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Abstract For existing kernel learning based semi-super-

vised clustering algorithms, it is generally difficult to scale

well with large scale datasets and robust pairwise con-

straints. In this paper, we propose a new Non-Parametric

Kernel Learning (NPKL) framework to deal with these

problems. We generalize the graph embedding framework

into kernel learning, by reforming it as a semi-definitive

programming (SDP) problem, smoothing and avoiding

over-smoothing the functional Hilbert space with Lapla-

cian regularization. We propose two algorithms to solve

this problem. One is a straightforward algorithm using SDP

to solve the original kernel learning problem, dented as

TRAnsductive Graph Embedding Kernel (TRAGEK) learn-

ing; the other is to relax the SDP problem and solve it with

a constrained gradient descent algorithm. To accelerate the

learning speed, we further divide the data into groups and

used the sub-kernels of these groups to approximate

the whole kernel matrix. This algorithm is denoted as

Efficient Non-PArametric Kernel Learning (ENPAKL). The

advantages of the proposed NPKL framework are (1)

supervised information in the form of pairwise constraints

can be easily incorporated; (2) it is robust to the number of

pairwise constraints, i.e., the number of constraints does

not affect the running time too much; (3) ENPAKL is

efficient to some extent compared to some related kernel

learning algorithms since it is a constraint gradient descent

based algorithm. Experiments for clustering based on the

learned kernels show that the proposed framework scales

well with the size of datasets and the number of pairwise

constraints. Further experiments for image segmentation

indicate the potential advantages of the proposed algo-

rithms over the traditional k-means and N-cut clustering

algorithms for image segmentation in term of segmentation

accuracy.

Keywords Kernel learning � Semi-definitive

programming � Graph embedding � Pairwise constraint �
Semi-supervised learning

1 Introduction

Semi-supervised clustering based on kernel learning is a

popular research topic in machine learning since one can

incorporate the information of a limited number of labeled

data or a set of pairwise constraints into the kernel learning

framework [1]. The reason is that for clustering, the pair-

wise constraints provide useful information about which

data pairs are in the same category and which ones are not.

To learn such kinds of kernel matrices, Kulis et al. [2]
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proposed to construct a graph based kernel matrix which

unifies the vector-based and graph-based semi-supervised

clustering. A further refinement on learning kernel matrices

for clustering was investigated by Li et al. [3]. In their

approach, data are implicitly projected onto a feature space

which is a unit hyperball, subjected to a collection of

pairwise constraints. However, the above clustering algo-

rithms via kernel matrices either can not scale well with the

increasing number of pairwise constraints and the amount

of data, or lacks theoretical guarantee for the positive semi-

definite property of the kernel matrices. In another aspect,

Yueng et al. [4] proposed an efficient kernel learning

algorithm through low rank matrix approximation. How-

ever, in their algorithm, the form of kernel matrix is

assumed to be linear combination of several base kernel

matrices. Note that this might reduce the dimension of the

hypothesis kernel space, we call such kinds of algorithms

parametric kernel learning. In addition, Cortes et al. [5]

proposed a kernel learning algorithm by taking the non-

linear combinations of kernels, which is a generalization of

the linear combination case but still lies in the framework

of parametric kernel learning. Addressing these two limi-

tations is the major purpose of this paper.

On the other hand, we note that many algorithms based

on the graph embedding framework often achieve an

enhanced discriminant ability by utilizing the marginal

information, e.g., making the dissimilarity data points near

the margin as far as possible and meanwhile compacting

the points in the same class [6, 7]. It is therefore worth-

while to generalize the graph embedding framework into

kernel learning.1

Based on the aforementioned goals, in this paper we

propose a new scalable kernel learning framework NPKL

(Non-Parametric Kernel Learning with robust pairwise

constraints), and apply it for semi-supervised clustering.

First, we generalize the graph embedding framework on a

feature space which is assumed to be a possibly infinite

subspace of the l2 Hilbert space with unit norm, which is

similar to [3]. Then the unknown feature projection func-

tion / is implicitly learned by transforming the criterion of

the graph embedding (i.e., maximizing the sum of distances

of between-class data pairs while minimizing that of

within-class data pairs) into an SDP problem. To get

smoother solution of the predictive function, smoothing

technique using some kind of Laplacian regularizer is

introduced. By this, ideally, data from the same class

would be projected into the same location in the feature

space. Meanwhile, the distances between the locations of

different classes should be as large as possible, as illus-

trated in Fig. 1. We propose two algorithms to solve this

problem. One is to optimize the objective function directly

by solving an SDP problem, which we call TRAnsductive

Graph Embedding Kernel (TRAGEK) learning , since the

SDP problem is derived from a transductive graph

embedding formulation. In TRAGEK, it is not necessary to

explicitly specify which pair of data points should lie close,

and the running time is much less sensitive to the number

of pairwise constraints than Li et al.’s work [3]. However,

the SDP problem in TRAGEK limits the application of the

proposed algorithm to large scale datasets. To alleviate this

problem, we propose to solve the SDP problem via a

constrained gradient descent algorithm that iteratively

projects the unconstrained solutions to the cone formed by

the constraints. Furthermore, we divide the whole dataset

into groups of sub-data sets, and the corresponding

sub-kernels are learned for these sub-data sepa-

rately. Finally, the global kernel matrix is obtained through

the combination of these sub-kernels. In this way, not

only is the positive semi-definite property of the kernel

matrix well preserved, but also the computational com-

plexity scales at most linearly with the size of the dataset,

which is very efficient. We call this algorithm Efficient

Non-PArametric Kernel Learning (ENPAKL).

The remaining of this paper is organized as follows.

Section 2 reviews some related work for clustering using

kernel learning. Section 3 formulates our problem and

presents the TRAGEK algorithm. Section 4 elaborates the

efficient algorithm ENPAKL for our problem. And experi-

ment results are shown in Sect. 5. Finally, Sect. 6 con-

cludes the paper.

2 Clustering and kernel learning

Learning with kernels [8] is a popular research topic in

machine learning. In this section, however, rather than

reviewing the theoretical aspects of kernel learning algo-

rithms such as [9, 10], and the online kernel learning such

as [11], we put our emphasize on the applications of kernel

learning algorithms. More specifically, we discuss the work

of kernel learning for semi-supervised clustering. To a

certain extent, kernel learning for clustering can be viewed

as metric learning, because the kernel matrix can be

regarded as some specific distance between data points

equipped with a specific metric.

For traditional clustering algorithms, the most fre-

quently used ones include k-means and fuzzy k-means

[12]. Recently, Yang et al. [13] proposed an improved

fuzzy k-means algorithm to assign a value of 1 to data pairs

with a defined cluster score. Moreover, Trappey et al. [14]

1 Note that although we want to learn a kernel matrix from the aspect

of graph embedding, it has little relationship with some algorithms

using graph embedding framework such as marginal factor analysis

(MFA) [6]. The reason is that such kinds of algorithms aim at

supervised learning for classification, thus there is no need to compare

the proposed algorithm with them.
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presented a fuzzy ontology schema for hierarchically

clustering of documents, which can solve the inconsistent

and ineffective problem encountered by the traditional

keyword-based methods. For the traditional k-means clus-

tering algorithm, Xiong et al. [15] proposed to use the

coefficient of variation (CV) as some criterion to analysis

the performance of k-means algorithm under skewed data

distribution.

To utilize label information to enhance the cluster per-

formance, semi-supervised clustering approaches were

proposed, which can be roughly categorized into con-

straint- and metric-based ones. The former utilizes either

labeled data or pairwise constraints to improve the per-

formance of clustering [16, 17], while the latter learns a

more rational metric to fit the constraints by utilizing the

provided label information [18, 19], thus the semi-super-

vised kernel learning is closely related to the clustering

algorithms.

More specifically, Wagstaff et al. [20] modified the

k-means algorithm by considering pairwise similarities and

dissimilarities, known as the constrained k-means. To boost

the performance of constrained k-means, Hong et al. [21]

refined the assignment order of this algorithm by ranking

all instances in the dataset according to their clustering

uncertainty. Based on the hidden Markov random field

(HMRF), Basu et al. [16] used the provided pairwise con-

straints in the objective function for semi-supervised

clustering, while Lu and Leen [22] proposed a clustering

algorithm with the must-link and cannot-link constraints

using the Gaussian mixture model (GMM). Xing et al. [19]

learned a distance matrix for clustering by explicitly min-

imizing the distances between similar samples and maxi-

mizing those between dissimilar ones. Bar-Hillel et al. [23]

proposed a simpler but more efficient algorithm using the

relevant component analysis (RCA). Furthermore, they

proposed another metric learning algorithm [24] that learns

a non-parametric distance function, but without the guar-

antee that the function is actually a metric.

Although kernel methods have been studied for

decades, not much work has focused on learning a

non-parametric kernel using only the training data. In

contrary, most of the work focuses on learning the kernel

from some predefined base kernels [25]. Recently, kernel

learning for clustering has attracted more and more

attentions because one can easily incorporate some useful

information into the kernel learning framework [2, 26].

Earlier kernel learning algorithms mainly focus on linear

or non-linear combination of some base kernels [27].

For example, Yeung et al. [4] proposed a scalable kernel

learning algorithm in which some low rank kernel

matrices obtained by the eigenvectors of the initial

kernel matrix are used as base kernels, and a collection of

optimal weights of the base kernels need to be learned.

Cortes [5] proposed to learn the kernel matrix by defining

some non-linear terms of the basis kernels and use a

projection-based gradient descent algorithm to learn the

weights. One disadvantage of this algorithm is that only

the must-link constraint information is incorporated. To

employ both must-link and cannot-link constraint infor-

mation, Hoi et al. [28] proposed a kernel learning algo-

rithm by formulating it into a semi-definite programming

(SDP) problem. To the best of our knowledge, this is the

first non-parametric kernel learning algorithm that does

not need to explicitly take the base kernels into consid-

eration. Latter, an efficient algorithm for solving the SDP

problem mentioned above is proposed by Zhuang et al.

[29] by introducing an extra low rank constraint on the

objective function. Furthermore, assuming that the feature

space is a unit hyperball in which must-link data pairs are

constrained to be one point and cannot-link pairs should

be orthogonal with each other, Li et al. [3] proposed

another SDP based algorithm for kernel learning. Note

that one problem for the SDP related algorithms intro-

duced above is the computational complexity, how to

avoid this complexity is one of the major concerts of this

paper.
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projection function /, data from

two classes are projected from
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three-dimensional feature space

in which each point corresponds

to one class
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3 TRAGEK: transductive non-parametric kernel

learning

Our non-parametric kernel learning problem assumes that

the feature space of the data is a subspace of the l2 Hilbert

space with unit norm. More specifically, given a data point

x, there exists a projection / from the data space to the

feature space endowed with a unit norm, i.e., k/ðxÞk ¼ 1:

In this way, data are mapped to the surface of a unit hy-

perball in which data of different classes can be separated

easily. To find such a mapping function /, we tried to

generalize the graph embedding [6] into the kernel space

and transformed the problem into the semi-definite pro-

gramming with pairwise constraints. We further introduced

some regularization terms such as the Laplacian regularizer

to smooth the prediction function. Finally, the kernel

k-means clustering algorithm is performed in the learned

kernel matrix for clustering.

3.1 Transductive kernel learning with graph

embedding

One goal of the graph embedding is to learn a low-

dimensional discriminant subspace in which the sum of

within-class distances is minimized meanwhile that of

between-class distances is maximized [6]. This idea is

formulated in Eq. 1:

Fg ¼ min
Y

trfYLYTg
trfYLpYTg ; ð1Þ

where Y ¼ ðy1; y2; . . .; yMÞ; yi 2 <m is the data

representation in the feature space, M is the number of

samples. L = D - W and Lp = Dp - Wp are two graph

Laplacian matrices with D(i, i) =
P

jW(i, j) and

Dp(i, i) =
P

jW
p(i, j) representing two diagonal matrices.

Two similarity matrices W and Wp represent the within-

class relationship and between-class relationship of data

points, respectively, which are defined according to the

pairwise constraints as:

Wði; jÞ ¼ 1; i and j belong to the same class

0; otherwise.

�

;

Wpði; jÞ ¼ 1; i and j belong to different classes

0; otherwise.

� ð2Þ

For better generalization, the two quadratic forms in

Eq. 1 are lifted into linear forms in the kernel space as:

F1 ¼ trfYLYTg ¼ trfLYT Yg ¼ hl;Kvi; ð3Þ

where l = vec(L) is the vectorization of the matrix L, and

Kv
2 is the vectorization of the kernel matrix K defined by

Kði; jÞ ¼ hyi; yji:

In contrast to the graph embedding, the goal of TRAGEK

is to cluster data in the feature space defined on the unit

norm subspace of the l2 Hilbert space. It is easy to get the

inner product of two vector in the feature space using the

re-producing property of the re-producing Hilbert space:

Kð/ðxÞ;/ðyÞÞ ¼ k/ðyÞð/ðxÞÞ ¼ h/ðxÞ;/ðyÞi; ð4Þ

where k/ðyÞð�Þ 2 H; x and y are two data points in the data

space, / is the mapping function to be learned.

Furthermore, in our transductive inference, the matrices

W and Wp are defined using the pairwise constraints as in

Eq. 2. Based on this, the objective function of TRAGEK is

to kernelize the criterion of graph embedding [6] as:

Ft ¼ min
K

hl;Kvi
hlp;Kvi

s.t. lT Kv [ 0; lpT Kv [ 0;

Kði; iÞ ¼ 1; for all i;

Kði; jÞ� 1; for all i; j:

ð5Þ

The optimization function means that the learned kernel

K should cluster within-class data as close as possible and

between-class data as far as possible in the feature space.

The first constraint is required according to the positive

semi-definite property of the Laplacian matrix L, and the

second and third constraints stem from the assumption that

data in the feature space should lie on the surface of a

hyperball with unit radius.

3.2 Conic optimization programming relaxation

To transform this problem into a convex optimization

problem which has a unique optimal solution and polyno-

mial time computational complexity, we first prove Theo-

rem 1 as follows.

Theorem 1 The nonlinear optimization problem defined

in Eq. 5 can be relaxed to a second order cone pro-

gramming as:

min : ftg

s:t: t þ hlp;Kvi�
hl;Kvi

t � hlp;Kvi

�
�
�
�

�
�
�
�;

lT Kv [ 0; lpT Kv [ 0;

Kði; iÞ ¼ 1; for all i;

Kði; jÞ� 1; for all i; j:

ð6Þ

Proof we first relax the Ft in Eq. 5 as:

F0t ¼ min
f

ðhl;KviÞ2

4 � hlp;Kvi
ð7Þ

This does not bring a significant reduction to the

optimization formula since both hl, Kvi and (hl, Kvi)2 are2 We use such kind of convention without declaration below.

86 Int. J. Mach. Learn. & Cyber. (2012) 3:83–96

123



monotonously increasing when lTKv [ 0. Now let’s

introduce an extra variable t such that t� ðhl;KviÞ2
4�hlp;Kvi : As a

consequence, the optimization equation in Eq. 7 is

equivalent to:

min : ftg

s.t. t� ðhl;KviÞ2

4 � hlp;Kvi
:

ð8Þ

Furthermore, the constraint in Eq. 8 can be further

transformed as:

4t � ðhlp;KviÞ� ðhl;KviÞ2

, ðt þ hlp;KviÞ2�ðhl;KviÞ2 þ ðt � hlp;KviÞ2;

which is a second order cone constraint:

t þ hlp;Kvi�
hl;Kvi

t � hlp;Kvi

�
�
�
�

�
�
�
�: ð9Þ

Combining Eqs. 7, 8 and 9 we get the conclusion in

Theorem 1.

To further simplify Eq. 5, we here introduce Theorem 2.

Theorem 2 If K is a positive semi-definite matrix of size

n 9 n, then

Kði; jÞ� maxfKðk; kÞg; 1� i; j; k� n: ð10Þ

Proof Since matrix K is positive semi-definite, we can

decompose K as:

K ¼ ðk1; k2; . . .; knÞTðk1; k2; . . .; knÞ; ð11Þ

where ki is a vector of arbitrary dimension. So we have:

Kði; jÞ ¼ hki; kji

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hki; kii � hkj; kji

q

� maxfKði; iÞ;Kðj; jÞg
� maxfKðk; kÞg; 1� k� n:

ð12Þ

By Theorem 2, we can introduce an extra positive semi-

definite constraint to replace the last n2 inequality

constraints in Eq. 6, resulting in:

min : ftg

s.t. t þ hlp;Kvi�
hl;Kvi

t � hlp;Kvi

�
�
�
�

�
�
�
�;

K<0;

Kði; iÞ ¼ 1; for all i;

lT Kv [ 0; lpT Kv [ 0:

ð13Þ

3.3 Smoothness controlling

While the number of constraints has been greatly reduced,

it is necessary to refine Eq. 13 since the current prediction

function is not smooth enough in the Hilbert space. Note

that if all the elements of K in Eq. 13 were the same, it

would lead to hl, Ki = 0 and hlp, Ki = 0. Consequently,

the optimization problem would be infeasible since there

were no interior points in the second order cone. We regard

this case as over-smoothness. Therefore, we propose two

strategies to smooth the predicted function and avoid over-

smoothness.

Note that the ‘‘smoothness’’ of the manifold, which is

measured by the Laplace–Beltrami operator on Rie-

mannian manifolds, can be substituted by a discrete ana-

logue operator defined as the graph Laplacian on the graph

[30]. Therefore, we can employ Laplacian regularizer,

denoted as S, to smooth the prediction function in its Hil-

bert space. Similar to Li et al.’s work [3], we here intro-

duce a refined regularizer by incorporating a global

normalized graph Laplacian3 into our optimization frame-

work, which is defined as:

S ¼
Xn

i;j¼1

W 0ði; jÞ /ðxiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0ði; iÞ

p � /ðxjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0ðj; jÞ

p

�
�
�
�
�

�
�
�
�
�

2

¼ trfðI � ðD0Þ�
1
2W 0ðD0Þ�

1
2ÞKg

¼ h�l;Kvi

ð14Þ

where K, Kv are defined as the same as the previous ones, I

is the identity matrix, W0 is defined as:

W 0ði; jÞ ¼ e�
kxi�xjk2

2r2 ; i 6¼ j
0; i ¼ j;

(

ð15Þ

where r is a scale factor, ðI � ðD0Þ�
1
2W 0ðD0Þ�

1
2Þ is a

normalized Laplacian matrix corresponding to W0, and �l ¼
vecðI � ðD0Þ�

1
2W 0ðD0Þ�

1
2Þ is the vectorization of the

Laplacian matrix. Obviously, this formulation enforces

smoothness over all the data globally. Finally, adding this

term as an regularizer of the optimization problem in

Eq. 13 results in the following optimization problem:

min : ft þ kSg

s.t. t þ hlp;Kvi�
hl;Kvi

t � hlp;Kvi

�
�
�
�

�
�
�
�;

K<0;

Kði; iÞ ¼ 1; for all i

hl;Kvi[ 0; hlp;Kvi[ 0;

ð16Þ

where k is a parameter controlling the degree of smooth-

ness on the predicted function.

As we stated before, over-smoothness is likely to hap-

pen. In addition, dropping the last two constraints

3 More satisfactory results might be attained if employing more

sophisticated regularizers.
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lTKv [ 0; lp
TK

v [ 0 is prone to numerical problem.4 We

solve this by adding two extra terms into the optimization

framework.

Remember that our goal is to make within-class samples as

close as possible, and between-class samples as far as possible,

this can be formulated in the following two formulas:

f1 ¼ min trfYLYTg � minf�hw;Kvig; ð17Þ

f2 ¼ max trfYLpYTg � minfhwp;Kvig; ð18Þ

where w, wp are the vectorization forms of the two similarity

matrices W and Wp defined in Eq. 2. Denote these two

regularizers as S1 = - hw, Kvi and S2 = hwp, Kvi, we can

incorporate them into the objective function to get the final

optimization formula as.

min : ft þ kSþ k1S1 þ k2S2g

s.t. t þ hlp;Kvi�
hl;Kvi

t � hlp;Kvi

�
�
�
�

�
�
�
�;

K<0;

Kði; iÞ ¼ 1; for all i;

ð19Þ

where the two parameters k1 and k2 control the weights of

the two graphs. As the two regularization terms are intro-

duced, the two terms hl, Kvi and hlp, Kvi will be enforced

larger than zero. Therefore, we can drop the last two

constraints in Eq. 16 in practice without causing any

problem. Furthermore, a remarkable advantage of Eq. 19 is

that it is a conic optimization programming (also SDP

problem) which can be solved using the popular conic

optimization software such as SeDuMi, which is of poly-

nomial time complexity and has a theoretically proven

Oð
ffiffiffi
n
p

logð1�ÞÞ worst-case iteration bound [31]. TRAGEK is

illustrated in Algorithm 1.

4 ENPAKL: an efficient kernel learning algorithm

Although TRAGEK is a convex optimization problem

which means that there exists a global optimal solution, the

computational cost is often relatively high and it often

results in unstable solutions for large datasets, furthermore,

it is sensitive to the parameter settings such as the choices

of k, k1, k2, etc. In this section, we propose to resolve these

problems by two strategies. Firstly, we propose a con-

strained gradient descent based algorithm to make the

learning procedure much stable and efficient. Secondly, we

reduce the large-scale kernel learning problem into sub-

kernel learning and combine these sub-kernels to

approximate the global kernel matrix, this trick makes the

computational complexity rely linearly on the number of

data points. Experimental results in Sect. 5 show that the

proposed strategies can approximate the true kernels well.

4.1 Constrained gradient descent

Note that the original optimization problem of Eq. 19 is not

efficient enough, by taking the advantage of the iterative

projection algorithm [19], we propose a constrained gra-

dient descent based algorithm for training. The algorithm

iteratively projects the solution obtained by gradient des-

cent to the cones formed by the constraints.

Specifically, we want to avoid the SDP formulation

above to reduce the computational complexity, thus we

reformulate the original kernel learning problem of Eq. 19

in the following form:

F0 ¼ min
K

hl;Kvi
hlp;Kvi

s.t. K<0;

Kði; iÞ ¼ 1; for all i:

ð20Þ

Taking the logarithm of F0, and using the Laplacian

smoother S in Eq. 19 as a regularization term, the objective

function of ENPAKL is:

F ¼ min
K
flogðhl;KviÞ � logðhlp;KviÞ þ k logðhl;KviÞg

s.t. K<0;

Kði; iÞ ¼ 1; for all i:

ð21Þ

It is straightforward to derive the gradient of F in

Eq. 21:

o

oKv
F ¼ l

hl;Kv
� lp

hlp;Kvi
þ k

l

hl;Kvi
: ð22Þ

Thus, we can update the kernel matrix Kv by constrained

gradient descent as:

Kt
v ¼ Kt�1

v � x � o

oKt�1
v

F

s.t. Kt
<0;

Ktði; iÞ ¼ 1; for all i;

ð23Þ

4 Note that for two positive semi-definite matrices A and

B, trfABg� 0 holds, but not always [0. We thus can not drop the

last two constraints directly. Otherwise it is easy to run into numerical

problem. Because the constraint still holds if hlp, Kvi is equal to a

small enough positive constant, but this is far from the goal that

hlp, Kvi should be as large as possible.
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where x is the step size for the current update, and t is the

iteration index. Actually, we can regard Eq. 23 as the

optimization problem on manifolds [32], however, instead

of solving this problem directly on manifolds, we use the

projection method by iteratively projecting the updated

values into the cones formed by the constraints until con-

verged. The constrained gradient descent algorithm is

described in Algorithm 2.

Note that in Algorithm 2, the solution of Eqs. 24 and 25

can be calculated based on the following theorems:

Theorem 3 The solution to Eq. 24 is to set all the

negative eigenvalues of Kv to 0, that is, K =

Vmax(D, 0)VT, where V, D are eigenvectors and eigen-

values of Kv.

Theorem 4 The solution to Eq. 25 is equal to K0, except

that all the diagonal elements of K0 are set to 1.

Similar problem and proof for Theorem 3 can be found

in [33]. Here we prove Theorem 4.

Proof of Theorem 4 Unfolding the norm and omitting the

terms independent of K0, we can rewrite Eq. 25 as:

K 00 ¼ arg minKtrfKKT � 2KK 0
Tg

s.t. trfKEig ¼ 1:
ð26Þ

where Ei is a matrix of the same size with K, and with all

elements being 0 except the ith element of the diagonal

being 1. Then the corresponding Lagrangian function with

the corresponding Lagrangian multipliers ki’s is:

gðK; kÞ ¼ tr KKT � 2KK 0T �
X

i

kiðtrfKEig � 1Þ
( )

:

ð27Þ

Taking the derivative of g(K, k) with respect to K, we

have:

o

oK
gðK; kÞ ¼ 2K � 2K 0 �

X

i

kiEi

¼ 2K � 2K 0 � diagðkÞ:
ð28Þ

Setting Eq. 28 to zero leads to:

K ¼ K 0 þ 1

2
diagðkÞ: ð29Þ

Remember the constraint is diagðKÞ ¼ 1; where 1 is a

vector with all elements being 1, and note the form of the

solution of K in Eq. 28, we can get the solution K by setting

the diagonal elements of K0 to 1. This completes the proof.

4.2 Learning the global kernel from sub-kernels

In this section, the second strategy to improve the effi-

ciency of the proposed algorithm is presented. First note

that it is not scalable and efficient enough for large datasets

using Algorithm 2 directly, since we need to perform an

eigen-decomposition for the current kernel matrix to solve

Eq. 24, which is time consuming when the number of data

points is large. Therefore, we propose to approximate the

global kernel matrix using local kernel matrices (or sub-

kernel matrices) formed by a subset of data points.

Suppose we start with a small subset of data (namely, m

data points) denoted as D ¼ fx1; x2; . . .; xmg; and the cor-

responding sub-kernel matrix KD has been learned using

the constrained gradient descent algorithm described in

Algorithm 2. The idea is to approximate the other elements

of the global kernel matrix using this sub-kernel matrix.

Note that because data of the same class in the feature

space H is assume to be flat (they are clustered into one

point ideally in the feature space), it is reasonable to

approximate all other data points /(xi) using the linear

combination of this subset of data /(D), that is: /
(xi) =

P
jwij/(xj), where wij are the weights to be learned.

There are two situations for xi 62 D :

1. If xi has at least one link constraint with some points xj

in D, according to our assumption, this means in the

feature space, /ðxiÞ ¼ /ðxjÞ; xj 2 D: Taking all such

points into consideration, we relax /(xi) to be the

linear combination of other points in the feature space,

then we get /(xi) =
P

jn/(xj), where wij = n is equal

for all xj.

2. If xi has no link constraints with the points in D, then

we approximate /(xi) using the weighted combination

of /(D) in the feature space. We assume these weights

should be approximately the same with those learned

by minimizing the reconstruction error in the original

data space. This makes our approximation different

from the one proposed by Yueng et al. [4]. While the

objective function for wij is similar to local linear
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embedding (LLE) [34], the definition of neighborhood

is different. The objective function for wij is:

E ¼ min
wij

X

i

xi �
X

j2NðiÞ
wijxj

�
�
�
�
�
�

�
�
�
�
�
�

2

; ð30Þ

where NðiÞ is defined to be the k nearest data points of xi

except for those having cannot link constraints with xi.

To sum up, the weights wij’s are defined as:

wij ¼

1 xi;xj 2 D and i¼ j;
1
T xi 62 D; xj 2 D has a linked constraint ;

Eq: ð30Þ xi 62 D; xj 2 D is xi’s neighboring point,

but has no cannot linked constraint;

0 otherwise;

8
>>>>>><

>>>>>>:

where T is the number of link constraints for xi 62 D and

xj 62 D: Thus, the whole dataset in the feature space can now

be written in the matrix form as:

/ðXÞ ¼ /ðDÞWT ; ð31Þ

where X is the whole dataset, W ¼ ðwT
1 ;w

T
2 ; . . .;wT

n Þ
T ;wi ¼

ðwi1;wi2; . . .;wiMÞT : Then, the whole kernel matrix can be

approximated using Eq. 31 as:5

KX ¼ /ðXÞT/ðXÞ ¼ WKDWT : ð32Þ

From Eq. 32 it can be seen that the kernel matrix KX of

the whole dataset can be approximated by a sub-kernel

matrix KD. However, given arbitrary must-link and cannot-

link constraints, only one sub-kernel matrix might not

approximate the whole kernel matrix well because all the

pairwise constraints might not be included in one sub

dataset. To solve this problem, we propose a sub-data set

picking schema that scales at most linearly with the size of

the dataset to partition the whole dataset into several sub-

data sets, then we use the corresponding sub-kernels to

approximate the whole kernel. It can be proved that the

computational complexity for this strategy is at most O(n)

times larger than that of using only one sub-kernel.

In this schema, we use the number of constraints

(degrees of nodes in the graph) in the sub-data as the

measure of the prior information this sub-data contains.

The larger degree of one data point, the more prior

information it has, and thus the higher probability the data

point should be used to learn the sub-kernel. This sub-data

set picking schema is described in Algorithm 3.

We can see from Algorithm 3 that the number of sub-

data sets scales at most linearly with the number of the

whole data points, thus is very efficient. Suppose at last we

divide the whole dataset into L sub-data sets, and for each

of such sub-data set a sub-kernel is learned by some kernel

learning algorithms such as Algorithm 2, also we denote

K1;K2; . . .;KL as the approximated kernel matrices calcu-

lating using Eq. 32, then the final kernel matrix for the

whole dataset is set to be:

K ¼
X

i

aiKi; s.t.
X

i

ai ¼ 1; ð33Þ

where ai is the weight for the ith kernel. In the experiments,

we set ai proportional to the total degree of their data points.

Note that this algorithm is efficient because it solves the

original SDP problem of TRAGEK using a constraint gra-

dient descend based algorithm, we will compare these two

algorithms with respect to their efficiency and accuracy for

clustering in the experiments.

5 Experiments

To test the proposed kernel learning algorithms TRAGEK

and ENPAKL, we employed them for clustering and also

used ENPAKL for image segmentation. We carried out the

evaluations on two simulated datasets and ten datasets from

the UCI machine learning repository [35]. The details of

these datasets are tabulated in Table 1, where the first nine

datasets have been often used in evaluating the perfor-

mance of semi-supervised clustering algorithms [3, 28].

We compared ENPAKL with the PCP algorithm [3] and the

SSKK algorithm [2] as well as the traditional k-means

algorithm. We also investigated the influence of the num-

ber of pairwise constraints to the clustering performance

for ENPAKL. To measure the clustering performance, we

adopted the metric defined in [28]:

acc ¼
X

i [ j

2 � IðIðci; cjÞ; Iðĉi; ĉjÞÞ
nðn� 1Þ ; ð34Þ

where Iða; bÞ is an indicator function returning 1 if

a = b, and 0 otherwise, c denotes the true cluster

5 There are two points to be declared here. One is that it is easy to

prove that KX in Eq. 32 is a positive semi-definite matrix if KD is

positive semi-definite, this property makes KX of the whole dataset

still be a kernel matrix, which does not violate our objective. The

second point is that for unknown points, in order to constrain the

feature space be a hyperball, we need to normalize the weights

calculated in Eq. 30 by dividing the weights by a normalized scaler

wi
TKDwi, that is, wi ¼ wi

wT
i KDwi

:
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membership and ĉ denotes predicted cluster membership,

and n is the number of samples. Without loss of generality,

moreover, we set parameters k, k1 and k2 in Eq. 19 to 1,

and the scale factor r in Eq. 15 to the average pairwise

distance of the data set.

Other than this, we also applied the proposed ENPAKL

together with the k-means and N-cut algorithms [36] on the

MSRC Object Category Image Database (v2) [37] for

image segmentation. Details are described in Sect. 5.5.

5.1 An illustrative experiment

To show that the proposed algorithms can propagate label

information through the datasets, so that data in different

classes can be separated as far as possible and those in the

same class are clustered as close as possible, we run

TRAGEK on the two synthetic datasets as used in [28], i.e.,

the chessboard and double-spiral datasets in Fig. 2. For

better illustration, we rearranged the order of the data such

that the first part of the data matrix belongs to one class and

the last part to the other. It can be seen in Fig. 2 that the

two classes are well separated. More specifically, we

observed that the elements in the learned kernel K corre-

sponding to the same class tend to 1 (black), while those

corresponding to different classes tend to -1 (white). This

means that the data from different classes are projected

onto the opposite points on the hyperball of the feature

space.

5.2 On small datasets

To compare the proposed kernel learning algorithms with

some related algorithms for clustering, we tested them on

nine small-scale data sets in Table 1 ranging from glass to

wine. For ENPAKL, we set B = 20, R = 10 in Algo-

rithm 3. Note that pairwise constraints are required for

TRAGEK, ENPAKL, PCP, and SSKK, so we randomly

generated k must-link constraints in each class and k can-

not-link constraints between each two classes, where k

ranges from 10 to 100 with an interval of 10. We thus have

a total of
cðcþ3cÞk

2
pairwise constraints for each experiment

with a dataset of c classes. For each k, we randomly gen-

erated 20 different pairwise constrains, resulting in 20

different realizations of the pairwise constraints. The

reported results were the average of the 20 different real-

izations together with 10 repetitions in the kernel k-means

clustering step in Algorithm 1 for each pairwise constraint

realization. The results are illustrated in Fig. 3.

We can observe from Fig. 3 that:

• TRAGEK outperforms the other three algorithms in all

datasets except for the Iris and Wine datasets when

the number of pairwise constraints is \30.

• PCP is worse than TRAGEK in clustering accuracy in

most cases and it runs into numerical problems when

the number of pairwise constraints is large or when

some noisy constraints (constraints that are wrongly

labeled) are added. Furthermore, we observed in the

experiments that the running time of TRAGEK fluctu-

ated little when varying the number of pairwise

constraints, which can be seen in Sect. 5.4.

• ENPAKL approximates amazingly well to the original

kernel learning problem TRAGEK, sometimes even gets

better performance. Another merit of ENPAKL is that it

is much faster than TRAGEK and PCP. We will give

some examples below.

5.3 On larger datasets

Note that the datasets used in Sect. 5.2 are small, though

often used in evaluating semi-supervised clustering algo-

rithms [3, 28]. TRAGEK and other algorithms such as PCP

can not scale well with large datasets and robust pairwise

constraints. To evaluate the scalability of the proposed

ENPAKL algorithm, we performed the experiments on three

larger datasets described in the last three rows of Table 1.

Theoptdigits dataset is a subset of a large digital dataset,

and it contains the digits from 0 to 4 with each class con-

taining 200 instances (Digital04); Waveform also

comes from a large dataset and it has 1,800 instances.

The intrinsic disadvantage of PCP prevents it from being

applied on such kind of large data with robust constraints. In

order to enable it to work, we reduced the number of con-

straints by sampling. Specifically, the number of sampled

constraints was set to the final number of constraints after the

reduction in TRAGEK. We repeated the experiments for ten

times with random sampling for the PCP algorithm, and

Table 1 Twelve datasets used in our experiments

Data set # Classes Dimension # Samples

Chessboard 2 2 100

Double-spiral 2 3 100

Glass 7 9 214

Heart 2 13 270

Iris 3 4 150

Protein 6 20 116

Sonar 2 60 208

Soybean 4 35 47

Wine 3 13 178

Wisconsin 2 30 720

Digital04 5 6 1000

Waveform 3 21 1800

The first two databases are artificial datasets, the rest ones are from

the UCI machine learning repository
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picked up the best result and reported as the performance of

PCP, denoted asPCPSample. In this experiment, we varied

the number of pairwise constraints relative to the number of

total data samples, and the parameters in Algorithm 3 were

set to B = 100, R = 100. Also ENPAKL1 is a variant of

ENPAKL by replacing the base sub-kernel learning

algorithm in Algorithm 2 with PCP. The results for these

algorithms are shown in Fig. 4.

It is found in the experiments that:

• ENPAKL is a little faster than ENPAKL1, meanwhile

both of them are much faster than PCP and SSKK.

• TRAGEK is apparently superior to PCP and SSKK,

where these two algorithms even fail to compete with

the traditional k-means algorithm.

• The performances of ENPAKL and ENPAKL1 are

competitive, and represent the best algorithms in terms

of effectiveness and efficiency.

5.4 Running time

This section shows the running time of several related

algorithms and we claim that the running time of TRAGEK

is not sensitive to the number of pairwise constraints. To

test this, we perform experiments on the Heart dataset and

the Chessboard dataset with increasing number of pairwise

constraints from 10 to 100 with an interval of 10. The

results are shown in Fig. 5a and b. We can see from the

figures that as the number of pairwise constraints increases,

the running time of TRAGEK varies little, whereas that of

PCP increases dramatically.

Next we examined the efficiency of ENPAKL. We used

the Wisconsin dataset and recorded the corresponding

running time. Note that PCP is too time consuming when

the constraints are large, thus we do not show its running

time here. We compared ENPAKL with TRAGEK, the

results are shown in Fig. 5c. Obviously, ENPAKL is much

more efficient than TRAGEK in term of computational

complexity6.

5.5 Image segmentation

In this section we applied ENPAKL for image segmentation

by doing clustering on images. We tested our algorithm on

the MSRC Object Category Image Database (v2) [37],

which contains 791 images of size approximately

320 9 210, and includes different scenes such as grasses,

forests, streets, etc. In this experiment, we do not care

about what feature we used. Instead, we want to test the

effectiveness and robustness of the proposed algorithm

against other popular clustering algorithms such as

k-means, N-cut, and etc.. As a result we simply used the

histogram features in the experiments (richer features for

image segmentation would be our future work). Specifi-

cally, we divided each image into 5 9 5 patches, and

exacted the color histograms of each patch as its features,

and finally used these features to do the segmentation. We

set the number of clusters to the ground truth, for ENPAKL,

we randomly generated 50 must-link and cannot-link
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Fig. 2 Clustering results on

chessboard and double-spiral

datasets. c, d Black color means

the corresponding values in the

kernel matrix is 1, and white
color means -1

6 This experiment was run on an Intel Core 2 Duo CPU T6400

2.00 GHZ with 2 GB of DDR2 memory
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constraints for each cluster in the images. For simplicity,

we compared the proposed ENPAKL algorithm with the

k-means and N-cut algorithms7 which are popularly used in

image segmentation, and also because the above experi-

ments have shown the superior of the k-means algorithm

over PCP and SSKK. Some examples of the images and

their segmentation results are shown in Fig. 6. From these

results we can see the superior of ENPAKL over the

k-means and N-cut algorithms in term of segmentation

accuracy, though it runs much slower, which is a typical

problem for kernel based algorithms.8 We used Eq. 34 as

the segmentation accuracy criterion, and the corresponding

accuracies are also shown in the figure. We see from the

figure that ENPAKL performs best while N-cut and k-means

are comparable. Also note that for some images, the seg-

mentations learned by ENPAKL are very close to the

Ground Truth, while those learned by the k-means and the
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Fig. 3 Clustering performance on nine small UCI datasets
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Fig. 4 Clustering performance on three large UCI datasets

7 We used an efficient implementation of the N-cut algorithm in [38]

8 The k-means algorithm takes about 1 s for one image, the N-cut

algorithm takes about 2 s, while ENPAKL needs about 5 min, and

PCP cannot run in this experiment because the corresponding data is

too large. How to accelerate the speed of the proposed algorithm

further is our future work.
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Fig. 6 Image segmentation using ENPAKL, k-means and N-cut. Here acc means segmentation accuracy evaluating using Eq. 34
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N-cut are much worse, this indicates that supervisory

information could help image segmentation a lot, and it is

encouraged to use such kind of information to boost the

segmentation accuracy. We believe better segmentation

results can be obtained by choosing the constraints care-

fully, by using other kinds of features such as the sift

features [39] and rich textual features [40], and also by

taking the spatial information into consideration.

6 Conclusion

In this paper, we proposed a non-parametric kernel learning

framework. It generalizes the graph embedding framework

[6] into kernel space and is reformed as a conic optimization

programming. A global Laplacian regularizer is used to

smooth the functional space. Two algorithms are proposed

for the corresponding kernel learning problem, one is to

solve the original optimization problem through semi-defi-

nite programming. The other is to relax theSDP problem and

solve with a constrained gradient descent based algorithm.

To further reduce the computational complexity, the whole

data is proposed to be divided into groups, and sub-ker-

nels for these groups are learned separately, then the global

kernel is constructed by combining these sub-kernels.

Experiments are performed on nine datasets for clustering

and one image dataset for image segmentation. Experimental

results show that the proposedENPAKL algorithm is superior

to the recently developed algorithms [2, 3] in terms of

computational effectiveness and clustering accuracy, and

often achieves better image segmentation.

We will study the parameters setting problem in the

future. For example, the regularizer S in Eq. 19 may be

replaced by a more sophisticated regularizer such as the

s-weighted Laplacian operator [41]. The algorithms should

also be evaluated with different settings of B and R in

Algorithm 3, the k in the graph construction, etc. Further-

more, we can incorporate ENPAKL into other kernel

methods such as kernelization of some dimensional

reduction algorithms. In addition, we will apply the pro-

posed algorithm to more real applications, and explore

more efficient algorithms for this problem since the current

methods is not fast enough for large scale datasets.
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