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Abstract With the trend toward taller and more flexible

building structures, the use of vibration control devices,

passive as well as active, as means of structural protection

against strong wind and earthquakes have received signif-

icant attention in recent years. A mass-damper shaking

table system has been considered as means for vibration

suppression to external excitation and disturbances. No

explicitly system identification of the plant dynamics, no

membership function and thus no fuzzification–defuzzifi-

cation operation are required. For effective control per-

formance, a neural classifier controller with genetic

algorithm is developed. Compared with the conventional

neural network and fuzzy controller, the neural classifier

controller using genetic algorithm has been presented with

the effectiveness of the vibration suppression control.

Experimental results show that the neural classifier con-

troller remains effective for building structure vibration

suppression under free vibration and forced vibration

excitation.

Keywords Vibration control � Neural network �
Fuzzy logic � Genetic algorithm

1 Introduction

Neural network’s abilities in self-learning, parallel con-

struction, high memorial capacity, generalization, and

noise insensitive are particular suitable for system identi-

fication and control. System identification and active

vibration control using artificial neural networks (ANNs)

have thus been the focus of research in recent years.

Experimental studies of structure control are also carried

out successfully. Yang and Lee [1–4] developed three

neural networks for system identification, on-line state

estimation and vibration suppression of a composite

structure. Chen et al. [5] proposed a five-layer neuro-fuzzy

system to vibration suppression for a building structure.

Yan et al. [6] developed a fuzzy-neural network controller

with adaptive membership functions for vibration sup-

pression of truss structure. Cavallo et al. [7] presented a

MIMO output feedback control law to show how the sin-

gular perturbation theory can be used to tackle the problem

of active vibration control. Li et al. [8, 9] proposed a

genetic algorithm based back-propagation neural network

suboptimal controller for system identification, state esti-

mation and vibration suppression of a modular robot.

Kundu et al. [10] developed the method for modeling

flexible structures with distributed parameters as reduced-

order models with lumped parameters. Design of flexible

structures is considered as a feedback search procedure

where a new solution is assigned a fitness value and the

genetic algorithm (GA), iterates until a satisfactory design

solution is achieved. In Minato and Ohsumi [11], a build-

ing is assumed to be subjected to random wind and/or

seismic disturbances. Such disturbances are essentially

random and have mutually different characteristics, so that

an effective control method is proposed by constructing

two types of controllers. Itoh et al. [12] presented an

evolutional compensator design for motion control systems

using genetic algorithms. The control system is composed

of a robust two-degrees-of-freedom compensator based on

the coprime factorization description. However, such

learning control systems typically employ neural network

to learn the characteristics or inverse dynamics of
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controlled systems. Network training is performed based

on-line observation of the input and output of the plant.

The operation may take much time due to time-consuming

learning of the back propagation method.

In this paper, a neural classifier combined with active

mass damper (AMD) system is developed and applied to

vibration suppression of a building structure. The control

gains of the neural classifier (NC) controller can be suc-

cessfully tuned online via the genetic algorithm, instead of

solving complicated mathematical equations. The fitness

vibration control for online tuning the control gains of the

neural classifier controller is established by the optimum

design approach.

2 Neural classifier

Among various neural network models, backpropagation

network (BPN) is the most popular for it can learn the

mapping of any complexity. A three-layer feedforward

neural network trained by backpropagation algorithm with

sufficient neurons in the hidden layer has been shown to

have the desired functional approximation capabilities with

an arbitrary degree of accuracy. The neural classifier is a

three-layer feedforward neural network that consists of

input, hidden, and output layers; each layer contains sev-

eral processing elements or perceptions with sigmoidal

nonlinearities.

The basic concept behind the proposed vibration con-

troller is to utilize a multi-layered neural network to obtain

a classification from the system input–output measure-

ments and to produce a control signal proportional to the

classification. What makes the control scheme using neural

classifier unique is that the neural classifier is a classifier

rather than an estimator or identifier of plant dynamics or

direct mapping of trajectories. A backpropagation neural

classifier is shown in Fig. 1. The neural network approach

is to generate an approximation to the classification regions

from input–output measurements (based on the empirical

data) and to use them as feedforward rules to calculate the

appropriate control gain. This is different from many other

neural network controls in that the neural network is a

classifier rather than an inverse of the plant. For instance, in

conventional axis control systems, accurate mathematical

model to construct unstructured uncertainties and unmod-

elled dynamics is difficult, if not impossible. In systems

with coupled nonlinearities, it is quite difficult to obtain the

dynamics of the plant and hence, it is an advantage to

design the controller to be independent of plant dynamics.

Training involves using the error signals, e, between the

plant output signals and the desired signals (trajectories) as

inputs to neural network. The neural classifier contains four

units: preprocessing, neural network classifier, look-up

table, and servo drive unit. The preprocessing part scales

the error signal into the range of [-1, ?1] and partitions it

into several groups. The control gains are first tested by try-

and-error and used in the experiment of shaking table.

After the shaking table moving, the error signal and control

gain are collected for neural classifier training. In this

work, the center and the width of the error group are

determined by a self-organized learning technique from the

given training data to allocate the network resources effi-

ciently by placing the domains of error group covering only

the input–output space where data are present. Kohonen’s

self-organized feature-map algorithm [13] is adopted to

find the center of the error group. Each group clusters those

error signals for which an appropriate control gain can be

determined. These errors serve as inputs to the neural

network classifier. The number of units in the input layer of

the neural classifier is determined by the particular appli-

cation and the number of trajectories to be followed. It

performs the function of classification and/or mapping.

Outputs of the neural network classifier will be mapping

into the error region, in which it indicates the suitable

control gain of look-up table. The look-up table determines

the suitable control gain based upon the output decision

produced from the neural network classifier. In particular,

it relates the possible error regions and their corresponding

control gains. The signal is then fed through the servo drive

unit to generate the proper control gain to drive the plant to

correct the deviation in the plant output. By classifying the

errors into several categories and determining the control

gain depending on the classification, a knowledge-based

control structure is incorporated. The normalized error

magnitudes of a shaking table system are considered

within several domains of the displacement error. The
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Fig. 1 The block diagram of

neural classifier for vibration

control system
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corresponding error centers for classification is depicted in

Table 1. The value of scaling factor and control actions are

determined by the particular characteristics of the controlled

plant and the tracking performance criterion. The control

actions play an important role in tracking because they

determine the region of variation of each control effort. In

general, in order to obtain good tracking performance, con-

trol gains should be determined in tracking process. In par-

ticular, if the error signal falls in the error region, then the

neural classifier will send a message to point out that the plant

is off track, and the tracking controller will make some effort

to direct the plant output back to the right track.

3 System design using genetic algorithm

There have been many algorithms evolved during the last

30 years: genetic algorithms, mainly developed in the USA

by Holland [14], evolutionary strategies, developed in

Germany by Rechenberg [15] and Schwefel [16] and

evolutionary programming [17]. Each of these constitutes a

different approach, however, they are inspired in the same

principles of natural evolution. A good introductory survey

can be found in Fogel [18]. The problem can be solved by

using evolutionary algorithms in Fig. 2.

The fitness function is to evaluate each chromosome and

an important connection between the GA and the system. A

good fitness function can embody the requirement of the

vibration control and evaluate the individuals properly. The

vibration control system must have such performance: at

the early stage, the amplitude can be reduced quickly; at

the final stage, the main objective is to ensure the control

stability. This design idea is useful for the fitness function.

A general way of calculating the fitness is

vðiÞ ¼
ZT

0

aiðtÞdt ð1Þ

f ðiÞ ¼ K � vðiÞ ð2Þ

where f(i) is the fitness of the individual i, K is the

maximum of all the v(j) (j = 1, 2,…, n), ai(t) is the residual

amplitude of the individual i at time t, and T is the upper

limit of the control time which is constant. A new fitness

function is given by

vðiÞ ¼ a
ZT1

0

aiðtÞdt þ b
ZT2

T1

aiðtÞdt þ c
ZT

T2

aiðtÞdt ð3Þ

f ðiÞ ¼ K � a
ZT1

0

aiðtÞdt þ b
ZT2

T1

aiðtÞdt þ c
ZT

T2

aiðtÞdt

0
@

1
A

ð4Þ

where the entire procedure of vibration control is divided

into three stages: 0–T1, T1–T2, T2–T, ai(t) is the amplitude

at time t for the ith individual, T is the upper limit of the

control time, f(i) is the fitness of the individual i, and K is

the maximum of all the v(j) (j = 1, 2,…, n).

The factors a, b, c in Eq. 3 represent the weights used

for the three stages: 0–T1, T1–T2 and T2–T, respectively.

Here the stage 0–T2 focuses on the high deamplification

speed. In order to check this procedure in detail, this stage

is divided into two stages 0–T1 and T1–T2. Dividing the

range of 0–T2 into three or more stages is also allowed if

needed, but this will increase the computation cost.

In the generation operation, the adjustment of these

factors a, b, c can control the direction of the generating

operation. For example, in a certain generation, the best

individual has a low deamplification speed at the stage of

0–T2 but the stability at stage T2–T is good. To improve the

performance of the individual, some genes that can ensure

the high deamplification speed are needed. If the factor a is

increased with the other two factors being reduced, the

genes which are in relation with the deamplification speed

of the stage 0–T1 will have the largest influence on the

fitness value. With this change of the factor a, the gener-

ating operation can find the genes for rapid deamplification

Table 1 Look-up table for

error centers, output patterns

and control action u = ki�|e|

Error

index

Error

center

Control

gain

1 c1 k1

2 c2 k2

3 c3 k3

4 c4 k4

5 c5 k5

6 c6 k6

7 c7 k7

Coding of solutions

Problem Objective function
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Fig. 2 Problem solution using evolutionary algorithms
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speed more feasibly. The adjustment of the factors a, b, c is

discussed in relation to Fig. 3a.

Figure 3a describes the three stages in one vibration

suppressing procedure. Amplitude A0 is the initial value.

The values of amplitudes A1 and A2 are determined by the

operators. The stage with amplitude from A0 to A2 is a stage

at which the deamplification speed is used as the design

criterion. The stage with amplitude from A2 to 0 is the

stability stage. Corresponding to A1 and A2, T1 and T2 can

be calculated, thus the three stages of 0–T1, T1–T2 and

T2–T are obtained.

Compared with Eq. 1, the new fitness function shown in

Eq. 3 can obtain the good gene more quickly. This can be

explained with the help of Fig. 3b. The controller corre-

sponding with individual I can damp quickly from ampli-

tude A1 to amplitude A2 with the time consumption of t1,

but the damping ratio is low from amplitude A2 to ampli-

tude A3 with the time consumption of t3 - t1. Individual II

has the inverse condition with the damping time t2 and

t3 - t2 respectively. Individual I is then better than indi-

vidual II with the fitness function in Eq. 1 and individual II

has less chance to be retained. By improving the factor b in

Eq. 3, the good genes determining the damping ratio in the

period of A2–A3 can be found easily in individual II and a

filial individual III is generated. Individual III has absorbed

the good genes from both parental individuals I and II. In

this paper, a
R T1

0
aiðtÞdt, b

R T2

T1
aiðtÞdt and c

R T
T2

aiðtÞdt can be

determined by the control gains k1, k2 and k3 in the Table 2.

4 Vibration suppression using neural classifier

A one-story shear-building structure model as shown in

Fig. 4 is 300 9 210 9 205 mm and weights 5.4 kg. An

AMD mounted on the top floor has a moving part 1 kg and

maximum stroke ±50 mm. The columns interconnecting

the floor are assumed to be massless and they are flexible to

lateral deformation but rigid in vertical direction. The

structure mass is concentrated at the floor level. Its natural

frequency is at about 1.67 Hz. Two AC servo motors

(MITSUBISHI HC-MF13 and MF73) are used: one for

driving the mass damper mounted on the linear guideway

(THK KR33) and the other for driving the building struc-

ture to simulate earthquake. Table 3 lists the specification

of the AC servo motors. For safety concerns, the following

devices are to ensure the reliability of AMD and avoid any

dangerous malfunction on the building: a mechanical brake

is combined with a limit switch to stop the auxiliary mass

when it overruns a certain position, and an automatic

switching function which cuts off the motor current in case

of abnormal situation or power failure. A low-frequency

accelerometer (KISTLER 8628B5) attached at the top floor

to acquire the acceleration signal. The measurement of

accelerometer is then integrated to yield the velocity signal

by the integrator (G-TECH 350133) which is then inte-

grated and filtered to displacement signal. The data

acquisition is based on LAB-VIEW6.1 (National Instru-

ments) and a PCI-6052E multifunction I/O board.

An experimental study is verified to show the effec-

tiveness of the proposed vibration suppression scheme to

control the building structure. Table 2 contains the infor-

mation about decision rules, error centers, and corre-

sponding control actions employed. The control gains are

expressed by three control gains k1, k2, and k3. The value of

scaling factor and control gains k1, k2 and k3 are determined

by the particular characteristics of the plant and the

vibration suppression performance criterion. In particular,

the control gains k1, k2 and k3 play an important role in the

vibration process because they determine the range of

variation of each control effort. In general, in order to

obtain good vibration suppression performance, k1, k2, and

k3 should be selected by genetic algorithm.

In this study, the previous two steps of the error signals,

[e(k), e(k - 1)], are used as the network input to generate

the proper control action u. Five hundred training sets

(input/output pairs) are collected for network training. A

[2–8] BPN is used for modeling the input/output transfer

function in which the number of hidden neurons is selected

to be adequately small but enough to reduce the error

function within a small percentage. It can be shown that the

sum-squared error decreases when the training number

increases. Within each range, 50 points are randomly

selected as the training pattern. For instance, if the error
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signal falls in the error center group #3, the corresponding

neural network output will be pattern (0 0 1 0 0 0 0) and,

from the look-up table, the control gain u = k3.

To demonstrate the learning capability and the applica-

bility of the proposed controller, various test cases are per-

formed under different operating conditions. The tests are

repeated with the neural classifier controller, fuzzy control-

ler, neural network, and the results are compared with those

of the neural classifier controller with the genetic algorithm.

In the experiments, two kinds of vibration: a free vibration

and a forced vibration are provided. First, the experimental

results due to a free vibration response at the nominal con-

dition are shown in Fig. 5; effective vibration suppression is

obtained by on-line searching using genetic algorithm. In

case k1, k2 and k3 are 9.4, 8.1, and 2.0, a fast and effective

vibration suppression is obtained. Figure 6 shows the free

vibration response with the neural classifier controller and

fuzzy controller switched on at about t = 1.9 second. This

figure shows the free response of the building structure under

an initial displacement in which the settling time of the open-

loop system is more than 12 s whereas that of the closed-loop

system is less than 3 s. The vibration is suppressed effec-

tively. Figure 6 shows that the neural classifier with genetic

algorithm controller has the capability in vibration sup-

pression than the other controllers for most operation

regions. The performances of the free vibration input for

different error center groups are plotted in Fig. 7. It can be

Table 2 Look-up table for error centers, output patterns and control

action u = ki�|e| for vibration control

Error index Error center Control gain

1 -c1 k1

2 -c2 k2

3 -c3 k3

4 c0 k0

5 c3 -k3

6 c2 -k2

7 c1 -k1

Fig. 4 The experimental system of the vibration suppression control

Table 3 Specification of AC servo motor

Servo motor item HC-MF13 HC-MF73

Rated output (kW) 0.10 0.75

Rated torque (N/m) 0.32 2.40

Maximum torque (N/m) 0.95 7.20

Rated speed (rpm) 3,000

Maximum speed (rpm) 4,500

Permissible instantaneous speed (rpm) 5,175

Inertia moment (kg/cm2) 0.03 0.60

Weight (kg) 0.53 3.00

Fig. 5 The vibration suppression response of fitness and generations

for free vibration input

Fig. 6 Performance comparison with different controllers (with

k1 = 9.4, k2 = 8.1, k3 = 2.0)
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clearly seen that the neural classifier with genetic algorithm

controller could maintain vibration suppression effectively

under different error center groups. Figure 8a and b shows

the forced vibration input and the response trajectory with

the neural classifier controller at the nominal condition. A

fast and effective vibration suppression is also obtained. The

building structure with the proposed neural classifier con-

troller is capable of vibration suppression with an AMD

system.

To further validate the effectiveness of the neural net-

work controller, suppressing vibration response under Ji-Ji

Earthquake, Taiwan on 21 September 1999 of Richer scale

7.1 is conducted. Figure 9a shows the time history of

ground acceleration record in which the maximum value is

862 gal (1 gal = 1 cm/s2). Because the experimental

model can not sustain such earthquake magnitude, the

maximum acceleration is reduced to about 20%, 172 gal in

order to simulate the earthquake signal. Figure 9b shows

the vibration response of the building structure under Ji-Ji

Earthquake can reduce largely by using neural classifier

controller with genetic algorithm. The above experimental

Fig. 7 The performances of the free vibration under different error

range groups

Fig. 8 A time-domain comparison of neural classifier using genetic

algorithm controller under random excitation

Fig. 9 A time-domain comparison of neural classifier using genetic

algorithm controller under Ji-Ji Earthquake, Taiwan (21 September

1999)
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results show that satisfactory performance can be achieved

by using the neural classifier controller with genetic

algorithm.

5 Conclusions

Focused on the optimization of the genetic algorithm for

the neural classifier controller used in the active vibration

control, the controller design of vibration control for the

building structure has been developed, and then the char-

acteristics of the vibration suppression control have been

analyzed. Based on the design, a fitness function for the

genetic algorithm has been presented to evaluate the per-

formance of the control gains ki. Through the result anal-

ysis, it can be found that the fitness function with the

control actions can evaluate the performances of the

deamplification speed and the stability at different stages.

Compared with the conventional neural network and fuzzy

controller, the neural classifier controller using genetic

algorithm has also been presented with the effectiveness of

the vibration suppression control. Experimental results

show that the neural classifier controller remains effective

for building structure vibration suppression under

free vibration, forced vibration and Ji-Ji Earthquake

(21 September 1999) excitation.
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