most of the

datasets there is no degradation in classification accuracy

until the number of features is reduced to 500, which is a

fair amount of reduction. However, for MLL leukemia there

is no degradation at all in the performance even when the

number of features is reduced to 100; i.e., after 99.2%

feature reduction. On the other hand, for acute leukemia

dataset the classification accuracy is actually improved to

the perfect level (100%) when only 100 genes (1.4% of the

original dimension) are selected. This shows that some

unimportant genes are discarded which helps in improving

the classification performance. In a similar way, the clas-

sification accuracy for SRBCT dataset utilizing only 100

genes is recorded at 95% (using 4.33% of the original

dimension). Furthermore, on Lung Cancer dataset the

classification accuracy of selected 100 genes is recorded at

97.32% (using 0.79% of the original dimension) which is a

fraction less when compared with the classification accu-

racy of original dimension. It can be concluded from the

table that a large amount of unimportant genes can be dis-

carded without significant loss of discriminant information.

Table 3 shows the comparison between the classifica-

tion accuracy with the other feature selection algorithms

[24] on SRBCT and MLL leukemia datasets. It can be

observed from Table 3 that the null space based feature

selection method outperforms many other state-of-the-art

feature selection methods. The proposed method achieves

95% and 100% classification accuracies on SRBCT using

100 genes and 500 genes, respectively. Some of the feature

selection methods (like information gain ? SVM random,

towing rule ? SVM random etc.) also achieve 95% clas-

sification accuracy but using 150 genes. Similarly, the

proposed method achieves 100% classification accuracy on

MLL leukemia dataset using only 100 genes.

Table 4 shows the performance in terms of classification

accuracy on acute leukemia dataset. The proposed method

achieves 100% classification accuracy using 100 genes and

is better than all the other presented methods. The pre-

diction strength ? SVM achieves between 88.2 and 94.1%

using 25-1,000 genes. RCBT, discretization ? decision

tree and rough sets achieve optimum classification accu-

racy of 91.2% using 10-40, 1,038 and 9 genes, respec-

tively. Though some of these methods use small number of

genes, they are computationally intensive.

Table 5 shows the performance on Lung Cancer dataset.

The null space based feature selection method exhibits

97.3% classification accuracy. The classification accuracy

on Lung Cancer dataset is 0.6% lower than RCBT and PCL

methods. However, it can be made equal by increasing the

number of selected genes.

In general, it can be concluded from the Tables 3, 4, 5

that the null space based feature selection method exhibits

promising results.

In order to assess the reliability of the null space based

feature selection method, we conducted sensitivity testing

[1, 6] on test data. The sensitivity of a class is defined by

the number of true positives over the number of true

positives ? the number of false negatives. Table 6 shows

the sensitivity of the method on all the four datasets. In

the table si (for j = 1 … c) denotes the sensitivity of class

i, s = min(si) is the minimum of sensitivity and g ¼
Qc

i¼1 si

� �1=c
is the c-th root of the product of si, where

0� si� 1. The minimum sensitivity s can be considered as

a complementary measure of classification accuracy whose

value should be high for a good method [6]. The term g can

be considered as an imbalance of classification accuracy

among the classes [1]. It can be observed from the table

that both the terms (s and g) for the null space based feature

selection method on acute leukemia and MLL leukemia

datasets achieve perfect results; for Lung Cancer dataset

the method misclassified four test samples in class 2 and

for SRBCT dataset the method misclassified one test

sample in class 3. Overall the high values of these terms

depict that the method’s ability to identify cancer classes is

very reliable.

Moreover, it would be interesting to see the biological

significance of the selected features by the null based

Table 2 Comparison between the classification accuracy obtained using the selected features (by the proposed method) and using original

feature space

Dataset Number of genes

100 (%) 400 (%) 500 (%) 750 (%) 1,000 (%) 2,000 (%) Dim (%)

SRBCT 95.00 95.00 100.00 100.00 100.00 100.00 100.00 (dim = 2,308)

Acute leukemia 100.00 97.06 97.06 97.06 97.06 97.06 97.06 (dim = 7,129)

MLL leukemia 100.00 100.00 100.00 100.00 100.00 100.00 100.00 (dim = 12,582)

Lung cancer 97.32 97.99 97.99 97.99 97.99 97.99 97.99 (dim = 12,533)
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feature selection algorithm. We use acute leukemia data as

a prototype to show the biological significance using

Ingenuity Pathway Analysis.3 The selected 100 features

from the proposed algorithm are used for this purpose. The

top five high level biological functions obtained are shown

in Fig. 1. In the figure, the y-axis denotes the negative of

logarithm of p-values and x-axis denotes the high level

functions.

Table 3 Comparison of feature

selection methods on SRBCT

and MLL leukemia datasets

Methods (feature

selection ? classification)

#

Selected

genes

SRBCT

(classification

accuracy) (%)

MLL leukemia

(classification accuracy)

(%)

Information gain ? Naı̈ve Bayes 150 68 66

Information gain ? SVM random 150 95 100

Information gain ? SVM exhaustive 150 91 100

Towing rule ? Naı̈ve Bayes 150 73 86

Towing rule ? SVM random 150 95 100

Towing rule ? SVM exhaustive 150 95 100

Sum minority ? Naı̈ve Bayes 150 68 26

Sum minority ? SVM random 150 95 86

Sum minority ? SVM exhaustive 150 91 80

Max minority ? Naı̈ve Bayes 150 77 34

Max minority ? SVM random 150 91 86

Max minority ? SVM exhaustive 150 91 80

Gini index ? Naı̈ve Bayes 150 78 66

Gini index ? SVM random 150 95 100

Gini index ? SVM exhaustive 150 95 100

Sum of variances ? Naı̈ve Bayes 150 63 54

Sum of variances ? SVM random 150 91 100

Sum of variances ? SVM exhaustive 150 95 100

t-statistics ? Naı̈ve Bayes 150 63 54

t-statistics ? SVM random 150 91 100

t-statistics ? SVM exhaustive 150 95 100

One-dimensional SVM ? Naı̈ve Bayes 150 63 54

One-dimensional SVM ? SVM random 150 91 100

One-dimensional SVM ? SVM exhaustive 150 95 100

Proposed feature selection ? null LDA

with nearest centroid classifier

500 100.00 100

Proposed feature selection ? null LDA

with nearest centroid classifier

100 95 100

Table 4 Comparison of feature selection methods on acute leukemia

dataset

Methods (feature

selection ? classification)

# Selected

genes

Classification

accuracy (%)

Prediction strength ? SVM [11] 25-1,000 88.2-94.1

Neighborhood analysis ? weighted

voting [12]

50 85.3

RCBT [7] 10-40 91.2

Discretization ? decision trees [23] 1,038 91.2

Rough sets, GA ? kNN [3] 9 91.2

Proposed feature selection ? null

LDA with nearest centroid classifier

100 100

Table 5 Comparison of feature selection methods on lung cancer

dataset

Methods (feature

selection ? classification)

# Selected

genes

Classification

accuracy (%)

RCBT [7] 10-40 98

Discretization ? decision trees [23] 5,365 93

Boosting [16] Unknown 81

Bagging [16] Unknown 88

PCL [16] Unknown 98

Proposed feature selection ? null

LDA with nearest centroid classifier

100 97.3

3 IPA, http://www.ingenuity.com.
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Since the cancer function is of paramount interest, we

investigated them further. There are 66 cancer functions

obtained from the experiment. The leukemia is selected

from these 66 cancer functions and shown in Table 7. In

the table, the p-values and the number of selected genes are

depicted corresponding to the selected functions. The

selected genes by the proposed method provide significant

p-values above the threshold (as specified in IPA). This

shows that the features selected by the proposed method

contain useful information for discriminatory purpose and

have biological significance.

In order to check the robustness of the proposed method,

we carried out sensitivity analysis. First we selected top

100 genes using the proposed method on a given dataset.

After this we contaminated the dataset by adding Gaussian

noise; then applied the method again to find the top 100

genes. The generated noise levels are 1, 2 and 5% of the

standard deviation of the original expression values. The

number of genes which are common after contamination

and before contamination is noted. In addition, the classi-

fication accuracy is also noted. This contamination, selec-

tion of genes and computation of classification accuracy is

repeated 50 times. The average number of genes and

average classification accuracy (in percentage) over 50

iterations is depicted in Table 8. It can be observed from

the table that the proposed method can achieve high clas-

sification accuracy in an adverse environmental or noisy

condition. Also, the method is able to capture the majority

of original genes in the noisy condition.

4 Conclusion

In this paper we proposed the null space based feature

selection method. The proposed method effectively selects

important genes which have been demonstrated on several

DNA microarray gene expression data. Comparisons with

several other feature selection methods have shown that the

proposed method has better classification accuracy. The

implementation of the method is also quite simple and the

computation is fast. Finally, the selected genes by the

proposed method have biological significance which is

demonstrated by performing functional analysis and will

therefore contribute positively towards detection of sig-

nificant biological phenomenon.
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Appendix

Theorem 1 Let the column vectors of orthogonal matrix

W span the null space of within-class scatter matrix SW

Table 6 Sensitivity testing on all the four datasets

Datasets s1 s2 s3 s4 s (in percentage) g

Acute leukemia 1 1 – – 100.0 1

Lung cancer 1 130/134 – – 97.0 0.9850

MLL leukemia 1 1 1 – 100.0 1

SRBCT 1 1 5/6 1 83.3 0.9554

Fig. 1 Top five high level biological functions on selected 100

features of acute leukemia by the null space based feature selection

method

Table 7 Cancer functions

Functions p-value # Selected genes

Cancer 2.20E-14 48

Leukemia 2.70E-03 7

Lymphocytic leukemia 3.46E-03 5

Acute myeloid leukemia 7.79E-03 4

Acute lymphocytic leukemia 1.21E-02 3

Type M6 acute myeloid leukemia 1.55E-02 1

Acute monocytic leukemia (M5) 2.06E-02 1

Table 8 Sensitivity analysis for null space based feature selection

method on gene expression datasets at different noise levels

Added

noise (%)

SRBCT

(%)

MLL

leukemia (%)

Acute

leukemia (%)

Lung

cancer (%)

1 89.6 (65) 95.2 (65) 94.1 (82) 97.5 (79)

2 88.7 (65) 91.2 (40) 91.3 (60) 97.1 (62)

5 89.9 (66) 59.5 (30) 62.4 (49) 89.3 (51)

The average classification accuracy is shown in percentage and the

average number of common genes is shown in parenthesis
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and w 2 R
d be any column vector of W. Let the j-th

sample in i-th class be denoted by xi
j 2 R

d. Then the pro-

jection of sample xi
j onto the null space of SW is inde-

pendent of the sample selection in class.

Proof Since w 2 R
d is in the null space of SW, by def-

inition SWw ¼ 0 or wTSW w ¼ 0: The within-class scatter

matrix SW is a sum of scatter matrices SW ¼
Pc

i¼1 Si;

where c denotes the number of classes and scatter matrix Si

can be represented by [8]:

Si ¼
Xni

j¼1
xi

j � li

� �

xi
j � li

� �T

ðA1Þ

where li denotes the mean of class i and ni denotes the

number of samples in class i.

Since wTSWw ¼ 0 (or wT
Pc

i¼1 Siw ¼ 0) and Si is

positive semi-definite matrix, we can represent wT Siw ¼ 0.

From Eq. A1, we can say

wT
Xni

j¼1
xi

j � li

� �

xi
j � li

� �T

w ¼ 0

or
Xni

j¼1
wTXi

jX
iT

j w�
Xni

j¼1
wTlil

T
i w

or
Xni

j¼1
wT xi

j

	
	
	

	
	
	

2

� wTli

	
	

	
	

2

 �

¼ 0

ðA2Þ

where :k k is the Euclidean norm. Eq. A2 immediately

leads to wT xi
j ¼ wTli; i.e., projection of sample xi

j onto the

null space of SW is independent of j (or in other words

independent of sample selection). This concludes the proof

of the Theorem.
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