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Abstract This study presents a robust self-learning pro-

portional-integral-derivative (RSPID) control system

design for nonlinear systems. This RSPID control system

comprises a self-learning PID (SPID) controller and a

robust controller. The gradient descent method is utilized

to derive the on-line tuning laws of SPID controller; and

the H1 control technique is applied for the robust con-

troller design so as to achieve robust tracking performance.

Moreover, in order to achieve fast learning of PID con-

troller, a particle swarm optimization (PSO) algorithm is

adopted to search the optimal learning-rates of PID adap-

tive gains. Finally, two nonlinear systems, a two-link

manipulator and a chaotic system are examined to illustrate

the effectiveness of the proposed control algorithm. Sim-

ulation results show that the proposed control system can

achieve favorable control performance for these nonlinear

systems.

Keywords PID control � Particle swarm optimization

(PSO) � H? control

1 Introduction

The proportional-integral-derivative (PID) controller has

been practically applied in industries for 60 years due to its

simple architecture and easy design properties. Until today,

the PID controller is still used in different control appli-

cations, even though lots of new control techniques have

been proposed. However, the traditional PID controller

needs some manual tuning before it is used to practical

application in industries. When the PID controllers are

applied to complicated systems such as nonlinear systems,

different tuning algorithms of PID controllers have been

proposed [1–5]. In recent decade, several intelligent tuning

algorithms have been applied to tune the PID controllers.

The PID controller automatic tuning methods have been

proposed by using a genetic algorithm [6], an immune

algorithm [7] and a fuzzy-genetic algorithm [8]. However,

the learning speed of these algorithms is slow; thus, they

are not suitable for real time control systems. Harinath and

Mann [9] proposed a fuzzy PID controller for multivariable

process systems. However, it takes a two-level tuning

algorithm; thus, it also takes too much computation time.

Therefore, in this paper, another simple optimization

algorithm called particle swam optimization (PSO) algo-

rithm will be used for the optimal parameter search of the

PID controller.

The PSO algorithm, a new evolutionary computation

technique, is proposed by Kennedy and Eberhart [10]. It

was developed by the research of the social behavior of

animals, e.g., bird flocking. Unlike a typical GA, PSO

algorithms have memorial capability without complicated

evolutionary process such as crossover and mutation in

GA, and each particle can memorize its best solution. In

addition, if another particle discovers a better solution, it

will be shared among other particles. The best solution is
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thus memorized and every particle will move toward this

best solution. In past decade, PSO algorithms have been

widely used to solve the modeling and control problems of

application systems [11–14]. Moreover, the PID control

based on PSO algorithms have been proposed in [15, 16].

However, it is difficult to solve the inequality for the

optimal solution in [15]; and it has not given the stability

analysis in [16].

In this paper, a robust self-learning PID (RSPID)

control system is proposed for nonlinear systems. This

RSPID control system comprises a self-learning PID

(SPID) controller and a robust controller. The SPID

controller is utilized to approximate an ideal controller,

and the robust controller is designed to recover the

residual approximation error between the ideal controller

and SPID controller. The gradient descent method and

H1 control technique are utilized to derive the on-line

tuning laws of SPID controller and robust controller, so

that the robust stability of the system can be obtained.

Furthermore, the PSO algorithm is adopted to auto-search

the optimal learning-rates of PID controller to increase

the learning speed. Finally, two nonlinear systems are

presented to support the validity of the proposed control

method.

This study is organized as follows. Problem formulation

is described in Sect. 2. The PSO algorithm is briefly

reviewed in Sect. 3. The design procedure of the proposed

RSPID control system is constructed in Sect. 4. In Sect. 5,

simulations are performed to verify the effectiveness of the

proposed control method. Finally, conclusions are drawn in

Sect. 6.

2 Problem formulation

Consider a class of nth-order multi-input multi-output

(MIMO) nonlinear systems expressed in the following

form:

xðnÞðtÞ ¼ f ðxðtÞÞ þ GðxÞðtÞuðtÞ þ dðtÞ
y ¼ xðtÞ

ð1Þ

where

uðtÞ ¼ ½u1ðtÞ; u2ðtÞ; . . .; umðtÞ�T 2 <m the control

input vector

of the system

y ¼ xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . .; xmðtÞ�T 2 <m the system

output vector

xðtÞ ¼ ½xTðtÞ; _xTðtÞ; . . .; xðn�1ÞTðtÞ�T 2 <mn the state

vector of the

system

f ðxðtÞÞ 2 <m unknown

bounded

nonlinear

function

GðxðtÞÞ 2 <m�m unknown

bounded

nonlinear

matrix

dðtÞ ¼ ½d1ðtÞ; d2ðtÞ; . . .; dmðtÞ�T 2 <m unknown

bounded

external

disturbance.

When neglecting the modeling uncertainty and external

disturbance, the nominal system of Eq. 1 can be obtained as

xðnÞðtÞ ¼ f nðxðtÞÞ þ GnuðtÞ ð2Þ

where f nðxðtÞÞ 2 <m is the nominal function of fðxðtÞÞ,
and the constant matrix Gn ¼ diagðgn1; gn2; . . .; gnmÞ 2
<m�m is the nominal functions of GðxðtÞÞ. Without losing

generality, assume the constant gni� 0 for i ¼ 1. . .m.

Assume that the nonlinear system of Eq. 2 is controllable

and G�1
n exists for all xðtÞ. If the external disturbance and

modeling uncertainty exist, the MIMO nonlinear systems

Eq. 1 can be reformulated as

xðnÞðtÞ ¼ f nðxðtÞÞ þ GnuðtÞ þ lðxðtÞ; tÞ ð3Þ

where lðxðtÞ; tÞ is referred to as the lumped uncertainty,

including system’s uncertainty and external disturbance.

The control problem is to find a suitable controller for

the MIMO nonlinear systems Eq. 1 so that the system

output vector xðtÞ can track desired reference trajectory

vector xdðtÞ ¼ ½xd1ðtÞ; xd2ðtÞ; . . .; xdmðtÞ�T 2 <m closely.

A lot of control techniques have been presented to

achieve reference trajectory tracking. However, in this

paper, a simple adaptive PID control scheme will be pro-

posed to deal with the uncertain MIMO nonlinear system.

Moreover, the H1 control technique will be used to

guarantee the robust tracking performance.

Define the tracking error as

eðtÞDxdðtÞ � xðtÞ 2 <m ð4Þ

then the system tracking error vector is defined as

eD½eTðtÞ; _eTðtÞ; . . .; eðn�1ÞTðtÞ�T 2 <mn ð5Þ

If the system dynamics f nðxðtÞÞ and Gn, and the lumped

uncertainty lðx; tÞ are exactly known, an ideal controller

can be designed as

u�ðtÞ ¼ G�1
n ½x

ðnÞ
d ðtÞ � f nðxðtÞÞ � lðxðtÞ; tÞ þHT eðtÞ� ð6Þ

where H ¼ ½Hn; . . .;H2;H1�T 2 <mn�m is the feedback

gain matrix which contains real numbers. Hi ¼ diagðhi1;

hi2; . . .; himÞ 2 <m�m is a nonzero positive constant

diagonal matrix. Substituting the ideal controller Eq. 6

into Eq. 3, gives the error dynamic equation
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eðnÞ þHT e ¼ 0 ð7Þ

In Eq. 7, if H is chosen to correspond to the coefficients

of a Hurwitz polynomial, it implies lim
t!1
jjeðtÞjj ¼ 0.

However, in practical application, the system uncertainties

and external disturbance of nonlinear systems are generally

unknown, so that the idea controller u� in Eq. 6 is always

unobtainable. Thus, a SPID controller is designed to mimic

the idea controller. And then, based on the H1 control

technique, the robust controller is developed to attenuate the

effect of the approximation error between SPID controller

and the ideal controller so that the robust tracking

performance can be achieved.

3 Robust self-learning PID (RSPID) control system

design

The block diagram of the nonlinear control system is

shown in Fig. 1. The RSPID control system is assumed to

take the following form:

uRSPIDðtÞ ¼ uSPIDðtÞ þ uRðtÞ ð8Þ

where uSPIDðtÞ is a self-learning PID controller utilized to

approximate the ideal controller u�, and uRðtÞ is the robust

controller designed to suppress the influence of residual

approximation error between the ideal controller and SPID

controller.

3.1 SPID controller design

The SPID controller can be described as

uSPIDðtÞ ¼ K̂PeðtÞ þ K̂I

Z t

0

eðsÞdsþ K̂D
deðtÞ

dt
ð9Þ

where K̂P; K̂I and K̂D are the adaptive parameters of

proportional gain, integral gain and derivative gain matri-

ces, respectively; and K̂P ¼ diagðk̂P1; k̂P2; . . .; k̂PmÞ 2 <m�m;

K̂I ¼ diagðk̂I1; k̂I2; . . .; k̂ImÞ 2 <m�m; K̂D ¼ diagðk̂D1; k̂D2; . . .

k̂DmÞ 2 <m�m:

An integrated error function is defined as

sðe; tÞ � eðn�1Þ þH1eðn�2Þ þ � � � þHn

Z t

0

eðsÞds ð10Þ

where sðe; tÞ ¼ ½s1ðtÞ; s2ðtÞ; . . .; smðtÞ�T . From Eq. 9, the

control law Eq. 8 can be rewritten as

uRSPIDðtÞ ¼ uSPIDðK̂P; K̂I ; K̂D; tÞ þ uRðtÞ ð11Þ

Taking the time derivative of both sides of Eq. 10 and

using Eq. 3, it can be obtained that

_sðe; tÞ ¼ eðnÞ þHT e

¼ �f nðxðtÞÞ � Gn uðtÞ þ x
ðnÞ
d � lðxðtÞ; tÞ þHT e

ð12Þ

Substituting Eq. 9 into Eq. 12 and multiplying both sides

by sTðe; tÞ, yields

sTðe; tÞ_sðe; tÞ ¼ �sTðe; tÞf nðxðtÞÞ � sTðe; tÞGn

½uSPIDðK̂P; K̂I ; K̂D; tÞ þ uRðtÞ�

þ sTðe; tÞ ðxðnÞd � lðxðtÞ; tÞ þHT eÞ
ð13Þ

By defining 1
2

sTðe; tÞsðe; tÞ as a cost function, then its

derivative is sTðe; tÞ_sðe; tÞ. According to the gradient

descent method, the gains of K̂P; K̂I and K̂D are updated

by the following tuning laws

_̂
kPi ¼�gp

osTðe; tÞ_sðe; tÞ
ouSPIDi

ðtÞ
ouSPIDi

ðtÞ
ok̂Pi

¼ gP siðtÞgni eiðtÞ ð14Þ

_̂
kIi ¼ �gI

osTðe; tÞ_sðe; tÞ
ouSPIDi

ðtÞ
ouSPIDi

ðtÞ
ok̂Ii

¼ gI siðtÞgni

Z t

0

eiðtÞds

ð15Þ

_̂
kDi ¼ �gD

osTðe; tÞ_sðe; tÞ
ouSPIDi

ðtÞ
ouSPIDi

ðtÞ
ok̂Di

¼ gD siðtÞgni
deiðtÞ

dt

ð16Þ

where uSPIDi
is the ith element of uSPID; gP; gI and gD are

the learning-rates, which will be auto-searched by PSO

algorithm.

3.2 Robust controller design

In case of the existence of an approximation error, the ideal

controller can be reformulated as the summation of SPID

controller and the approximation error:

SPID controller

Self-learning laws

∑

RSPIDu

SPIDu

+

R
Ru

+
Robust controller

RSPID control system

Desired trajectory

∑
+−Nonlinear control system

)(te

)(ts

DIP KKK ˆ,ˆ,ˆ PSO

DIP ,,

Integrated 
error function

x
dx

Fig. 1 The block diagram of RSPID control system
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u�ðtÞ ¼ uSPIDðK̂P; K̂I ; K̂D; tÞ þ eðtÞ ð17Þ

where eðtÞ ¼ ½e1ðtÞ; e2ðtÞ; . . .; emðtÞ�T 2 <m denotes the

approximation error.

Substituting Eq. 8 into Eq. 3, yields

xðnÞðtÞ ¼ f nðxðtÞÞ þ Gn½uSPIDðtÞ þ uRðtÞ� þ lðxðtÞ; tÞ ð18Þ

From Eqs. 6, 10, 18 and after some straightforward

manipulation, it can be obtained that

eðnÞ þHT e ¼ Gn½u�ðtÞ � uSPIDðtÞ � uRðtÞ� ¼ _sðe; tÞ ð19Þ

Now, the robust controller can be developed to attenuate

the effect of the approximation error between the ideal

controller and SPID controller so that the H1 tracking

performance can be achieved. In case of the existence of

eðtÞ; consider a specified H1 tracking performance [17]

Xm

i¼1

ZT

0

s2
i ðtÞdt	

Xm

i¼1

½s2
i ð0Þ=gni�þ

Xm

i¼1

r2
i

ZT

0

e2
i ðtÞdt ð20Þ

where ri is a prescribed attenuation constant. The robust

controller is designed as

uRðtÞ ¼ ð2R2Þ�1ðR2 þ IÞsðe; tÞ ð21Þ

where R ¼ diagðr1; r2; . . .; rmÞ 2 <m�m: Then the follow-

ing theorem can be stated and proven.

Theorem 1: Consider the nth-order MIMO nonlinear

systems represented by Eq. 1. The RSPID control law is

designed as Eq. 11, where uSPIDðtÞ is given in Eq. 9 with the

on-line parameter tuning algorithms given as Eqs. 14–16,

and the robust controller is designed as Eq. 21. Then the

desired H1tracking performance in Eq. 20 can be achieved

for the specified attenuation levels ri; i ¼ 1; 2; . . .;m:
Proof: The Lyapunov function is given by

Vðsðe; tÞÞ ¼ 1

2
sTðe; tÞsðe; tÞ ð22Þ

Taking the derivative of the Lyapunov function and using

Eqs. 17, 19 and 21, yields

_Vðsðe; tÞÞ¼ sTðe; tÞ_sðe; tÞ
¼ sTðe; tÞGn½eðtÞ�ð2R2Þ�1ðR2þ IÞsðe; tÞ�

¼
Xm

i¼1

gni siðtÞeiðtÞ� s2
i ðtÞ

r2
i þ1

2r2
i

� �

¼
Xm

i¼1

gni siðtÞeiðtÞ�
s2

i ðtÞ
2
� s2

i ðtÞ
2r2

i

� �

¼
Xm

i¼1

gni �
s2

i ðtÞ
2
�1

2

siðtÞ
ri
� rieiðtÞ

� �2

þr2
i e

2
i ðtÞ
2

" #

	
Xm

i¼1

gni �
s2

i ðtÞ
2
þ r2

i e
2
i ðtÞ
2

� �
ð23Þ

Assuming eiðtÞ 2L2½0;T �; 8T 2 ½0;1Þ; integrating the

above equation from t = 0 to t = T, yields

VðTÞ � Vð0Þ	
Xm

i¼1

gni �
1

2

ZT

0

s2
i ðtÞ tð Þ dt þ r2

i

2

ZT

0

e2
i ðtÞdt

2
4

3
5

ð24Þ

Since VðTÞ� 0, the above inequality implies the following

inequality

1

2

Xm

i¼1

gni

ZT

0

s2
i ðtÞdt	 Vð0Þ þ 1

2

Xm

i¼1

gnir
2
i

ZT

0

e2
i ðtÞdt ð25Þ

Using Eq. 22, the above inequality is equivalent to the

following

Xm

i¼1

ZT

0

s2
i ðtÞdt	

Xm

i¼1

½s2
i ð0Þ=gni� þ

Xm

i¼1

r2
i

ZT

0

e2
i ðtÞdt ð26Þ

Thus the proof is completed.

4 Particle swarm optimization (PSO) algorithm

The learning-rates of the tuning laws in SPID controller are

usually selected by trial-and-error process. In order to

achieve the best learning speed, the PSO algorithm is

adopted to search the optimal learning-rates gP; gI and gD

in the SPID controller.

In 1995, Kennedy and Eberhart [10] initially proposed

the particle swarm concept and PSO algorithm; this algo-

rithm is one of optimization methods. It has been proven to

be efficient in solving optimization problem. In the PSO

algorithm, each particle represents a candidate solution to

the optimization problem. The particle keeps track of its

coordinates in the problem space which are associated with

the personal best solution. Another is the global best value

that is tracked by the global version of the particle swarm

optimizer. At each time step, the PSO algorithm consists of

changing the velocity that accelerates each particle toward

its personal best and global best locations. Acceleration is

weighted by a random term with separate random numbers

being generated for acceleration toward personal best and

global best locations, respectively [11]. From then on,

several PSO algorithms have been proposed with slightly

different versions [12–16].

The flowchart of the utilized PSO algorithm is drawn in

Fig. 2.

4.1 Fitness function

In order to maintain the control characteristic of SPID

controller, a fitness function is chosen as
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fit ¼ 1

0:1þ jjeðtÞjj ð27Þ

It means that if the error states eðtÞ is forced to zero then

the expected value of fitness will be fit ¼ 10.

4.2 Velocity and position update law

In PSO algorithm, a population of particles is randomly

generated initially; each particle adjusts self-position with

velocity according to its own experience and the experi-

ences of other particles. The particle velocity and position

update law is adopted as [16]

vl
qðnþ 1Þ ¼ vl

qðnÞ � iwþ n1 � rand1ð�Þ � ½Ll
bestq
� pl

qðnÞ�
þ n2 � rand2ð�Þ � ½Gl

bestq
� pl

qðnÞ�
þ n3 � rand3ð�Þ � ½Sl

bestq
� pl

qðnÞ�
ð28Þ

pl
qðnþ 1Þ ¼ pl

qðnÞ þ vl
qðnþ 1Þ

where iw is called the inertia weight which balances the

global and local search, vl
qðnÞ and pl

qðnÞ denote current

velocity and current position, respectively; rand1ð�Þ,
rand2ð�Þ and rand3ð�Þ denote random variables between 0

and 1; n1, n2, and n3 denote acceleration factor_1,

acceleration factor_2 and acceleration factor_3,

respectively; Ll
bestq

, Gl
bestq

, and Sl
bestq

are the personal best

index, the global best index, and the sub-population best

index of the qth particle, respectively. Additionally,

q ¼ 1; 2; . . .; np, in which np is the population size and

‘ ¼ 1; 2; . . .; nd, in which nd is the dimension of each

particle and iw is given by

iw ¼ iwmax �
iwmax � iwmin

Nmax

� Nn ð29Þ

where iwmax, iwmin, Nmax and Nn are iteration maximum

value, iteration minimum value, total iteration number and

current iteration number of inertia weight.

This PSO algorithm is used to on-line tune the learning-

rates gP, gI and gD in Eqs. 14–16 to achieve fast learning

speed of PID gains.

5 Simulation results

Two uncertain nonlinear systems, a two-link manipulator

control system and a unified chaotic system are examined

to illustrate the effectiveness of the proposed design

method. The parameters of PSO are set as: the population

size z = 20, the dimension of the particle h = 2, the

acceleration factors n1 = 0.75, n2 = 3.25, n3 = 0.1, the

total iteration number Nmax = 10, the iteration maximum

value iwmax = 0.9, the iteration minimum value iwmin =

0.4, the initial states of velocity vl
qðnÞ and position pl

qðnÞ of

each particle are randomly generated.

Example 1. Two-link manipulator system

In this example, the proposed control system is applied

to control a two-link robot manipulator. Figure 3 depicts

this two-link manipulator, the angles of the second and the

third links were considered to be h1 and h2, respectively

Fig. 2 The flowchart of PSO

algorithm
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[18]. In addition, the numerical values of parameters of the

robot model were specified as that in [19]. The dynamic

equation is given as follows

MðhÞ€hþ Amðh; _hÞ _hþ BðhÞ þ Z _hþ sd ¼ s ð30Þ

where h 2 <n is the joint position vector; MðhÞ 2 <n�n is a

symmetric positive definite inertia matrix; Amðh; _hÞ is a

vector of Coriolos and centripetal torques; BðhÞ 2 <n

representing the gravitational torques; Z ¼ Kx þ Vf 2
<n�n is a diagonal matrix consisting of the back emf

coefficient matrix Kx and the viscous friction coefficient

matrix Vf ; sd 2 <n is the unmodeled disturbances vector;

s 2 <n is the vector of control input torques. By defining

the state vector xðtÞ ¼ ½x1ðtÞ; x2ðtÞ�T ¼ ½h1; h2�T , the

dynamic Eq. 30 can be expressed as

€xðtÞ ¼ f ðxðtÞÞ þ GðxðtÞÞ uðtÞ þ dðtÞ ð31Þ

where the unknown nonlinear function GðxðtÞÞ ¼ M�1ðhÞ;
and f ðxðtÞÞ ¼ M�1ðhÞ � Amðh; _hÞ _h� Bð _hÞ � Z _h� sd

� �
;

where Amðh; _hÞ ¼ sinðh2Þða2þ p2a9Þ �
_h2 �ð _h1þ _h2Þ

_h1 0

� �
;

BðhÞ ¼ a2 0

0 a8

� �
; Z¼ a5 cosðh1Þþ a6 cosðh1þ h2Þþ p4½

cosðh1Þþp5 cosðh1þ h2Þa9a6 cosðh1þh2Þþ p5 cosðh1þ h2Þ

a9�;M ¼
M11 M12

M21 M22

� �

where M11 ¼ a1 þ 2a2 cosðh2Þ þ ðp1 þ 2p2 cosðh2Þa9Þ;
M12 ¼ ða3þ a2 cosðh2ÞÞþ ðp3þ p2 cosðh2Þa9Þ; M21 ¼ ða3þ
a2 cosðh2ÞÞþ ðp3þ p2 cosðh2Þa9Þ; M22 ¼ a1þ p3a9 [19].

In this example, the initial conditions of the states are

given as a1 ¼ 6:33; a2 ¼ 0:14; a3 ¼ 0:11; a4 ¼ 27:6; a5 ¼
31:9; a6 ¼ 3:3; a7 ¼ 0:94; a8 ¼ 4:54; a9 ¼ 1:25; p1 ¼ 0:37;

p2 ¼ 0:18; p3 ¼ 0:18; p4 ¼ 4:23; p5 ¼ 4:15; h1 ¼ 50p=180;

h2 ¼ 10p=180; _h1 ¼ 0; _h2 ¼ 0:

For demonstrating the tracking performance of the

proposed control system, the desired trajectories for xd1ðtÞ
and xd2ðtÞ are set as

xdðtÞ ¼
xd1ðtÞ
xd2ðtÞ

� �
¼

0:5þ 0:2 ðsinðtÞ þ sin ð2tÞÞ
1:3� 0:1 ðsinðtÞ þ sin ð2tÞÞ

� �
ð32Þ

where xdðtÞ ¼ xd1ðtÞ; xd2ðtÞ½ �T¼ hd1; hd2½ �T is the reference

trajectory vector.

For the proposed RSPID control system, the feedback

gain matrix is designed as H ¼ diagð40; 4Þ; the initial

conditions of the learning-rates are chosen as

gP = 400, gI = 300 and gD = 400, respectively; all the

PID gains are set as zero initially; the initial states of two-

link manipulator are specified as x1ð0Þ ¼ 20p=180; x2ð0Þ ¼
10p=180; _x1ð0Þ ¼ 0 and _x2ð0Þ ¼ 0; and the initial states of

desired trajectories xd1ð0Þ ¼ 0; xd2ð0Þ ¼ 0; _xd1ð0Þ ¼
0 and _xd2ð0Þ ¼ 0: In order to study the robustness of the

proposed control system, assume that the two-link manip-

ulator control system has external disturbance sd ¼ ½40; 25�
at t ¼ 5 s. Besides, the attenuation level is chosen as

R ¼ diagð0:5; 0:5Þ
In order to compare the control performance, the

adaptive fuzzy control (AFC) presented in [18] is also

applied to this manipulator system. Using this control

system, the tracking trajectories are shown in Fig. 4a, b,

respectively. The simulation results of the proposed

RSPID control system for this two-link manipulator

control system are shown in Figs. 4, 5, 6, 7. Figure 4c, d

represents the tracking responses of x1ðtÞ and x2ðtÞ by

the proposed RSPID control scheme, respectively.

Moreover, the control inputs and tracking errors of x1ðtÞ
and x2ðtÞ are plotted in Fig. 5a–d, respectively. In

addition, the fitness function and learning-rates are

shown in Fig. 6a–d, respectively. The PID gains KP; KI

and KD are shown in Fig. 7a–c, respectively. Comparing

Fig. 4c, d with Fig. 4a, b, it can be seen the tracking

error have been much reduced by using the RSPID

controller. Moreover, from Fig. 6, it is also seen that the

learning-rates of PID controller converge after the 5th

second. The simulation results also show that the pro-

posed RSPID control system can effectively achieve

parameter tuning and favorable control for the two-link

manipulator control system.

Example 2. Unified chaotic system

Consider a general master–slave unified chaotic sys-

tems; the master system and slave system are given as

[20].

Fig. 3 The two-link manipulator system
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_xd1ðtÞ ¼ ð25hc þ 10Þðxd2ðtÞ � xd1ðtÞÞ
Master _xd2ðtÞ ¼ ð28� 35hcÞxd1ðtÞ

� xd1ðtÞxd3ðtÞ þ ð29hc � 1Þxd2ðtÞ

_xd3ðtÞ ¼ xd1ðtÞxd2ðtÞ �
8þ hc

3

� �
xd3ðtÞ ð33Þ

_x1ðtÞ ¼ ð25hc þ 10Þðx2ðtÞ � x1ðtÞÞ þ d1ðtÞ þ u1ðtÞ
Slave _x2ðtÞ ¼ ð28� 35hcÞx1ðtÞ � x1ðtÞx3ðtÞ

þ ð29hc � 1Þx2ðtÞ þ d2ðtÞ þ u2ðtÞ

_x3ðtÞ ¼ x1ðtÞx2ðtÞ �
8þ hc

3

� �
x3ðtÞ þ d3ðtÞ þ u3ðtÞ ð34Þ

where xdi (t) and xi(t) are the system states variables of

master system and slave system, respectively; di, i = 1, 2, 3

denote the disturbances and ui, i = 1, 2, 3 are the control

inputs. Assume a1 ¼ ð25hc þ 10Þ; a2 ¼ ð28� 35hcÞ; a3 ¼
ð29hc � 1Þ and a4 ¼ 8þhc

3

� 	
; then the master system Eq. 33

and the slave system Eq. 34 can be rewritten as

_xd1ðtÞ ¼ a1ðxd2ðtÞ � xd1ðtÞÞ
_xd2ðtÞ ¼ a2xd1ðtÞ � xd1ðtÞxd3ðtÞ þ a3xd2ðtÞ

_xd3ðtÞ ¼ xd1ðtÞxd2ðtÞ � a4xd3ðtÞ
ð35Þ

_x1ðtÞ ¼ a1ðx2ðtÞ � x1ðtÞÞ þ d1ðtÞ þ u1ðtÞ
_x2ðtÞ ¼ a2x1ðtÞ � x1ðtÞx3ðtÞ þ a3x2ðtÞ þ d2ðtÞ þ u2ðtÞ
_x3ðtÞ ¼ x1ðtÞx2ðtÞ � a4x3ðtÞ þ d3ðtÞ þ u3ðtÞ ð36Þ

the master–slave system can be expressed as

_xdðtÞ ¼ f ðxdðtÞÞ ð37Þ

and

_xðtÞ ¼ f ðxðtÞÞ þ GðxðtÞÞuðtÞ þ dðtÞ ð38Þ

where xdðtÞ ¼ ½xd1ðtÞ; xd2ðtÞ; xd3ðtÞ�T ; xðtÞ ¼ ½x1ðtÞ; x2ðtÞ;
x3ðtÞ�T ; f ðxdðtÞÞ ¼ ½a1ðxd2ðtÞ � xd1ðtÞÞ; a2xd1ðtÞ � xd1ðtÞ
xd3ðtÞ þ a3xd2ðtÞ; xd1ðtÞxd2ðtÞ � a4xd3ðtÞ�T , f ðxðtÞÞ ¼ ½a1

ðx2ðtÞ � x1ðtÞÞ; a2x1ðtÞ � x1ðtÞx3ðtÞ þ a3x2ðtÞ; x1ðtÞx2ðtÞ�
a4x3ðtÞ�T ; GðxðtÞÞ ¼ diag½1; 1; 1�, dðtÞ ¼ ½d1ðtÞ; d2ðtÞ;
d3ðtÞ�T and uðtÞ ¼ ½u1ðtÞ; u2ðtÞ; u3ðtÞ�T .

The control objective is to find a suitable control law

uðtÞ, so that the state trajectories of slave chaotic system

xðtÞ can follow the master chaotic system xdðtÞ under

different initial conditions and subject to disturbances.

Fig. 5 The control inputs and tracking errors of the two-link

manipulator system a control input 1, b control input 2, c tracking

error 1, d tracking error 2

Fig. 4 The state responses of AFC and RSPID. a state response 1 of

AFC, b state response 2 of AFC, c state response 1 of RSPID, d state

response 2 of RSPID (dashed line desired trajectory, continuous line
state trajectory)
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When hc ¼ ½0
 0:8Þ the system is known to be the

generalized Lorenz system; when hc ¼ 0:8 the system is

called the Lu system; and when hc ¼ ð0:8
 1� the system

is called the Chen system. It is supposed that the initial

conditions of the states are xd1ð0Þ ¼ 3; xd2ð0Þ ¼
5; xd3ð0Þ ¼ 7 for the master system, and x1ð0Þ ¼
�2; x2ð0Þ ¼ 2; x2ð0Þ ¼ 3 for the salve system. In addition,

hc ¼ 1and the external disturbance dðtÞ ¼ ½0:2 cosðptÞ; 0:1
cosðtÞ; 0:3 cosð2tÞ�T are used. The attenuation level is

chosen as R ¼ diagð0:6; 0:6; 0:6Þ and the gains of inte-

grated error function are selected as H ¼ diagð0:1; 0:1;
0:1Þ: In addition, the initial values of the learning-rates of

PID gains are set as gP ¼ 80; gI ¼ 20; and gD ¼ 0;

respectively; all the PID gains are set as zero initially.

Fig. 8 The synchronization responses of a chaotic system. (dashed
line drive system trajectory, continuous line response system

trajectory)

Fig. 6 The fitness function and learning-rates of SPID a fitness

function, b learning rate gP, c learning rate gI, d learning rate gD

Fig. 7 KP, KI and KD gains of SPID controller for the two-link

manipulator system
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For comparison, an adaptive fuzzy sliding model control

(AFSMC) [21] is also applied to this system, the tracking

trajectories are shown in Fig. 8a–c, respectively. The

simulation results of the proposed RSPID control are

shown in Figs. 8, 9, 10, 11. Synchronization responses of

xd1ðtÞ; x1ðtÞ; xd2ðtÞ; x2ðtÞ; xd3ðtÞ and x3ðtÞ are depicted in

Figs. 8d–f, respectively. Figure 9 shows the synchroniza-

tion errors and control efforts of chaotic system. The fitness

function and learning-rates are shown in Fig. 10, it is

shown when error state eðtÞ converges to zero, the fitness

function also approximates to fit ¼ 10. Figure 11 illustrates

the KP; KI and KD gains. Since this system is a first order

system (i.e. PI controller is used); thus, KD gains approach

to zero.

From Figs. 4 and 8, it’s easy to find that the proposed

control system can achieve control performance better than

AFSMC scheme, even under disturbance. By using the

proposed design method, the tracking error can converge to

zero quickly even in the presence of disturbance for dif-

ferent initial conditions.

6 Conclusion

This paper proposes a nonlinear system control scheme by

using a robust self-learning PID (RSPID) control system. In

the proposed control system, the self-learning PID (SPID)

controller is the main controller used to mimic an ideal

controller, and the robust controller is designed to com-

pensate for the difference between the ideal controller and

the SPID controller based on H? control technology. In

addition, a PSO algorithm has been adopted to search the

optimal learning-rates of the tuning law in SPID controller.

Simulation results have demonstrated that the proposed

RSPID control system can achieve favorable control per-

formance for the nonlinear systems. The major contribu-

tions of this study are: (1) The successful development of a

self-learning PID controller. (2) The SPID controller with

PSO algorithm and the robust controller are successful

combined for MIMO nonlinear systems.

Fig. 11 KP, KI and KD gains of SPID controller for unified chaotic

system

Fig. 10 The fitness function and learning-rates of SPID

Fig. 9 The synchronization errors and control efforts of unified

chaotic system
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