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Abstract This paper uses the self-organizing map (SOM), a

neural network-based projection and clustering technique, for

monitoring the millennium development goals (MDGs). The

eight MDGs represent commitments to reduce poverty and

hunger, and to tackle ill-health, gender inequality, lack of

education, lack of access to clean water and environmental

degradation by 2015. This paper presents a SOM model for

cross sectional and temporal visual benchmarking of countries

and pairs the map with a geospatial dimension by mapping the

clustering onto a geographic map. The temporal monitoring is

facilitated by fuzzifying the second-level clustering with

membership degrees. By creating an MDG index, and associ-

ating the SOM model with it, the model enables cross sectional

and temporal analysis of the overall MDG progress of countries

or regions. Further, the SOM model enables analysis of coun-

try-specific as well as regional performance according to a user-

specified level of aggregation. The result of this paper is an

MDG map for visual tracking and monitoring of the progress of

MDG indicators.

Keywords Self-organizing maps � Millennium

development goals � Projection � Clustering � Geospatial

visualization

1 Introduction

During the largest-ever gathering of world leaders in

September 2000 in New York, the Millennium Declaration

was adopted. The Declaration, endorsed by all 189 United

Nations member countries, was later translated into eight

millennium development goals (MDGs). The MDGs rep-

resent commitments to reduce poverty and hunger, and to

tackle ill-health, gender inequality, lack of education, lack

of access to clean water and environmental degradation by

2015. The eight goals are defined as follows.

Goal 1 Eradicate extreme poverty and hunger

Goal 2 Achieve universal primary education

Goal 3 Promote gender equality and empower women

Goal 4 Reduce child mortality

Goal 5 Improve maternal health

Goal 6 Combat HIV/AIDS, malaria and other diseases

Goal 7 Ensure environmental sustainability

Goal 8 Develop a global partnership for development

The goals of the Millennium Declaration are tracked

using 21 concrete, numerical benchmark targets. For

example, halve the proportion of people whose income is

less than $1/day and reduce by three quarters the maternal

mortality ratio. The progress of these 21 targets is mea-

sured using 60 quantifiable statistical indicators, such as

proportion of population below $1/day and maternal mor-

tality ratio. With only a few years to go before the dead-

line, tracking the progress towards the goals is indeed of

central importance. However, the tracking has mainly

concerned measuring the current state or linear and log-

linear projections into the future (see Sahn and Stifel [24]

and UNECOSOC [35], for example). Using these types of

methods, thorough and simultaneous comparisons of all the

MDG dimensions over time and across countries is

impossible. A composite index, such as the Human

Development Index (HDI) [34], could be constructed of the

MDGs for comparing the general progress over time

and across countries. Lately, further developed poverty
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indices have been created; the ‘improved’ HDI [18] and the

Multidimensional Poverty Index (MPI) [1]. However,

Ravallion [20] shows that mashup indices of development

come with several disadvantages, not least the ambiguity in

deriving the index and the impossibility of simultaneous in-

depth analysis of the individual elements.1 For objective

and precise assessment of countries in comparison with

each other, such as in the case of the MDGs, one has to

utilize multidimensional datasets and methods that account

for the complexity of the problem.

By examining raw statistical tables, we can analyze one

measure for a handful of countries at a given point in time.

Likewise, two- and three-dimensional visualization tools of

ordinary spreadsheet programs have limited capabilities for

higher dimensions. The analysis becomes even more

cumbersome when the temporal dimension is included. To

date, visual monitoring of the MDGs has to some extent

been neglected. United Nations has co-developed three

visualization tools for tracking the progress of the MDG

indicators: MDG Monitor, MDG Mapper and DevInfo.

While MDG Monitor and MDG Mapper enable visualiza-

tion of one indicator at a time on a geographic heat map,

the DevInfo enables a number of different visual repre-

sentations of global to regional distributions of each indi-

cator. They do not, however, enable features of exploratory

data analysis (EDA) [31], such as projection of multidi-

mensional data onto a two-dimensional plane and illustra-

tion of the structures in a dataset. When attempting analysis

of multidimensional data, such as statistical indicators for

monitoring the MDGs, methods of EDA are feasible. EDA

attempts to describe different aspects of the phenomena of

interest in an easily understandable form by illustrating the

structures in a dataset, but at the same time preserving

information of the original data. The self-organizing map

(SOM) [13, 14] is a neural network-based EDA tool. While

most neural networks utilize supervised learning for clas-

sification tasks, such as Boehme et al. [2] and Tong and

Mintram [30], the SOM is an unsupervised two-layered

neural network that elegantly combines the goals of pro-

jection and clustering techniques. The visual representation

of the SOM is not only created by mimicking the func-

tioning of the human brain, as neural networks in general

do, but also by enabling utilization of the pattern recog-

nition capabilities of the human brain when interpreting the

visualizations.

Though being a common method in economic and

financial analysis, such as Resta [21], Eklund et al. [7] and

Sarlin and Peltonen [29], the SOM has not been used

frequently for tracking development, especially not the

MDGs. Using the SOM, Kaski and Kohonen [11] represent

welfare states of countries on a ‘‘welfare map’’, while Naq

and Mitra [16] find patterns in the recent socioeconomic

development and poverty on a SOM. Collan et al. [3] use

social and economic indicators for transition countries, and

two European benchmarks, to show differences in the state

of transition on a SOM. Lately, Tyler and Gopal [32] have

examined patterns among Sub-Saharan African countries

using PCA and the SOM. They conclude that the tech-

niques are highly effective to compress multidimensional

qualitative and quantitative data. However, these studies do

none of the following: implement the SOM as a general,

global and visual monitoring system; target specifically

indicators of the MDGs; pair the SOM with a fuzzified

second-level clustering; pair the SOM with geospatial data;

or pair the SOM with a development index. The model

should be as global as possible, since the state of Sub-

Saharan African countries in relation to the rest of the

world is of central importance. More specifically, this

paper attempts a comprehensive study of MDG indicators

and has its main focus on the visualization capability of the

SOM. The main aim of the paper is to create a SOM-based

tool for visual monitoring of a global dataset consisting of

MDG indicators. This type of analysis could, of course, be

applied on other types of high dimensional panel datasets.

The dataset includes 14 MDG indicators and 232 countries,

and spans over 1990–2008. Firstly, the SOM will be used

for two types of analyses of the MDG indicators: for visual

benchmarking of countries and for visual analysis of the

evolution of a country. Likewise, a combination of the

above analyses enables visual benchmarking over time.

Following Sarlin and Eklund [27], the SOM representation

is enhanced by a fuzzified clustering. It is an aid for ana-

lyzing the temporal dimension, as the cluster centers

express the representative MDG states for the countries,

while the fluctuations of the fuzzified membership degrees

represent their variations over time. It also enhances the

representation of the crispness of data by not only showing

its best-matching unit on the SOM grid, but by also

expressing the resemblance to all clusters. Further, a

fuzzification of the SOM units enables analyzing the dis-

tance structure on the SOM as well as its topological

ordering. We also create an MDG index which associates a

mashup state to each data point. This is beneficial, and

sometimes even necessary, for assessing MDG directions

on the map. These analyses are not only performed on

samples of the panel dataset, cross-sectional and time-

series data, but also on population weighted aggregates for

geographic regions, such as Sub-Saharan Africa and the

world. Secondly, we project for each country the color

code of its corresponding cluster on a geographic map. This

enables visual analysis of multidimensional MDGs on a

1 The HDI, for example, has been criticized for the way its

component indices are derived by the raw data (see Noorbakhsh

[17]) and the additivity of the aggregation method (see Sagar and

Najam [23]).
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geographic map. The visual explorations in this paper

illustrate the usefulness of the SOM for visual tracking of

MDG indicators.

The paper is organized as follows. The first part intro-

duces the methodology used for tracking the progress of

MDGs. First, the SOM and its fuzzified clustering is

introduced, and then the indicators are discussed. The

second part explains the construction of the SOM model

and defines the clusters on the map. The third part shows

visual analyses using the SOM model and a geospatial

mapping. Finally, the fourth part concludes by presenting

the key findings and recommendations for future research.

2 Methodology

There exist two distinguishable categories of multivariate

EDA methods: multidimensional scaling (MDS) and clus-

tering methods. MDS methods, and its many variants [5],

attempt to preserve the whole structure of the dataset, while

project multidimensional data to an easily interpretable

format, such as a two-dimensional plane. The MDS methods

do not, however, reduce the amount of presented data. The

clustering techniques, on the other hand, attempt to find

mean profiles in the data. Thus, they reduce the amount of

data by enabling analysis of a small number of clusters

instead of the whole dataset. The vast variety of clustering

algorithms requires thorough knowledge of both the dataset

and the algorithms, since there must exist enough clustering

tendency for clustering to be feasible and different algo-

rithms are suitable for datasets of different shape.

By combining the objectives of both categories for EDA,

the SOM performs simultaneously a projection and a clus-

tering. On the one hand, the SOM projection differs from

other projection techniques, such as MDS, by focusing on

preserving the neighborhood relations, instead of trying to

preserve the distances between data. Further, rather than

projecting data into a continuous space, such as MDS

methods, the SOM uses a grid of neurons onto which data are

projected. Thus, it enables visualization of multidimensional

data on a two-dimensional plane consisting of neurons with

preserved neighborhood relations. On the other hand, the

two-level clustering of the SOM, i.e., separation of data into

neurons and neurons into clusters as proposed by Vesanto

and Alhoniemi [36], differs from other statistical clustering

techniques. They assert that the SOM differs from other

clustering methods in terms of computational cost and by

being more robust on data that are non-normally distributed.

Further, user satisfaction with the SOM and its information

products has, by end-users within the domain of financial

analysis, been evaluated as superior than currently used

methods (e.g. [7]). This indicates possible achievement of

positive results in tracking MDGs.

2.1 Self-organizing maps

The SOM is a non-linear and non-parametric artificial

neural network utilizing an unsupervised, competitive

learning method developed by Kohonen [13]. The SOM

may be thought of as a projection maintaining the neigh-

borhood relations in the data [10] or as a spatially con-

strained form of k-means clustering [22]. The network of

neurons consists solely of two layers: the input and the

output layer. The number of neurons in the input layer

equals the dimensions in the data, while the output layer is

a two-dimensional topological grid. Each neuron on the

topological grid has its own reference vector. During the

course of training, while each neuron learns to attract data

with similar characteristics, all neighboring neurons learn,

with diminishing weight, to attract similar data. Hence, the

map is ordered as to the characteristics of the dataset. The

neurons of the map can further be divided into clusters of

similar neurons, enabling a simultaneous two-level clus-

tering. The SOM algorithm is described here briefly—for

details, see Kohonen [14].

For its superior visual features, the software Viscovery

SOMine 5.0 is used in this paper.2 It employs the batch

training algorithm; a slightly different version of the basic

SOM algorithm. Instead of processing the data vectors

sequentially, the batch algorithm differs by processing all

the data vectors simultaneously. The most important

advantage of the batch algorithm is the reduction of com-

putational cost. The training process starts with an initial-

ization of the reference vectors. Instead of random

initialization, the reference vectors are set in the same

direction as the principal components of the input data

using principal component analysis (PCA). This reduces

the computational cost and enables reproduction of the

results. The training algorithm has two steps: (1) finding

the best-matching units (BMUs) and (2) adjusting the ref-

erence vectors. The second step includes both the adjust-

ment of the reference vectors of the BMUs and the

reference vectors in a specified neighborhood of the BMUs.

The steps are repeated for a specified number of iterations.

In the first step, the algorithm compares, using the

Euclidean distance, each input data vector x with the net-

work’s reference vectors mi to find the best match mc,

x� mck k ¼ min
i

x� mik k ð1Þ

such that the distance between the input data vector x and

the winning reference vector mc is less than or equal the

distance between input x and any other reference vector mi.

During the first step, all the input vectors are presented to

the map.

2 For a thorough discussion of the software, see Deboeck [6].
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In the second step, each reference vector mi is adjusted

using the equation for the batch algorithm:

miðt þ 1Þ ¼
PN

j¼1 hicðjÞðtÞxj
PN

j¼1 hicðjÞðtÞ
; ð2Þ

where hic(j)(t) is a weight that represents the value of the

neighborhood function defined for the node i in the BMU

c(j) at time t. The index j indicates the input data vectors

that belong to the neuron c, and N is the number of these

vectors. The function hicðjÞ 2 0; 1ð � is defined as a Gaussian

function:

hicðjÞ ¼ exp � rc � rik k2

2r2ðtÞ

 !

; ð3Þ

where rc and ri are two-dimensional coordinates of the

reference vectors mc and mi, respectively, and the radius of

the neighborhood r(t) is a monotonically decreasing

function of time t. Furthermore, the second-level clustering

is done by combining the local ordering information with

agglomerative hierarchical clustering, i.e. iteratively

agglomerating the closest clusters based on some similarity

measure. The following Ward’s [41] criterion is used as a

basis for measuring the distance between two candidate

clusters:

Dkl ¼
nknl

nk þ nl
� ck � clk k2; ð4Þ

where nk and nl represent the cardinalities and ck and cl the

cluster centers of clusters k and l, respectively. However, the

algorithm limits the merging of clusters to topologically

neighboring clusters by defining the distance between non-

adjacent clusters as infinitely large. We use a heuristic cluster

indicator for choosing the number of clusters. The indicator

starts with each node being its own cluster and computes the

Ward distance Dkl for all possible numbers of clusters

(1,2,…,M). Then the indicator is the ratio of two consecutive

distances normalized by an exponential function. Thus, let d

represent the number of clusters, then the indicator finds a d

that results in a high Dkl(d) (distance from d to d – 1 clusters)

and a low Dkl(d ? 1), since the next merge (d – 1 clusters)

would cause higher variance within the clusters.

In addition to dividing the nodes into crisp clusters, as is

commonly done, the SOM has been fuzzified using a dis-

tance-based approach in Sarlin and Eklund [27] and using

fuzzy C-means clustering in Sarlin and Eklund [28]. We

follow the approach in Sarlin and Eklund [27] by pre-

senting a fuzzy membership degree using Euclidean dis-

tances between data points and the centroids of the clusters.

For the cluster centroids, any crisp clustering method, as

appropriate for the task in question, is applicable. As we

also implement the fuzzification on the nodes, it can as well

be used for assessing the topological ordering of the grid.

The crisp clustering is fuzzified by computing the inverse

distance between data point xj (or each reference vector mi)

and each cluster center ck (where k = 1,2,…,C):

ujk ¼
1

xj � ck

�
�

�
�

2
l�1

; ð5Þ

where l 2 1;1ð Þ is the fuzzy exponent (i.e., exponential

weight) which controls the extent of overlapping between

the clusters. However, we normalize the similarity matrix

ujk to the following matrix of cluster membership degrees

for each node:

vjk ¼
ujk

PC
k¼1 ujk

; ð6Þ

to fulfill the probabilistic constraint
PC

k¼1 vjk ¼ 1: The

extent of overlapping between the clusters is set by the

fuzzy exponent l. When l ? 1, the fuzzy clustering

converges to a crisp clustering, while when l ? ? the

cluster centers tend towards the center of the dataset. l = 2

and l = 3 can be seen as benchmarks, since they give

squared and simple Euclidean distances. The crisp clusters

on the map are shown by contours, while each nodes’

cluster membership degrees are visualized on own feature

planes for each cluster.

A so-called tension value is specified as a measure of the

radius of the neighborhood rðtÞ 2 0; 2½ �. The tension con-

trols the size of the neighborhood around the BMU that is

influenced during the training process. A rule of thumb is

that large neighborhood radii, i.e., tension values, result in

stiff maps that stress topological ordering at the cost of

quantization accuracy [37]. The rest of the parameters in

SOMine are the following: map size (the number of neu-

rons), map format (the ratio of x and y dimensions), and the

length of training (training cycles). The quality of the map

is measured in terms of quantization error and distortion

[37]. The average quantization error represents the fitting

of the neural map to the data measured by an average of the

distances between all input vectors xj and their corre-

sponding best matching reference vectors mc, i.e.,

qe ¼ 1

N

XN

j¼1

xj � mcðjÞ
�
�

�
�: ð7Þ

The normalized distortion measures the fit of the map

with respect to both the shape of the data distribution and

the radius of the neighborhood, and is computed as follows.

DM ¼ 1

N

PN
j¼1

PM
i¼1 hicðjÞ xj � mi

�
�

�
�2

PN
j¼1

PM
i¼1 hicðjÞ

.
M

ð8Þ

where M is the number of reference vectors.

The output of the SOM algorithm may be presented and

utilized in different ways. For the purpose of this analysis,
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the results are visualized using a two-dimensional grid. As

the reference vectors of this two-dimensional grid represent

a multidimensional space, we can visualize each element of

the vector on an own grid, namely a feature plane. The

feature planes represent graphically, for each correspond-

ing variable, the distribution of the variable values on the

two-dimensional map. As the feature planes are different

views of the same map, one unique point represents the

same node on all planes. Thereby, the characteristics of the

SOM model can be identified by studying the underlying

feature planes. The values on the feature planes may be

represented by different color schemes (e.g. colored,

grayscale and black and white). In this paper, the feature

planes are produced in color, where low to high values are

represented by cold to warm scales. The color scales are

shown below each corresponding feature plane.

2.2 Choice of countries and indicators

The set of countries is chosen to be as large and complete

as possible, where the term country refers, as appropriate,

to territories or areas since no opinion is expressed on the

legal status of any region. A thorough set of countries

enables exploration of possibly divergent countries. Since

enabling analysis of countries in Sub-Saharan Africa—

African countries without a Mediterranean coastline—is

the main target of this paper, it is important to include the

other states of MDGs to enable temporal analysis into

various new states. Thus, although the main focus is on

Africa, the map should be interpreted as a global ‘MDG

map’, enabling analysis of the state in any country. In fact,

if such data are available, sub-national, provincial or dis-

trict level data may also be projected onto the map.

However, the dataset used in this study includes 232

countries for the period from 1990–2008.

The set of indicators is chosen to measure the progress

towards the MDGs. Prennushi et al. [19] divides indicators

into two groups: final and intermediate. Final indicators

measure effects of an intervention on the well-being of

individuals, while intermediate indicators measure factors

that determine, or contribute to the process of achieving, a

final indicator. Since the objective of this model is to

represent the stage of progress towards the MDGs, final

indicators are chosen for analysis. Thus, this model does

not concern the fact that final indicators are the result of

several factors. Moreover, although it would be computa-

tion-wise feasible to include all 60 indicators mentioned in

the Millennium Declaration, this study uses fewer variables

to measure the goals. This incorporates a high share of the

same information and enables a deeper visual analysis and

presentation within the constraints of a journal paper. The

choice of the analyzed indicators is based on the utilized

subset in MDG Monitor of United Nations. The dataset

includes thereby 15 indicators for tracking the progress of

all eight MDGs.

The dataset was collected from the UNSD (United

Nations Statistics Division) database (http://mdgs.un.org/

unsd/mdg/). Further information on the transformations

and the precise definitions of variables can be found in the

Handbook for Monitoring MDGs [33]. To sum up, the

dataset used in this study includes annual data of 15 indi-

cators for 232 countries for the period from 1990–2008,

enabling up-to-date classification of the wide variety of

countries in the world. The indicators, their relation to the

MDGs, and their summary statistics are shown in Table 1.

Further, an MDG index is created by combining the indi-

cators to a composite variable. First, indicators 2, 6, 9, 10

and 13 (as per the first column of Table 1) were multiplied

by -1, so that an increase in the variable indicates an

achievement of the particular MDG. Then, for standardiz-

ing the contribution of the variables, each indicator is

normalized by its own range. Finally, the index is defined

as the average of the normalized indicators for each data

point xj.

As discussed by Coudouel et al. [4], poverty compari-

sons between groups and over time face obstacles in

transformations. Poverty comparisons across countries are

difficult, since both absolute and relative prices of goods

and services differ across countries. That is, although dif-

ferences in purchasing power parity (PPP) are considered,

cross-country comparisons rely on the assumption that the

measures are homogeneous across countries. Likewise,

poverty comparisons over time require measures that

reflect differences over time in the cost of living across

regions. This can be done by, for example, converting data

from different regions into real measures by deflating the

indicators in space and time. However, in practice the data

are never fully comparable over time or across regions.

Moreover, since data are partly provided by national

agencies, there might exist erroneousness. We do not,

however, see any of these discrepancies as an obstacle for

visual monitoring of development indicators using the

SOM—in fact, it motivates visual, rough monitoring using

geometrical neighborhood relationships, instead of precise

modeling.

3 The SOM model

This section describes the training of the SOM model and

its clusters.

3.1 Training the SOM model

The data have been normalized for equal weighting of the

indicators. They have been standardized by variance and

Int. J. Mach. Learn. & Cyber. (2012) 3:233–245 237

123

http://mdgs.un.org/unsd/mdg/
http://mdgs.un.org/unsd/mdg/


range as shown in the last column of Table 1. If the range

of an indicator is smaller than 8 times its standard devia-

tion, it is scaled by variance; otherwise, the indicator is

scaled by range. All data rows are not, however, used for

training due to missing values. The SOM overcomes a

small share of missing values by solely considering the

indicators that are available, giving enough information for

the organization process [25]. However, a high share of

missing values may disturb the organization of the map

[11]. Thus, row vectors with 7 or more missing values have

been excluded from the computation of the map. The

excluded data vectors can, however, be tentatively pro-

jected onto the map for rough visual analysis.

The constructed map is trained using data from

1990–2010. The dataset consists of 1,708 row vectors with

a dimensionality of 15—one dimension for each explana-

tory variable. During the course of the experiment, hun-

dreds of maps were trained using different parameter

values (tension, cycles of training, number of clusters and

map format). As noted by Kohonen [14], the selection of

the parameters is not crucial if the map size is less than a

few hundred nodes. As there, of course, still are some

differences, the choice of the map was based upon its

quantization error, distortion measure, topological order-

ing, visual cluster structure and interpretability. Quantiza-

tion error and the distortion measure are those presented in

Sect. 2.1, while the topological ordering is evaluated fol-

lowing Kaski et al. [12]. We project the reference vectors

into two- and three-dimensional spaces using Sammon’s

mapping [26] and assess the map in terms of twistedness

and adjacent non-neighbors in the Euclidean space. The

visual cluster structure is assessed using a U-matrix, on

which separable second-level clusters are revealed, and

interpretability is a subjective measure of the visualization

defined by the analyst. During the experimental stage of

training, we vary radius of the neighbourhood r, number of

nodes M and map format (ratio of X and Y dimensions).

While the number of second-level clusters is set using the

cluster indicator, we keep the map ratio as 100:75. This

rectangular map format approximates the ratio between the

two principal components in data, which Kohonen [14]

proposes as a selection criterion for achieving a stable

orientation in the data space.

After an extensive training process, a neural network

with 15 neurons in the input layer and 85 output neurons

ordered on a map of the size 10 9 9 was chosen. Since the

main purpose of this study is visualization, not classifica-

tion, a comparatively large map is preferred over a small

map [6]. The map was trained with a tension of 1.5 (where

rðtÞ 2 0; 2ð �) for 4 epochs, leading to an average quanti-

zation error of 0.51 and a distortion measure of 0.72. A

high tension is chosen, since for visualization purposes

precise topological ordering is preferred over high quanti-

zation accuracy. The two-dimensional topological grid is

shown in Fig. 1.

3.2 Defining the clusters

The map is further cut into layers of column vectors—

development indicators in this study. These feature planes

are shown in Fig. 2. To further distinguish the nodes of the

map, it is clustered using hierarchical clustering in

Table 1 Summary statistics

No. Indicator MDG Abbreviation OBS Mean Std.Dev Min Max Scaling

1 Population below $1/day, (%) 1 1a. Poverty 294 17.40 20.93 2.00 88.50 Variance

2 Underweight children under 5 years, (%) 1 1b. Poverty 292 17.53 12.76 0.60 48.70 Variance

3 Primary education enrolment ratio 2 2. Education 1204 88.35 15.02 25.90 100.00 Variance

4 Seats held by women in parliament, (%) 3 3a. Women 1535 14.07 9.83 0.00 48.80 Variance

5 Gender Parity Index in primary level enrolment 3 3b. Women 1417 0.95 0.08 0.00 1.30 Range

6 Child mortality rate per 1,000 births 4 4a. Child

mortality

730 58.75 62.06 3.00 305.00 Variance

7 Children immunized against measles, (%) 4 4b. Child

mortality

1706 83.50 15.89 20.00 99.00 Variance

8 Maternal mortality ratio per 100,000 births 5 5. Maternal health 169 322.37 421.09 1.00 2100.00 Variance

9 Tuberculosis rate per 100,000 population 6 6a. Disease 1708 165.97 221.88 0.00 1400.00 Variance

10 People (15–49 years old) living with HIV, (%) 6 6b. Disease 251 2.14 4.73 0.10 26.50 Variance

11 Proportion of land area covered by forest, (%) 7 7a. Environment 526 30.90 23.65 0.00 98.90 Variance

12 Access to improved drinking water sources, (%) 7 7b. Environment 680 83.29 18.92 17.00 100.00 Variance

13 Metric tons of CO2 emissions per capita 7 7c. Environment 1556 4.69 6.14 0.00 64.17 Range

14 Official development assistance (ODA) to GNI,

(%)

8 8a. Development 290 0.43 0.26 0.10 1.17 Variance

15 Internet users per 100 population 8 8b. Development 1700 14.59 20.80 0.00 90.56 Variance
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conjunction with local ordering information. The clustering

is performed with respect to all the explanatory variables

and the cluster indicator described in Sect. 2.1 is used for

choosing the number of clusters to be eight. The clustering

of the two-dimensional map is shown on the left of Fig. 1,

while the fuzzification of the clustering is shown on the

right. The fuzzification shows the membership of each

node to each cluster. The fuzzifier l was tested for values

between 1 and 5. A l value of 2.0 provided an adequate

fuzzification of the map. Without completely eliminat-

ing cluster borders, it introduces a fuzziness degree

large enough to show relationships between clusters. To

facilitate the understanding of the map, below follows a

description of the clusters. A more detailed description of

the clusters is given in Table 2.

Clusters A, B, C and D represent, in a descending order,

the least developed economies, where cluster A is char-

acterized by the worst conditions. Cluster E resembles

mainly cluster C and D, but differs from the rest of the

clusters by having a high proportion of land area covered

by forest. On the other hand, clusters F, G and H represent,

in an ascending order, the most developed countries.

Cluster F is characterized by high CO2 emissions, while

cluster H is characterized by a high proportion of women in

F

G

    H

      DE

    CB

A

Cluster A

0.03 0.18 0.34 0.49

Cluster B

0.04 0.20 0.36 0.52

Cluster C

0.07 0.16 0.25 0.34

Cluster D

0.06 0.20 0.33 0.47

Cluster E

0.07 0.17 0.28 0.39

Cluster F

0.05 0.14 0.23 0.32

Cluster G

0.05 0.16 0.27 0.38

Cluster H

0.04 0.13 0.21 0.30

Fig. 1 The SOM grid (left) and membership degrees of each node to each cluster (right) (color figure online)
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4b. Child mortality
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7 10 13 15 18 20 23 26 28 31

3b. Women

F
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A
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4a. Child mortality

F
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6b. Disease

F
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7a. Environment

F

G

   H

     DE    

   CB     

A
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7b. Environment

F
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A
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MDG Index

F

G

   H

     DE    
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A

0.26 0.30 0.34 0.38 0.41 0.45

Fig. 2 The feature planes of the SOM grid (color figure online)
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parliament, official development assistance (ODA) and

internet users. Obviously, the MDG index shows the lowest

values for the least developed and highest for the most

developed nations. An interesting finding is, however, that

from the MDG perspective the states are approximately

equally good in clusters C, D, E and F, indicating that

extreme environmental factors counterbalance other wel-

fare indicators.

4 Visual tracking of the MDGs

This section presents visual analyses using the above cre-

ated MDG map. The map is used for visual benchmarking

of countries on a given point in time, for projection of time-

series data onto the map and for combining these two tasks

by conducting benchmarking over time. Further, we also

show a geospatial plot of the cluster color codes at one

point in time. Data points are mapped onto the grid using

Eq. 1, i.e. to their BMU, and consecutive time-series data

are linked with lines, i.e. trajectories.

4.1 Visual benchmarking of countries’ development

level

In Fig. 3, a cross section for a representative subset of

the countries in year 2005 are projected onto the MDG

map. Year 2005 is chosen since its missing-value per-

centage is the lowest. Out of all 232 countries, a sample

of countries representing the heterogeneity of the map is

shown. This illustration facilitates simultaneously the

interpretation of the characteristics of each cluster. This

is enhanced by showing decennial global MDG devel-

opment by a population weighted aggregate of all

countries. Below follows a description of the countries in

each cluster.

Most of the countries in cluster A are from Sub-Saharan

Africa. Exceptions are Afghanistan and Haiti, for example.

Afghanistan
Burundi

Central African Republic
Chad

Ethiopia
Mali

Somalia

Djibouti

Cambodia
Cote d'Ivoire
Mozambique

Rwanda
Togo

Uganda

India
Swaziland

South AfricaNamibia
Vietnam

Denmark
Luxembourg
Netherlands

Norway
Sweden

Angola
Cameroon

Haiti BangladeshPakistan Philippines
Austria
Belgium
Finland
Iceland

Benin
Kenya

Lesotho
Botswana Switzerland 

Congo
Equatorial Guinea
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Ghana
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Sudan

ecnarFqarInemeY

Canada
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Germany
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New Zealand
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United KingdomZambia Gambia

          Comoros
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                   Sao Tome and Principe
Cape Verde
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Singapore
United States
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Honduras Guatemala
Republic of Moldova
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United Arab EmiratesBelize
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Nicaragua
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Fig. 3 A SOM grid with data

for a descriptive subset of

countries in 2005. The line
graphs’ scale corresponds to the

left axis and the color coding

follows that of the map, while

the bar charts represent the

MDG index value of the node

that each data point represents

and corresponds to the right axis

(color figure online)
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Although most of the countries in cluster B are likewise

from Sub-Saharan Africa, more countries from other parts

of the world, such as India, Pakistan, Bangladesh, Nepal

and Yemen, are projected into the cluster. Cluster C still

includes countries from Sub-Saharan Africa, but has a

higher share of countries from the rest of the world, such as

Vietnam, the Philippines, Iraq, Morocco and Cape Verde.

Cluster D consists of two groups of countries: a group from

South and Central America and a group mainly from

Eastern Europe and Western Asia. The former group

resembles the countries in cluster E, while the latter group

resembles the countries in cluster F. The main difference of

cluster E to the neighboring clusters is the high proportion

of land area covered by forest, which is thus the principal

characteristic of the countries in this cluster. Most of the

countries in cluster E are South and Central American, but

also a few African and Asian countries are projected into

the cluster. Most of the countries in cluster F are Western

Asian. Compared to the neighboring clusters, high CO2

emissions is the main distinguishing factor. The countries

projected into cluster G are mainly European, but include

also the most developed countries from other continents,

such as Japan, Singapore, New Zealand, Australia, Canada

and the US. Similarly as cluster D, this cluster is divided

into two groups of countries: a group that resembles cluster

F, i.e., has high CO2 emissions, and a group that resembles

cluster H. The countries in cluster H are mainly European,

such as the Nordic countries, with high measures for the

indicators of gender equality and global partnership for

development. The figure shows that MDG development of

the world has been progressing towards a better state. Since

the aggregate is an average of all data, it is commonly

projected into the middle of the map. Thus, the variation

over time is small, but the changes in the indicators, e.g.

MDG index, are still valid. The line graph in Fig. 3 depicts

the averaging nature of the data by showing simultaneous

memberships to several clusters, but still shows that the

overall MDG index has increased over time.

The visual representation of the SOM can be enhanced

by combining it with geospatial data [12]. For each coun-

try, the color code of the corresponding cluster is projected

onto a geographic map. This enhancement enables simul-

taneous assessment of both social and geographic space.

The geographic map can be used for assessing the overall

state of the MDG conditions and whether development is

regionally dependent. In Fig. 4, the cluster color codes for

all countries in 2005 are projected onto a geographic map.

The map shows a slight regional dependence of the MDG

indicators: cluster A represents mainly Sub-Saharan Afri-

can countries, cluster E equatorial countries and cluster H

Northern European countries. The rest of the clusters rep-

resent geospatially heterogeneous groups of countries.

In Fig. 5, the Sub-Saharan African countries are pro-

jected onto the map on two points in time. This enables in-

depth dynamic analysis of less developed countries’ pro-

gress. We further enhance the representation by computing

a population weighted aggregate of the Sub-Saharan Afri-

can countries. The left map shows a projection of the Sub-

Saharan African countries in 1990 and the right map in

2008. The labels ‘1990’, ‘2000’ and ‘2008’ represent the

population weighted aggregate of Sub-Saharan African

countries. In 1990, the countries are concentrated in the

upper-left corner of the map. Similarly, the countries are

still in 2000 projected into the upper-left corner (this pro-

jection is omitted from the paper). The Sub-Saharan Afri-

can countries do, however, show progress during the first

half of the MDG period (2000–2008). The right map

showing data for 2008 illustrates that a major part of the

countries have progressed towards the right part of the

MDG map. This transition from cluster A into cluster B

Fig. 4 A geographic map with

the cluster color code (see

Fig. 1) for all countries in 2005

(color figure online)

242 Int. J. Mach. Learn. & Cyber. (2012) 3:233–245

123



and C indicates progress in a desired direction. This is

confirmed by the temporal evolution of the aggregate. The

line graph shows that Sub-Saharan African countries

membership to cluster A actually increased during the

period 1990–2000, but from 2000–2008 they have moved

to cluster B by showing a strong membership to that cluster

and the second strongest to cluster C, not cluster A. The

map does not, however, quantify whether the countries

1990 2008
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Fig. 5 Maps with data for Sub-Saharan Africa in 1990 (left) and

2008 (right). The line graphs’ scale corresponds to the left axis and

the color coding follows that of the map, but legends are only shown

for clusters with memberships above 0.10. The bar charts represent

the MDG index value of the node that each data point represents

(color figure online)
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Fig. 6 Maps with quadrennial data for Brazil (left) and annual data for Belarus (right). See notes for Fig. 5 (color figure online)
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have met the concrete, numerical targets of each MDG.

Since the MDG map is used for assessing the progress both

over time and across countries, the targets, which are

individual for each country, cannot be assessed. If the

progress of solely one country is monitored, such as in

Fig. 6, then a ‘target line’, indicating the needed progress

for achieving the goal, can be added to each feature plane.

However, due to lack of space, the 15 feature planes are not

reproduced for the country-specific time-series analyses

below.

4.2 Visualizing the evolution of a country

Time-series data can also be projected onto the MDG map.

By showing two examples, Fig. 6 illustrates the projection

of data series onto the map. The map shows annual evo-

lution from 2000 to 2008 in Belarus and quadrennial

evolution from 1990 to 2008 in Brazil. The data for Belarus

shows rapid development by moving in only 8 years from

the average cluster D into the best in class cluster H. The

temporal variations between clusters and increase of the

MDG index are shown by the line graph. The development

in Brazil, on the other hand, has involved a movement from

the average, or below average, cluster E into cluster F, an

advanced economy cluster. Interestingly, the line graph

depicts that although moving towards a better state in terms

of several MDG subdimensions, the high-polluting state

does actually not reflect significant improvements in terms

of the MDG index.

5 Conclusions

This paper lays out a methodology for visual monitoring of

MDGs. With only a few years to go before the deadline of the

MDGs, tracking the progress towards the goals is of central

importance. In this paper, the SOM is used for tracking the

progress towards the multidimensional MDGs. The visual

analyses include benchmarking countries based on the

MDGs, monitoring the evolution of countries’ MDG indi-

cators over time and assessing the geospatial dimension of

the multidimensional MDGs. This can be done on any

aggregated level varying from country-specific analysis to

world aggregates. The fuzzification of the clustering enables

a visual representation of the temporal evolution, where the

cluster centers express the representative MDG states for the

countries and the fluctuations of the membership degrees

represent their variations over time. The created MDG index

associates a mashup state for each data point, which is nec-

essary for assessing directions on the map. The experiments

in this paper indicate that the SOM is an appropriate tool for

rough, visual analyses of complex data.

The visual representation in this paper suggests that the

United Nations should consider publishing a SOM model,

an ‘MDG map’, for visual monitoring of the progress. In

future research, the SOM could be employed for clustering

and visualizing the other category of indicators, the inter-

mediate. In contrast to this paper, the model would give

indications on what is happening with well-being and its

determinants, enabling up-to-date corrective actions. A

simultaneous analysis of the intermediate and final indi-

cators would enable examining the relations and impacts

between both categories. The focus of future work should

also be on enhancing the performance of the learning

system by, for instance, maximizing the fuzzy entropy or

combining multiple reducts [38–40] and on improving the

second-level clustering by testing some newer techniques

(e.g. [8, 9, 15]).
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