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Abstract We often use the positive fuzzy rules only for

image classification in traditional image classification

systems, ignoring the useful negative classification infor-

mation. Thanh Minh Nguyen and QMJonathan Wu intro-

duced the negative fuzzy rules into the image classification,

and proposed combination of positive and negative fuzzy

rules to form the positive and negative fuzzy rule system,

and then applied it to remote sensing image/natural image

classification. Their experiments demonstrated that their

proposed method has achieved promising results. However,

since their method was realized using the feedforward

neural network model which requires adjusting the weights

in the gradient descent way, the training speed is very slow.

Extreme learning machine (ELM) is a single hidden layer

feedforward neural network (SLFNs) learning algorithm,

which has distinctive advantages such as quick learning,

good generalization performance. In this paper, the

equivalence between ELM and the positive and negative

fuzzy rule system is revealed, so ELM can be naturally

used for training the positive and negative fuzzy rule sys-

tem quickly for image classification. Our experimental

results indicate this claim.

Keywords Image classification � Positive and negative

fuzzy rules � Extreme learning machine � Fuzzy systems

1 Introduction

With the fast development of the digital image processing

technologies and a huge of demands for practical applica-

tions, image classification and recognition technologies

have been developing rapidly recent years. Image classi-

fication technologies are specific applications of pattern

recognition in image processing [3], and their purpose is to

develop automatic image processing systems that can help

us complete image classification and recognition tasks and

provide us a lot of useful information mined from images

for further experiments and researches. Among these

technologies, due to its strong nonlinear approximation

capability, feedforward neural networks have been

attracting more and more attentions and obtaining various

applications in image classification [4–6]. As we may know

well, images can be easily corrupted by noise, so it is not a

trivial task to classify noisy images using feedforward

neural networks, which results in a growing research

interests in the application of fuzzy rule systems and/or

their fuzzy neural systems to image classification tasks

recent years [7–9]. Most of these fuzzy systems use posi-

tive fuzzy rules about useful positive classification infor-

mation to classify images, ignoring the valuable negative

classification information. For example, a typical fuzzy

classification rule r [10–12]: IF x1 is Ar1 and x2 is Ar2… and

xN is ArN, Then y1 is C1 with Wr1 and y2 is C2 with Wr2…
and yM is CM with WrM

where x = [x1, x2, …, xN] is the N dimensional input,

y = [y1, y2, …, yM] is the corresponding output, M classes

are denoted by C1, C2,…CM; Arn, n = (1, 2, …, N) is the

fuzzy membership function; Wrm C 0, m = (1, 2, …, M)

is the weight of each class. It can be seen that such a fuzzy

classification rule only considers the positive information

(i.e., the right value is positive), ignoring possibly useful
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negative classification information which can be repre-

sented by negative weights.

In order to circumvent the shortcoming of discovering

negative classification information, Thanh Minh Nguyen

proposed the combination strategy of positive and negative

fuzzy rules to effectively classify images [2]. Although

their experimental results are promising, just like most of

feedforward neural networks [13], since all the parameters

within the network need to be adjusted in the gradient

decent way, their method heavily suffers from the very

slow learning speed for the training set with several hun-

dreds and even thousands of samples constructed from the

image and easily falling in local minima of the cost func-

tion of the network [14]. Extreme learning machine (ELM)

[1], as the latest advance in training the single-hidden layer

feedforward neural network, has the following distinctive

advantages over all other learning algorithms of feedfor-

ward neural networks: it randomly chooses hidden nodes

and analytically determines weights of the single-hidden

layer feedforward neural network without falling in the

so-called local minima and tends to provide good gener-

alization performance at extremely fast learning speed. In

this paper, we will reveal the equivalence between ELM

and the positive and negative fuzzy rule system, and then

utilize ELM for fast training this positive and negative

fuzzy rule system for image classification. The contribu-

tions of this work here are twofold:

(1) Since the equivalence between ELM and the positive

and negative fuzzy rule system is revealed, we can

explain ELM as the positive and negative fuzzy rule

system, or vice versa when it is applied to classifi-

cation tasks. In other words, we can extract positive

and negative rules from the single-hidden layer

feedforward neural network using ELM learning

while we can only extract positive rules from the

network using BP or BP-like learning in previous

researches [15].

(2) The work done by Thanh Minh Nguyen for image

classification [2] is highlighted here by using ELM

learning instead of BP learning for the positive and

negative fuzzy rule system.

This paper is organized as follows. In Sect. 2 the

positive and negative fuzzy rule system is briefly

reviewed; In Sect. 3, Extreme Learning Machine (ELM)

and its theoretical characteristics are briefly introduced. In

Sect. 4, the equivalence between ELM and the positive

and negative fuzzy rule system is revealed. In Sect. 5, the

experimental results about image classification for remote

sensing images and natural images using the proposed

method in this paper, the fuzzy C means clustering

algorithm and BP neural network are reported. Section 6

concludes the paper.

2 Positive and negative fuzzy rule system

In this section, let us briefly review the positive and neg-

ative fuzzy rule system. More details can be seen in [2]. In

general, fuzzy rule systems can be categorized into two

families. The first includes linguistic models based on

collections of fuzzy rules, whose antecedents and conse-

quents utilize fuzzy values. The famous Mamdani model

falls into this group. The second family, based on Sugeno-

type systems, uses a rule structure that has fuzzy ante-

cedent and functional or singleton consequent parts. In a

fuzzy rule system, if we assume A is the premise of a fuzzy

rule and B is the consequent of the fuzzy rule, a typical

fuzzy rule of the ‘‘IF–Then’’ type is ‘‘IF A then do B’’. This

type of fuzzy rule is called positive rule (weight is positive)

because the consequent prescribes something that should

be done, or an action to be taken. However, if an action

might lead to severe damage, then the action should be

avoided. This kind of action is also possible to augment the

rule-base with fuzzy rules in the form: ‘‘IF A, Then do not

do B’’. This type of fuzzy rule is often called negative rules

(weight is negative) because the consequent prescribes

something that should be avoided instead of done. In most

existing fuzzy-rule-system based image classification sys-

tems, only positive information (i.e., positive fuzzy rules)

are considered with ignoring negative information. In fact,

both positive and negative information may be very useful

for image classification.

Now let us consider the following example about two

fuzzy rules in [2, 16, 17]:

Rule 1: IF customer is a child

Then he buys Coke and he does not buy bottled water.

Rule 2: IF customer is an adult

Then he buys Coke and he buys bottled water.

In this example, the negative rule (Rule 1) guides the

system away from scenarios to be avoided, and after

avoiding these scenarios, the positive rules (Rule 2) once

again take over and direct the process. Depending on the

probability of such an association, marketing personnel can

develop better planning of the shelf space in the store or

can base their marketing strategies on such correlations

found in the data.

Another limitation of the above fuzzy rules is that these

two classes (Coke, bottled water) appearing in the conse-

quence parts of the above fuzzy rules have the same degree

of importance. Obviously, to help marketing personnel

develop better planning of different products (Coke, bottled

water) for different customers (child, adult), we should

assign different weights to different classes appearing in

the consequence part of the rule.

These discussions about the above example motivate us

to propose the following positive and negative fuzzy rule
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system for classification. In this system, the structure of a

fuzzy rule takes the following form:

Rule r IF x1k is Ar1 and x2k is Ar2… and xNk is ArN, Then

yk1 is the class C1 with Wr1 and yk2 is the class C2

with Wr2… and ykM is the class CM with WrM

where xk = [x1k, x2k, …, xNk], k = (1, 2, …, K) is a

N dimensional input vector. Arn, n = (1, 2, …, N) denotes a

Gaussian fuzzy membership function [18] or other types of

fuzzy membership functions, Wrm [ R, r = (1, 2, …, R),

m = (1, 2, …, M), is the weight of the class Cm. When

Wrm [ 0, it denotes the weight of xk belonging to the class

Cm. When Wrm \ 0, it will narrow the choices for the class

Cm. Clearly, R, M, K and N denote the number of fuzzy rules,

the number of classes, the number of patterns and dimension

of patterns, respectively. Without loss of generality, we

adopt Gaussian fuzzy membership functions here.

Obviously, the distinctive advantage of this type of fuzzy

rules exists in the fact that it can represent more than one class

therein. Based on the above structure of a fuzzy rule, given

the input xk, the multi-output of the corresponding positive

and negative fuzzy rule system is of the following type:

ykm ¼
XR

r¼1

brðxkÞWrm

¼
PR

r¼1 WrmbrðxkÞPR
r¼1 brðxkÞ

¼
PR

r¼1 Wrm exp �
PN

n¼1
ðxnk�lrnÞ2

r2
rn

h i

PR
r¼1 exp �

PN
n¼1

ðxnk�lrnÞ2
r2

rn

h i ;

m ¼ ð1; 2; . . .;MÞ ð1Þ

where

brðxkÞ ¼
brðxkÞPR

r¼1 brðxkÞ
;

brðxkÞ ¼ exp �
XN

n¼1

ðxnk � lrnÞ2

r2
rn

" #
ð2Þ

in which brðxkÞis often called as the fuzzy basis function,

and lrn, rrn, r = (1, 2, …, R), n = (1, 2, …, N) are the

mean and variance of br(xk), respectively. The fuzzy rule

weight Wrm will be mentioned in detail in the next section.

The output of the classifier based on this fuzzy rule system

is determined by the winner-takes-all strategy. That is, xk

will belong to the class with the highest activation, i.e.,

yk ¼ Cm0 ; m0 ¼ max
1�m�M

ðykmÞ ð3Þ

The above fuzzy rule system can be easily realized using

the following fuzzy feedforward neural network, as shown

in Fig. 1, which consists of two visible layers (input and

output layer) and three hidden layers.

Layer 1 (input layer) Each node in this layer only

transmits input xnk,

n = (1, 2, …, N),

k = (1, 2, …, K) to the next layer

directly, i.e., O1n = xnk

n = (1, 2, …, N),

k = (1, 2, …, K)

Layer 2 The number of nodes in this layer

is equal to the number of fuzzy

rules. Each node in this layer has N

inputs from N nodes of the input

layer, and feeds its output to the

node of the layer 3. The output of

each node in this layer is

1( )kxβ

2( )kxβ

3( )kxβ

4( )kxβ

1kx

2kx

3kx

__

1
( )kxβ

__

2( )kxβ

__

3( )kxβ

11W

21W

31W

41W

12W

22W

32W

42W

∑

1ky

2ky__

4( )kxβ

∑

Layer 1         Layer 2                     Layer 3      Layer 4          Layer 5 

Fig. 1 Fuzzy neural network

with three inputs, two outputs

and four fuzzy rules
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O2rk ¼ brðxkÞ ¼ exp �
XN

n¼1

ðxnk � lrnÞ2

r2
rn

" #
ð4Þ

in which lrn; rrn, r = (1, 2, …, R), n = (1, 2, …, N) are

the mean and variance of br(xk), respectively.

Layer 3 This layer performs the normalization operation.

The output of each node in this layer is

represented by

O3r ¼ brðxkÞ ¼
brðxkÞPR

r¼1 brðxkÞ
ð5Þ

Layer 4 Each node of this layer represents the rule

weight. The output of each node in this layer is

represented by

O4rm ¼ Wrm
brðxkÞPR
r¼1 brðxkÞ

¼ WrmbrðxkÞ ð6Þ

Layer 5 This layer contains M nodes. Each node in the

output layer determines the value of ykm

ykm ¼
XR

r¼1

O4rm ¼
XR

r¼1

Wrm
brðxkÞPR
r¼1 brðxkÞ

 !

¼
XR

r¼1

Wrm brðxkÞ ð7Þ

When the above positive and negative fuzzy rule system

is applied to image classification, we may take the fol-

lowing steps:

Step 1 Select patterns as the inputs of the proposed fuzzy

rule system here from the images with

considering the smoothing and textures of the

images and normalize the selected patterns

Step 2 Initialize the mean l and the variance r of every

Gaussian fuzzy membership function in every

fuzzy rule

Step 3 Compute �brðxkÞ using Eq. (5)

Step 4 Compute Wrm, l and r in every Gaussian fuzzy

membership function in every fuzzy rule, using

the corresponding gradient descending update

rules similar to BP algorithm in [6]

Step 5 Repeat Step 4 and Step 5 until the given

termination criterion is satisfied. Thus, the fuzzy

neural network is trained well

Step 6 Apply the above trained fuzzy neural network to the

normalized input patterns to finish the classification

task for this image after preprocessing the original

image as the normalized input patterns

Because the proposed fuzzy rule system here considers

both positive and negative classification information, the

above method using step 1 to step 6 can exhibit better

classification power than existing methods in image

classification. However, when applied to image classifi-

cation, because we must often choose thousands of pat-

terns from the images, its training performance heavily

suffers from the following shortcomings: (1) Because the

parameters including l and r in every Gaussian fuzzy

membership function in every fuzzy rule must be simul-

taneously adjusted by using the gradient descending

method and the parameters Wrm must be adjusted by

using the least-squares algorithm in each iteration, the

corresponding training procedure is generally very slow.

(2) The adopted gradient descending method can not

assure that it surely converges to the global optimum. (3)

Thousands of patterns often raise so-called overfiting

issue in training, which results in its poor generalization

capability. Our work below will indicate that the extreme

learning machine (ELM) can help us circumvent these

shortcomings.

3 ELM

3.1 Single-layer feedforward neural network

Given N arbitrary distinct patterns (xk, yk), where

xk = [xk1, xk2, …, xkN]T, yk = [yk1, yk2, …, ykM]T, the

standard single-layer feedforward neural network with R

hidden nodes and activation function f(arxk ? br) is

mathematically modeled as

Ok ¼
XR

r¼1

wrfrðxkÞ ¼
XR

r¼1

wrf ðar � xk þ brÞ;

k ¼ 1; 2; . . .;Kð Þ ð8Þ

where ar = [ar1, ar2, …, arN]T is the weight vector con-

necting the ith hidden node and the input nodes, br is the

threshold of the ith hidden node, ar � xk denotes the inner

product of ar with xk, wr = [wr1, wr2, …, wrM]T is the

weight vector, connecting the i the hidden node and the

output nodes.

The standard single-layer feedforward neural network

with R hidden nodes and activation function f(x) can

approximate these patterns with zero error. That is to say,

there exist ar, br, wr such that

yk ¼
XR

r¼1

wrf ðar � xk þ brÞ k ¼ 1; 2; . . .;K ð9Þ

The above R equations can be compactly written as

HW ¼ Y ð10Þ
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where

Hða1;a2; . . .;aR;b1;b2; . . .;bR;x1;x2; . . .;xKÞ

¼

f ða1 �x1þb1Þ f ða2 �x1þb2Þ . . . f ðaR �x1þbRÞ
f ða1 �x2þb1Þ f ða2 �x2þb2Þ . . . f ðaR �x2þbRÞ

. . . . . . . . . . . .
f ða1 �xKþb1Þ f ða2 �xKþb2Þ . . . f ðaR �xKþbRÞ

2

664

3

775

K�R

ð11Þ

W ¼
wT

1

wT
2

. . .
wT

R

2

664

3

775

R�M

; Y ¼
yT

1

yT
2

. . .
yT

K

2

664

3

775

K�M

ð12Þ

in which H is called the hidden layer output matrix of the

neural network here.

According to theorem 2.1 and theorem 2.2 in [1], for any

small positive value e, and activation function f which is

infinitely differentiable in any real interval, and for any ar,

br randomly chosen from any real interval, we have: (1)

with probability 1, the hidden layer output matrix H of the

single-layer feedforward neural network with N hidden

nodes is invertible and jjHW� Yjj ¼ 0; (2) with proba-

bility 1, there exists the single-layer feedforward neural

network with K (\N) such that HK�RWR�M � YK�Mk k� e:
Traditionally, in order to train a single-layer feedfor-

ward neural network, one may wish to find the specific

bar,bbr,cW (r = 1,2,… R) such that

jjHðba1; . . .baR; bb1; . . .bbRÞcW � Yjj
¼ min
bar;bbr ;bW

jjHða1; . . .aR; b1; . . .bRÞcW � Yjj ð13Þ

which is equivalent to minimizing the following cost

function:

EðHÞ ¼
XK

k¼1

XR

r¼1

wrf ðar � xk þ brÞ � yk

 !2

ð14Þ

where H ¼ ½ar; br;wr�: When H is unknown, gradient

decent based algorithms are often used to find H ¼
½ar; br;wr� such that the minimum of jjHW� Yjjis
reached. The update rule of H is

Hnew ¼ Hold � g
oEðHÞ

oH
ð15Þ

where g is a learning rate.

The popular learning algorithm used in feedforward

neural networks is the BP learning algorithm where gra-

dients can be computed efficiently by propagation from the

output to the input. There are several shortcomings on BP

learning algorithms: (1) If the learning rate g is too small,

the learning algorithm converges very slowly. However,

when g is too large, the algorithm becomes unstable and

diverges; (2) The algorithm converges very slowly, often at

a local minima rather that the global minima, which results

in its poor performance; (3) The neural network is often

over-trained by the algorithm such that the worse gener-

alization performance is obtained.

In order to circumvent the above shortcomings, Huang

et al. proposed the so-called extreme learning machine

ELM in [1]. According to the theory of ELM, input weights

and hidden layer biases can be randomly assigned and the

hidden layer output matrix H can remain unchanged if only

the activation function is infinitely differentiable. This is

quite different from the most common understanding that

all the parameters in the single-layer feedforward neural

network need to be adjusted. For the fixed input weights

and the hidden layer biases, training the neural network is

simply equivalent to finding a least squares solution W of

the linear equation, HW = Y, i.e.

jjHðba1; . . .baR; bb1; . . .bbRÞcW � Yjj
¼ min
bW
jjHða1; . . .aR; b1; . . .bRÞcW � Yjj ð16Þ

the smallest norm least squares solution of the above linear

system is

W ¼ HyY ð17Þ

where Hy is Moore–Penrose generalized inverse of matrix

H [1]. This solution has the following characteristics:

(1) Minimal training error: The special solution in Eq.

(17) is only one of the least squares solutions of a

general linear system HW 5 Y. This special solution

means that the minimal training error can be obtained

by this special solution:

jjHcW � Yjj ¼ jjHHyY� Yjj ¼ min
bW
jjHW� Yjj ð18Þ

However, most of learning algorithms cannot reach it

because of local minimum or infinite training iteration is

usually not allowed in applications.

(2) minimal norm of weights: This special solution has

the minimal norm of weights among all the least

squares solutions of HW 5 Y:

jjcWjj ¼ jjHyYjj � jjWjj;
8W 2 fW : jjHW� Yjj � jjHz� Yjj; 8z 2 RR�Mg

ð19Þ

As pointed out in [19] by Barlett, for a feedforward

neural network, with a small training error, the

generalization capability of the neural network depends

on all the weight values adopted in the neural network. The

smaller all the weight values, the better the generalization

capability of the neural network. Because ELM can ensure

both the minimal training error and the minimal norm of
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weights of the neural network, it can make the neural

network have excellent generalization capability.

3.2 ELM

ELM can be summarized as follows.

Given a training set @ ¼ fðxk; ykÞjxk 2 RN ; yk 2
RM; k ¼ 1; 2; . . .;Kg; activation function f(x), hidden

node number R:

Step 1 Randomly assign input weight ar and bias br,

r = (1,2,…, R)

Step 2 Compute the hidden layer output matrix H

Step 3 Compute the output weight W

W ¼ HyY where Y ¼ ½ y1; y2; . . .; yK �T ð20Þ

ELM is a very simple but very effective learning algo-

rithm and has exhibited its thousands of times faster than

traditional feedforward network learning algorithms like

BP algorithm with better generalization performance. This

is because ELM not only tends to reach the smallest

training error but also the smallest norm of weights, which

is in line with the assertion given by Bartlett that the

smaller both the training error and the norm of weights in

feedforward neural networks, the better the generalization

performance of this neural network.

4 Positive and negative fuzzy rule system using ELM

for image classification

In order to explain the equivalence between ELM and the

positive and negative fuzzy rule system when applied to

classification tasks, we first observe their types of outputs.

Obviously, ELM has outputs Wrm, r = (1,2,…, R),

m = (1,2,…, M) of real number type. Since the positive

and negative fuzzy rule system has the typical form as

follows:

Rule r IF x1k is Ar1 and x2k is Ar2…and xNk is ArN, Then

yk1 is C1 with Wr1 and yk2 is C2 with Wr2…and ykM

is CM with WrM

where the weight Wrm is of real number type. According

to Eq. (1), the output of this system is obviously of real

number type. Let us consider the typical form of fuzzy

rules in the positive fuzzy rule system as follows:

Rule r[4–6] IF x1 is Ar1 and x2 is Ar2… and xN is ArN, then

y1 is C1 with Wr1 and y2 is C2 with Wr2… and

yM is CM with WrM

where the weight Wrm is positive. According to Eq.(1),

the output of the positive fuzzy rule system is certainly of

positive real number type. Similarly, the output of the

negative fuzzy rule system is certainly of negative real

number type. In other words, only the positive and negative

fuzzy rule system rather than the positive or negative fuzzy

rule system is of the same output type as ELM.

Next, let us observe the neural network structure of the

positive and negative fuzzy rule system. According to Fig. 1,

it has the network structure of 5 layers. However, according

to Eq. (1), we can easily implement it using a single hidden

layer neural network with the activation function in Eq. (5) in

the hidden layer to achieve the same output. Obviously, such

an activation function in Eq. (5) is infinitely differentiable.

With the above analysis about both the output types and the

neural network structures of ELM and the positive and

negative fuzzy rule system, we can easily conclude that the

positive and negative fuzzy rule system can be trained using

ELM, and they are equivalent when this fuzzy rule system is

applied to classification tasks.

Now, let us design such a positive and negative fuzzy

rule system using ELM for image classification. First of all,

we suggest that the structure of the positive and negative

fuzzy rule system consists of two visible layers (input and

output layer) and the only hidden layer as follows:

Layer 1 (input layer) Each node in this layer only

transmits input xnk, n = (1,2,…,

N), k = (1,2,…, K) to the next

layer directly. There are totally N

nodes in this layer. The output of

each node is O1n = xnk,

Layer 2 The number of nodes in this layer

is equal to the number of fuzzy

rules. This layer performs the

normalization operation. The

output of each node in this layer

is represented by:

O2rk ¼ brðxkÞ ¼
brðxkÞPR

r¼1 brðxkÞ

¼
exp �

PN
n¼1

ðxnk�lrnÞ2
r2

rn

h i

PR
r¼1 exp �

PN
n¼1

ðxnk�lrnÞ2
r2

rn

h i ð21Þ

in which lrn, rrn, r = (1,2,…, R), n = (1,2,…, N) are the

mean and variance of br(xk), respectively.

Layer 3 There are M nodes in this layer in total. In this

paper, for pattern xk, the output of proposed

fuzzy rule system is determined by winner-

takes-all strategy. As a result, when the rule

weight Wrm has a negative value, it will narrow

the choices for class Cm (the more negative

value of Wrmis the smaller value of ykm). That is
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to say, this negative value prescribes actions to

be avoided than performed. The value of Wrm

will be discussed below, i.e., see Eq. (24). Each

node in the output layer determines the value of

ykm.

From the output of feedforward neural networks defined

in Eq. (1), we can see that the activation function of the

proposed fuzzy rule system is:

f ðxkÞ ¼ brðxkÞ ð22Þ

According to Eq. (10) we know the output matrix

corresponding to the hidden layer in the proposed fuzzy

rule system is:

H u1; u2; . . .; uR; r1; r2; . . .; rRð Þ

¼
b1ðx1Þ b2ðx1Þ . . . bRðx1Þ
b1ðx2Þ b2ðx2Þ . . . bRðx2Þ

. . . . . . . . . . . .
b1ðxKÞ b2ðxKÞ . . . bRðxKÞ

2
664

3
775

K�R

ð23Þ

The output weight W of the proposed fuzzy rule system

can be obtained by using Moore–Penrose generalized

inverse in Eq. (17):

W ¼ HyYq ð24Þ

where Yq ¼ ½ yq1 yq2 � � � yqK �TM�K . The desired output

yqk is the form

yqk ¼ yqk1; yqk2; . . .; yqkM

� �T

¼
ð1; 0; . . .0ÞT ; if xk 2 classC1

ð0; 1; . . .0ÞT ; if xk 2 classC2

. . .
ð0; 0; . . .1ÞT ; if xk 2 classCM

8
>><

>>:
ð25Þ

Because the positive and negative fuzzy rule system we

proposed here takes full account of the role of the negative

rules in image classification, compared with the traditional

fuzzy system based on only positive or negative fuzzy

rules, it has obvious advantages. Except for this, we may

connect the positive and negative fuzzy rule system with

the ELM theory. So the proposed fuzzy rule system can be

obviously with ELM features, that is, parameters in the

hidden layer can be randomly assigned, fast learning and

good generalization ability of the proposed fuzzy rule

system can be achieved.

When the proposed fuzzy rule system using ELM is

applied to image classification, we can take the following

steps:

Step 1 Select the training patterns appropriately in the

original image, and preprocess these training

patterns as the normalized input patterns.

Step 2 Assign the mean l and the variance r randomly of

every Gaussian fuzzy membership function which

connects input nodes to hidden nodes of the

proposed fuzzy rule system.

Step 3 Calculate the output matrix H of the hidden layer

in the proposed fuzzy rule system and the weight

matrix W in form of W ¼ HyYq:

Step 4 Apply the above trained fuzzy rule system to

the normalized input patterns to finish the

classification task for this image, and then restore

the pixels of the image by using the classification

result for the training patterns of the image.

5 Experimental results and discussions

In this section, we will demonstrate the performance of the

positive and negative fuzzy rule system using ELM

learning for remote sensing and natural image classifica-

tion. At the same time, we also compare the proposed

method here with the fuzzy C means clustering method and

the feedforward neural network using BP learning.

Experimental platform is Matlab R2009a, AMD Ath-

lon 9 2 with 2.0 GHz CPU and 1 GB memory. Experi-

mental results about remote sensing and natural images

show that the proposed method is very fast on the training

samples, and has obvious image classification superiority

over the fuzzy C means clustering method and the BP

based neural network method.

5.1 On remote sensing image

In this experiment, we applied the proposed method as above

to a remote sensing image in [20]. Figure 2a is the original

image, whose size is 200 9 200 pixels. The goal is to train

the above fuzzy rule system to classify three different ter-

rains in this image, namely urban, vegetation and water

areas. The 3,800 training patterns are enclosed in red boxes,

as shown in Fig. 2b, where every input pattern takes the form

of its R, G, B gray values, its desired output is one of three

distinctive classes, i.e., urban or vegetation or water which

are represented 1 0 0½ �; 0 1 0½ �; 0 0 1½ �; respec-

tively. All these patterns are used to train such that the

squared sum of errors of the outputs of the above fuzzy rule

system is minimized. In this experiment, we adopted ELM

for the fuzzy rule system with 3 inputs (N = 3), 40 rules

(R = 40) and 3 classes (M = 3), and the BP based neural

network with the 3-40-3 structure, i.e., the input layer with 3

inputs, the hidden layer with 40 neurons taking the tanh

sigmoid functions as their activation functions and the output

layer with 3 neurons The Nguyen’s fuzzy system (i.e., the

Nguyen’s method here for brevity) in [2] is the structure with

3 inputs, 3 outputs and 40 rules. After training, the trained

fuzzy rule system and BP based neural network were then
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used to classify the entire original image. We also carried out

the fuzzy C-means clustering method to classify this image.

Both the BP based neural network and the fuzzy C-means

method are executed on Matlab R2009a with default

parameters.

In order to make our experiment fair, we run the cor-

responding proposed method ten times for the above fuzzy

system. It spent the average 0.2250 s CPU time with

MSE = 0.0026 to finish the training task for this image,

however, The BP based neural network method spent

148.7203 s CPU time with MSE = 0.0473, the Nguyen’s

method [2] takes 198.0703 s CPU time with

MSE = 0.0045. In other words, with the smaller MSE, the

propose methods runs 660 times faster than the BP based

neural network method. The testing time of the proposed

method is 0.3047 s CPU time, while the testing time of BP

based neural network is 0.4047 and the testing time of

Nguyen’s method is 4.1485 s CPU time. So the testing time

of the proposed method is 75.29% of the BP based neural

network’s. The clustering time of the fuzzy C means

clustering (FCM) method requires 1.9500 s CPU time

which is much longer than the proposed method. Except for

this, we can see from Fig. 2 that the classification accuracy

of the proposed method is much better than that of the

fuzzy C means clustering method. Therefore, compared

with the BP based neural network method, the proposed

method has better classification accuracy and robustness.

5.2 On natural images

In this experiment, we applied the proposed method to

natural images [21] with noise to examine its fast training

capability and robustness. The original images in Figs. 3a

and 4a are taken from the Berkeley database (http://www.

eecs.berkeley.edu/Research/Projects/CS/vision/grouping/

segbench), and the original image in Fig. 5a is taken from

the literature [22]. Their sizes are 200 9 165, 200 9 135,

150 9 150 pixels respectively. Their corresponding noisy

images corrupted by Gaussian noise (0 mean, 0.05 variance)

are shown in Figs. 3b, 4b and 5b. In order to suppress noise

existing in these images, we used the 5 9 5 pixel window to

generate the corresponding input patterns from these images.

                     
(a) (b) (c)Original image                Training data with 3 classes         Fuzzy C-means clustering method  

                      

BP based neural network method        The Nguyen’s method             The proposed method (d) (e) (f)

Fig. 2 Classification results for remote sensing image
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The 3,300, 2,700 and 1,200 training patterns were taken from

the red regions in Figs. 3b, 4b, and 5b, respectively. The

desired output of every pattern is one of three classes, i.e.,

snow, wolf, tree for the image in Fig. 3b, moon, sky, tree for

the image in Fig. 4b, and white, grey, black for the image

Fig. 5b. For the images in Figs. 3 and 4, we designed the

proposed fuzzy system with 25 inputs (N = 25), 100 fuzzy

rules (R = 100) and 3 outputs [i.e., 3 classes (M = 3)] while

for the image in Fig. 5, the proposed fuzzy system with 25

inputs (N = 25), 60 fuzzy rules (R = 60), and 3 outputs

(M = 3). The corresponding classification results for these

three images are illustrated in Figs. 2e, 3e and 4e. After

     

    

(a) (b) (c)Original image                Noisy image         Fuzzy C-means clustering method  

BP based neural network method        The Nguyen’s method             The proposed method (d) (e) (f)

Fig. 3 Classification results for the natural image

    
(a) Original image (b) Noisy image             (c) Fuzzy C-means clustering method 

    

BP based neural network method         The Nguyen’s method            (f) The proposed method (d) (e)

Fig. 4 Classification results for the natural image
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training, for each window, we can feed it into the trained

fuzzy rule system using the proposed method here to decide

which class the center pixel of this 5 9 5 window should

belong to.

We reported the classification results obtained by the

fuzzy C-means clustering method and BP based neural

network method, see Figs. 3c, 4c and 5c and Figs. 3d, 4d

and 5d, respectively, where the fuzzy C-means clustering

method is the same as in the last experiment and the BP

based neural network method and The Nguyen’s method

takes the same activation function as in the last experiment

with the 25-100-3 structure for Figs. 3b and 5b, and the

25-60-3 structure for Fig. 5b. Obviously, we can see from

these noisy images that the proposed method obtained the

best classification accuracy among all three methods, that

is to say, the proposed method has strong classification

capability and robustness.

Next, let us report the training time of the proposed

method and the BP based neural network method and the

fuzzy C-means clustering method. Ten trials have been

conducted for all algorithms and their average performance

are reported here. For the image Fig. 3b, the proposed

method spent 0.6141 s CPU time with MSE = 0.0779,

however, the BP based neural network method spent

218.3860 s CPU time with MSE = 0.1471, the Nguyen’s

method takes 485.7031 s CPU time with MSE = 0.0095.

The testing time of ELM algorithm for the proposed fuzzy

rule system is 0.9641 s CPU time, while the testing time of

BP based neural network is 1.0813 s CPU time and the

testing time of Nguyen’s method is 6.4531 s CPU time. We

also compare the performance of the FCM clustering

method and the proposed method. The FCM clustering

time for this image requires 6.2125 s CPU time which is

much longer than the proposed method. With the smaller

MSE, the proposed method runs 355 times faster than the

BP based neural network method. For the image Fig. 4b,

the proposed method spent 0.4563 s CPU time with

MSE = 0.1777, however, the BP based neural network

(a) Original image (b) Noisy image              (c) Fuzzy C-means clustering method 

Fuzzy C-means clustering method          The Nguyen’s method            (f) The proposed method (d) (e)

Fig. 5 Classification results for the natural image
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method spent 185.9422 s CPU time with MSE = 0.2046

the Nguyen’s method takes 398.3258 s CPU time with

MSE = 0.0617. The testing time of the proposed method is

0.6234 s CPU time, while the testing time of BP based

neural network is 0.7312 s CPU time and the testing time

of Nguyen’s method is 4.2344 s CPU time. The FCM

clustering method requires 2.1641 s CPU time which is

much longer than the proposed method. For the image

Fig. 5b, the proposed method spent 0.2625 s CPU time

with MSE = 0.0860, however, the BP based neural net-

work method spent 96.9000 s CPU time with

MSE = 0.1477 the Nguyen’s method takes 278.9844 s

CPU time with MSE = 0.0268. The testing time of the

proposed method is 0.5516 s CPU time, while the testing

time of BP based neural network is 0.6141 s CPU time and

the testing time of Nguyen’s method is 3.4844 s CPU time.

The FCM clustering method for this image requires

3.8406 s CPU time which is much longer than the proposed

method. Therefore, with the smaller MSE, the proposed

method runs much faster than the BP based neural network

method and FCM algorithm for these noisy images.

6 Conclusions

The positive and negative fuzzy rule system used in this

paper could effectively use the negative information existing

in image classification. We proved that such a fuzzy rule

system can be equivalently implemented by using ELM.

Accordingly, we proposed the image classification method

based on the positive and negative fuzzy rule system using

ELM. Experimental results showed that the proposed

method can achieve better results in the learning speed and

classification accuracy and robustness for image classifica-

tion tasks, compared with the BP based neural network

method and the FCM clustering method.

As we may know well, when applied to large datasets,

ELM is still ineffective, due to the complicated calculation

of the inverse of the output matrix. Therefore, further

research includes how to extend the proposed method to

large scale image classification tasks. This is an on-going

work we are doing.
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