
ORIGINAL ARTICLE

Multiple classifier systems for robust classifier design
in adversarial environments

Battista Biggio • Giorgio Fumera • Fabio Roli

Received: 1 August 2010 / Accepted: 23 September 2010 / Published online: 12 October 2010

� Springer-Verlag 2010

Abstract Pattern recognition systems are increasingly

being used in adversarial environments like network

intrusion detection, spam filtering and biometric authenti-

cation and verification systems, in which an adversary may

adaptively manipulate data to make a classifier ineffective.

Current theory and design methods of pattern recognition

systems do not take into account the adversarial nature of

such kind of applications. Their extension to adversarial

settings is thus mandatory, to safeguard the security and

reliability of pattern recognition systems in adversarial

environments. In this paper we focus on a strategy recently

proposed in the literature to improve the robustness of

linear classifiers to adversarial data manipulation, and

experimentally investigate whether it can be implemented

using two well known techniques for the construction of

multiple classifier systems, namely, bagging and the ran-

dom subspace method. Our results provide some hints on

the potential usefulness of classifier ensembles in adver-

sarial classification tasks, which is different from the

motivations suggested so far in the literature.

Keywords Adversarial classification � Multiple classifier

systems � Robust classifiers � Linear classifiers

1 Introduction

Pattern recognition systems are increasingly being used in

applications like biometric authentication and verification,

intrusion detection in computer networks, spam filtering,

Web page ranking and network protocol verification [17,

23, 25, 32, 33, 42, 46], usually to discriminate between two

pattern classes corresponding to a legitimate and a mali-

cious behaviour. These applications are different from the

ones considered in the standard pattern recognition theory,

since they are characterised by the presence of a human

adversary who generates malicious samples, and can

adaptively manipulate data to avoid their detection. For

example, the goal of biometric verification systems is to

discriminate between genuine and impostor users, to allow

or deny access to some protected resource. An impostor

may try to be recognised as a genuine user by spoofing

his fingerprints. Analogously, intrusion detection systems

(IDSs) aim at discriminating between legitimate and

intrusive network traffic, and hackers may camouflage their

network packets so that they are mislabelled as legitimate.

Likewise, spammers adopt several tricks to obfuscate their

emails and get them past spam filters. In automatic Web

page ranking pattern recognition systems can be used to

automatically label or score Web pages according to pre-

defined topics, for automatic ranking purpose. A malicious

Webmaster may inflate the ranking of his Web site, for

example, by manipulating the metadata of Web pages. In

network protocol verification automatically recognising the

protocol of network packets can be useful to improve the

quality of service over a network. However, a malicious

user may attempt to get a higher bandwidth by disguising

the protocol in use.

The performance of intelligent data analysis systems

[47], and in particular pattern recognition systems, may

B. Biggio (&) � G. Fumera � F. Roli

Department of Electrical and Electronic Engineering,

University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy

e-mail: battista.biggio@diee.unica.it

G. Fumera

e-mail: fumera@diee.unica.it

F. Roli

e-mail: roli@diee.unica.it

123

Int. J. Mach. Learn. & Cyber. (2010) 1:27–41

DOI 10.1007/s13042-010-0007-7

thus be undermined when they operate in adversarial

environments. However, current theory and design meth-

ods of pattern recognition systems do not take into account

the adversarial nature of such applications. Current meth-

ods and algorithms may thus exhibit vulnerabilities which

can be exploited by an adversary to mislead them. This is a

relevant issue that needs to be addressed, to allow the

deployment of reliable and robust pattern recognition sys-

tems in many crucial applications.

The issue of adversarial classification has been raised

only recently in the literature. Some theoretical issues have

been addressed in the machine learning field, while

researchers from various application-centred fields (mainly

intrusion detection and spam filtering), focused on specific

vulnerabilities of pattern recognition and machine learning

systems in particular applications. However, the current

research is still limited and fragmented, and a first attempt

to unify the efforts in this field was made only in a recent

NIPS workshop [38]. In brief, the main open issues are:

identifying vulnerabilities of pattern recognition methods

and algorithms to adversarial data manipulation, and

developing methods for evaluating and improving their

robustness in adversarial environments.

In this paper we focus on the use of multiple classifier

systems (MCSs) to improve the robustness of pattern

classifiers. During the past fifteen years MCSs became a

state-of-the-art tool for the design of pattern classifiers,

mainly because of their capability to improve accuracy

with respect to an individual classifier. Some authors have

recently argued that MCSs can also improve robustness in

adversarial settings, since in principle more than one

classifier has to be evaded to make the whole ensemble

ineffective [29, 44, 46, 52]. However, this claim has never

been investigated in depth, and remains questionable.

Some opposite evidence was indeed provided in [45] for

multi-modal biometric systems. Inspired by a strategy to

improve the robustness of linear classifiers proposed in

[35], in this paper we investigate the capability of a par-

ticular kind of MCS construction techniques to improve the

robustness of linear base classifiers, based on a different

rationale than the one argued so far. The strategy in [35] is

based on keeping the feature weights as evenly distributed

as possible, which forces the adversary to modify a larger

number of feature values to evade the classifier. We argue

that randomisation-based MCS construction techniques

like bagging [9] and the random subspace method (RSM)

[30] may produce such effect on the feature weights of

linear classifiers, and empirically evaluate this behaviour

on a spam filtering case study, extending preliminary

results presented in [6, 7].

The paper is structured as follows. An overview of the

literature on adversarial classification is given in Sect. 2. In

Sect. 3 we describe the robustness improvement strategy of

[35], and discuss how MCSs can be exploited to implement

it. In Sect. 4 we describe the method we used to evaluate

robustness. Our experimental analysis is reported in

Sect. 5.

2 Background

In this section we summarise the literature on adversarial

classification, and in particular works which proposed the

use of MCSs to improve robustness.

2.1 Theoretical works

Theoretical issues of adversarial classification have been

addressed by few works in the machine learning field [2,

13, 17, 37, 40]. In [17] an analytical framework based on

minimum risk theory was proposed, in which adversarial

classification tasks were modelled as two-player games.

Using this framework, the authors experimentally showed

on a spam filtering task that an adversary aware classifier,

designed by anticipating potential adversarial actions, can

significantly outperform standard adversary unaware clas-

sifiers. In [2] some general issues about the security of

machine learning systems in adversarial environments

were discussed, and a taxonomy of attacks against them

was developed. Some possible defence strategies were also

sketched. A more specific issue was addressed in [40],

namely, the computational complexity of reverse-engi-

neering the classifier’s decision function, for an adversary

who can probe the classifier with ‘‘query’’ samples and get

feedback on the assigned label. General frameworks for the

evaluation of classifier performance in adversarial envi-

ronments were proposed in [13, 37].

While the above theoretical works pointed out the main

issues of adversarial classification tasks, they did not pro-

vide practical methods to design robust classifiers in real

applications. On the other hand, the majority of works

published so far focused on very specific issues of indi-

vidual applications, and their solutions cannot be general-

ised to different contexts. Moreover, these works are

mostly unrelated to theoretical ones, so that there is still a

huge gap between theory and applications.

2.2 Application-specific works

Some works analysed the vulnerability of different classifi-

ers used in IDSs [20, 34] and in biometric verification sys-

tems [22, 53]. Specific countermeasures were proposed for

IDSs in [16, 43], as well as methods to improve the robust-

ness of specific classification algorithms. For instance, in

[45] a modified version of the well known likelihood ratio

rule was proposed, for multi-modal biometric verification

28 Int. J. Mach. Learn. & Cyber. (2010) 1:27–41

123

tasks. In the spam filtering task, several works analysed the

vulnerability of text classifiers against well known spam-

mers’ tricks aimed at getting spam emails misclassified as

legitimate [24, 26, 31, 35, 41].

To our knowledge, only in [24, 35] practical methods to

improve classifier robustness were proposed. Both works

focused on linear classifiers with Boolean features, whose

robustness was measured in terms of the number of features

that have to be modified to get a malicious sample misclas-

sified as legitimate. For instance, this makes clearly sense in

the case of text classifiers in spam filtering, where each

feature is usually associated to a given word. Globerson and

Roweis [24] proposed a method to improve robustness

against the so-called ‘‘feature deletion’’ attack, which con-

sists in modifying a malicious sample to hide the presence of

some attributes (e.g., ‘‘bad’’ words are often misspelled in

spam emails). The method in [24] is based on a modification

of the support vector machine learning algorithm. The

strategy proposed in [35] will be explained in detail in

Sect. 3.1, since it will be investigated in this work.

2.3 MCSs in adversarial classification tasks

MCSs have been firstly proposed in these tasks to improve

classification accuracy, as in traditional (non-adversarial)

classification problems [3, 28, 33, 36, 46]. A more specific

motivation is that MCSs allow to deal in a natural way with

heterogeneous features coming from different information

sources, as in multi-modal biometric tasks [33, 46]. A MCS

architecture also allows to easily add new classifiers or

detection modules to an existing system, which is a com-

mon practice in network intrusion detection and spam fil-

tering tasks to counteract new kinds of attacks. Recently, it

has also been argued that MCSs allow to improve classifier

robustness in several adversarial classification tasks, based

on the intuitive motivation that an adversary has to evade

more than one classifier to make the whole ensemble

ineffective [29, 44, 46, 47, 52]. However, this claim has not

been supported by any clear theoretical or empirical evi-

dence so far. On the contrary, some empirical evidence

against it was provided in [45], where it was shown that

multi-modal biometric systems can be evaded by spoofing

just one biometric trait.

The robustness of MCSs in adversarial classification

problems has been also investigated in our previous works.

Since adding new detection rules to a system in response to

new attacks is a common practice in spam filtering and in

network intrusion detection, in [5] we investigated whether

adding classifiers to a given ensemble improves its

robustness. In [4] we analysed randomisation strategies

based on MCSs to prevent an adversary from gaining

sufficient knowledge on a classifier to evade it. However,

in these works we used the analytical model proposed by

Dalvi et al. [17], which is based on unrealistic assump-

tions; thus, our results did not provide clear-cut conclu-

sions. In [6] we provided some empirical evidence that a

MCS architecture can be more robust than a single clas-

sifier architecture. Nevertheless, this work was limited to a

logic OR of Boolean outputs of individual classifiers,

which is not a standard MCS architecture. Lastly, in [7] we

started investigating the use of bagging and the RSM to

implement the strategy proposed in [35] for improving

robustness. In this paper we extend our recent works [6, 7]

with a more thorough discussion on bagging and the RSM,

and a more extensive experimental investigation.

3 Robust linear classifiers

In this section we describe the strategy proposed in [35] to

improve the robustness of linear classifiers with Boolean

features, and discuss how MCS construction methods like

bagging and the RSM may be exploited to implement it.

3.1 Robust linear classifiers

Kolcz and Teo [35] proposed a strategy to improve the

robustness of linear classifiers with Boolean features against

manipulations of malicious samples aimed at getting them

misclassified as legitimate at operation phase. From now on,

we will denote such kind of manipulation as ‘‘attack’’, for

short. The strategy proposed in [35] was targeted to sce-

narios in which classifier robustness can be related to the

number of features that have to be modified in malicious

samples to evade a classifier. A typical application scenario

is a spam filtering task in which a text classifier is trained on

Boolean features, each one denoting the presence or

absence of a given word in an email. In this case it makes

sense to evaluate robustness in terms of the number of

words that a spammer has to add or to obfuscate in the

original spam message to evade the classifier. In [35] it was

observed that, if some features are highly discriminant on

training samples, and the adversary knows them, he may

manipulate his samples by modifying only the values of

those features to evade the classifier. In practice, in appli-

cations like spam filtering and network intrusion detection,

an adversary could guess the most discriminant features

reasonably well. Based on this observation, and on the fact

that in linear classifiers the most discriminant features are

given the largest absolute weights, Kolcz and Teo [35]

suggested that classifier robustness can be improved by

avoiding to over-emphasise (under-emphasise) features

which are highly (slightly) discriminant on training

samples, since this would force the adversary to modify a

higher number of feature values to evade the classifier. In

other words, the absolute values of the feature weights

Int. J. Mach. Learn. & Cyber. (2010) 1:27–41 29

123

should be distributed as evenly as possible. However, this

may undermine the classifier accuracy on non-manipulated

samples; thus, a trade-off between accuracy and robustness

may be needed.

Among the different implementations of the strategy

proposed in [35], we are interested in the one named

averaging, which is based on a MCS approach. Let us first

introduce some notation. We denote the decision function

of a linear classifier as f(x) = sign (g(x)) [{-1, ?1},

where x = (x1,…, xn) is the n-dimensional feature vector

of a given sample, g(x) =
P

i=i
n wi xi ? w0 is a linear dis-

criminant function, w0, w1,…, wn are the feature weights,

to be set by a learning algorithm, and -1 and ?1 are the

labels of legitimate and malicious samples, respectively.

The averaging method consists in constructing a linear

classifier whose discriminant function g(x) is obtained by

averaging the ones of L different linear classifiers

g1(x),…, gL(x). Such classifiers are obtained by running the

chosen learning algorithm on the same training samples, but

using L different, randomly selected subsets of the original

feature set. This is obtained by setting to zero the values of

non-selected features in all training samples. It is easy to see

that the weights w1,…,wn of g(x) equal the average of

the corresponding weights of the L classifiers: wi = (1/L)
P

j=1
L wi

j, i = 1,…, n. Note that this increases the compu-

tational cost only at training phase, while the same cost of

an individual linear classifier is incurred at operation phase.

The averaging method was borrowed from [51], where

it was used to prevent feature overfitting and underfitting,

which can happen when the training set is not sufficiently

representative of the distribution of samples at operation

phase. This is also the case of adversarial classification

problems, which however were not considered in [51].

Quoting from [35], the rationale of this method is the

following:

By chance (due to randomness) in feature subset

selection, highly indicative features are assigned to

bags different from that of the less indicative features.

Therefore, weights of the less indicative features will

not be overwhelmed by the highly indicative ones

during the modelling process.

3.2 MCS-based strategies to design robust

linear classifiers

Kolcz and Teo [35] argued that the averaging method may

produce a linear classifier whose weights are more evenly

distributed than those of a single linear classifier trained

with the same learning algorithm. The rationale was based

on intuition, and was supported by some empirical results.

However, a more thorough look at the averaging method

reveals that it exhibits two interesting features, since it

turns out to be very similar to a technique for ensemble

construction which is well-known in the MCS field, i.e., the

random subspace method (RSM) [30]. First, the RSM is

known to be effective in improving classification accuracy

with respect to a single classifier trained with the same

learning algorithm. This makes it a stronger candidate as a

method to reach a good trade-off between accuracy and

robustness in adversarial classification tasks, provided that

it is actually capable to produce more evenly distributed

feature weights. Second, the RSM belongs to a family of

well-known MCS construction techniques based on ran-

domisation, whose other main representatives are bagging

[9] and the random forest method [10]. This opens an

interesting perspective on the potential usefulness of ran-

domisation-based MCS techniques in adversarial classifi-

cation tasks, besides the RSM. Indeed, since these

techniques are rooted on the same underlying principle of

the RSM, one may wonder whether they all may result not

only in improving classification accuracy, but also in more

evenly distributed weight values as a by-product, when

applied to linear base classifiers, ‘‘naturally’’ implementing

the strategy proposed in [35].

Randomisation-based techniques consist in constructing

a MCS by training a given base classifier on different

training sets, obtained by introducing some randomness in

the original one. The first and most known technique of this

kind is bagging [9]. It consists in training the individual

classifiers on bootstrap replications of the original training

set. Besides the RSM, which has been described above,

another well-known method is the random forest [10]. It

applies only to decision trees, and combines the idea of

training set resampling and random feature subset selec-

tion. These techniques, and bagging in particular, have

been extensively studied in the literature, in terms of why

and under which conditions they are able to improve

classification accuracy with respect to an individual base

classifier, or the approximation error in regression prob-

lems, for bagging [9, 11, 12, 18, 21, 27, 30]. In particular,

bagging is believed to work well for unstable base classi-

fiers or regressors, whose decision or estimation function

undergoes large changes for small perturbations of the

training set. According to [9], bagging reduces such

instability by reducing the variance component of the

classification or estimation error. Other explanations have

also been proposed; for instance, in [27] it was argued that

bagging reduces the influence of outliers in the training set.

Despite all these works, to our knowledge the effect of

randomisation-based techniques on the weight values of

linear base classifiers was not considered by any author,

even when the behaviour of bagging and the RSM method

was specifically investigated for such kinds of classifiers

[48, 49]. Furthermore, although several theoretical models

of bagging have been proposed [9, 11, 12, 27], it turns out

30 Int. J. Mach. Learn. & Cyber. (2010) 1:27–41

123

to be very difficult to exploit them to study its effect on the

weight values of linear classifiers. Nevertheless, it is pos-

sible to provide at least an intuitive explanation of the

potential side-effect of bagging of producing more evenly

distributed weight vectors, similar to the intuitive motiva-

tion proposed in [35] for the RSM. When bagging is used,

the training set of each base classifier is a bootstrap repli-

cation of the original training set. Therefore, each training

sample may not appear in some bootstrap replications. One

of the possible effects may be a reduction of the average

weight of features which would be most discriminant on

the whole training set, and an analogous increase of the

average weight of least discriminant ones.

Since it is difficult to obtain analytical results to guide

the analysis of randomisation-based methods, in this work

we give an experimental analysis to get some hints on their

behaviour, focusing on bagging and the RSM. We address

two main issues. The first one is to understand whether, and

possibly under which conditions, they allow to produce

more evenly distributed weight values than a single clas-

sifier. The second issue is to evaluate whether this allows to

improve robustness, and what is the effect on the accuracy

when a classifier is not under attack. Before presenting our

experimental analysis, we report below the algorithms of

bagging and the RSM, and describe in the next section the

method we will use to evaluate robustness.

4 Robustness evaluation

Standard methods for classifier performance evaluation are

based on estimating the generalisation capability using a

set of samples collected at design phase, through cross-

validation or analogous techniques. However, they cannot

provide information about the behaviour of a classifier

under attack, for two main reasons. First, malicious sam-

ples belonging to training data may not have been sub-

jected to adversarial modifications aimed at evading a

classifier. For example, in standard biometric verification

systems the training set does not include any spoofed trait,

namely, fake biometric traits reproduced by an impostor to

be recognised as a genuine user. This does not allow to

assess the behaviour of such a system against a spoof

attack. Second, even if the collected malicious samples

include attacks (as it may happen in spam filtering and

network intrusion detection tasks), they were not purposely

crafted to evade the system under design, but the one which

was operating when they were collected [35]. Therefore,

they are not representative of the attacks that may be

subsequently performed against the classifier under design.

However, despite the relevance of adversarial classification

tasks, no works in the literature have proposed practical

robustness evaluation methods so far.

Evaluating classifier robustness in adversarial classifi-

cation tasks is a complex issue, which is outside the scope

of this paper, and is the subject of an ongoing work [13,

37], also by the authors. In the following we describe the

method used in our experiments, which is derived from a

more general methodology we are currently developing,

and tailored to the particular application scenario consid-

ered in this paper.

Given that the samples collected to design a classifier

cannot be considered representative of attacks observed at

operation phase, our methodology to assess classifier

robustness is based on simulating attacks carefully targeted

against the classifier under design. More precisely, a clas-

sifier is first trained on the original training set, then its

performance is evaluated on a modified testing set, in which

all malicious samples have been modified to simulate the

effect of an attack of interest. In the considered application

scenario, the effect of attacks is simply to change the value

of some features from 0 to 1, or vice versa. They can thus be

simulated by directly modifying the feature vectors of

malicious samples, without the need of manipulating the

original samples (e.g., emails or network packets).

In the case of linear classifiers, it is of interest to eval-

uate robustness in a worst-case scenario. In this case the

adversary is assumed to have complete knowledge of the

classifier, namely, of the feature set and the decision

function, and is always able to get a malicious sample

Int. J. Mach. Learn. & Cyber. (2010) 1:27–41 31

123

misclassified as legitimate by modifying the minimum

number of feature values. Another case of interest is the

one in which the adversary has only an approximate

knowledge of the classifier, as happens in many real cases.

For instance, two well-known attacks against text classifi-

ers used in spam filters are the so-called good word

insertion (GWI) and bad word obfuscation (BWO). They

respectively consist in modifying a spam email by inserting

randomly chosen words which are not likely to appear in

spam messages, and by obfuscating (e.g., by misspelling)

typical ‘‘spammy’’ words. When evaluating the robustness

of a classifier against these attacks, it is reasonable to

assume that the adversary can guess a subset of the good

and bad words used by the classifier, and their discriminant

capability. An attack based on such partial knowledge can

thus be simulated by modifying only the corresponding

subset of features in malicious samples.

In the case of text classifiers for spam filtering it is also

useful to evaluate robustness as a function of the attack

strength, namely, the maximum number of words (i.e.,

features) which can be modified (i.e., either inserted or

obfuscated) in a spam email.

In our experiments we evaluate the robustness of linear

classifiers considering both worst- and non-worst-case

attack scenarios. The feature vectors of all malicious

samples in the testing set are modified to simulate the

effect of a given attack, by changing up to nMAX feature

values, which corresponds to the attack strength. The exact

algorithms used to simulate the attacks are described

below.

4.1 Worst-case attack

For a given feature vector x of a malicious sample, the

features to modify (up to a given number nMAX) to get a

new feature vector x0 are the ones which minimise the

discriminant function g(x0). This leads to the maximum

decrease in performance for the given nMAX. It is not dif-

ficult to see that, for linear classifiers with Boolean fea-

tures, x0 can be found as follows. First, the weights

w1, w2,…, wn have to be sorted in descending order of their

absolute value, and the features have to be sorted accord-

ingly. Note that this step has to be carried out only once,

after classifier training. We denote the sorted weights

and features respectively as w(1), w(2),…, w(n), and

x(1), x(2),…, x(n), where |w(1)| C |w(2)| C ��� C |w(n)| Then,

for i = 1, 2,…, n and until the number of modified feature

values does not exceed nMAX:

– if x(i) = 1 and w(i) [0, x(i) is set to 0;

– if x(i) = 0 and w(i) \ 0, x(i) is set to 1;

– otherwise, x(i) is left unchanged.

The exact procedure is reported as Algorithm 3.

4.2 Non-worst-case attacks

We assume that the adversary devises his modifications to

malicious samples based on an incomplete knowledge of

the classifier’s decision function, namely, on an approxi-

mation of the feature weights. The consequence is that he

overestimates or underestimates the importance of some

features, leading to a non-optimal choice of the features to

modify. In practice, this corresponds to the case in which

the adversary makes some educated guess on what the most

discriminant features are. To simulate this scenario it is

possible to use again Algorithm 3, but shuffling the order

of features which were sorted according to descending

absolute values of their weights. We considered two cases

corresponding to different levels of the adversary’s

knowledge: swapping n/2 pairs of randomly chosen fea-

tures in the sequence x(1), x(2),…, x(n) (which we will refer

to as ‘‘non-worst-case’’ attack), and shuffling them com-

pletely at random (‘‘random’’ attack). Note that the latter

corresponds to an adversary with no knowledge on the

discriminant capability of the features.

5 Experimental results

The goal of our experiments is to investigate whether, and

under which conditions, bagging and the RSM produce

more evenly distributed weight values and exhibit a higher

robustness than a single base classifier trained with the

same learning algorithm. We used a spam filtering task as a

case study. The experimental setup is described in

Sect. 5.1, and the results are reported in Sects. 5.2 and 5.3.

32 Int. J. Mach. Learn. & Cyber. (2010) 1:27–41

123

5.1 Experimental setup

5.1.1 Data sets and classifiers

We used the benchmark TREC 2007 email corpus [15],

publicly available at http://plg.uwaterloo.ca/*gvcormac/

treccorpus07. It is made up of 75,419 real emails (25,220

legitimate and 50,199 spam messages), which were col-

lected between April and July 2007.

Two kinds of linear classifiers with Boolean features

were considered: text classifiers proposed in the spam fil-

tering literature, and classifiers which can be used to

automatically tune the linear decision function of the

SpamAssassin filter.

We used support vector machines (SVMs) with linear

kernel [19] and logistic regression (LR) [35] as text clas-

sifiers. The first 20,000 emails (in chronological order) of

TREC 2007 were used as training set, and the next 20,000

emails as testing set. The bag-of-words feature model was

used. We first extracted the features (words) from training

emails using the tokenization method of SpamAssassin, and

then selected n = 20,000 distinct features using a super-

vised feature selection approach based on the information

gain criterion [39]. SVMs were trained using the libSVM

software [14]; the C parameter of their learning algorithm

was chosen among the values in {0.001, 0.01, 0.1, 1,

10, 100}, by maximising the performance measure (see

below) through a 5-fold cross validation on training data.

The LR classifier was trained using an online gradient

descent algorithm [8].

In the experiments on the SpamAssassin filter we used

its latest available version, 3.2.5. SpamAssassin consists of

some hundred Boolean tests, each aimed at detecting a

particular characteristic of spam or legitimate emails, like

the presence of a typical spam word or an email header

malformation produced by known automatic spam gener-

ation tools [50]. Some tests are associated to the output of a

text classifier. The outcomes of tests are numerically coded

as 1 and 0, respectively for ‘True’ and ‘False’. An email is

labelled as spam if the linear combination of the corre-

sponding test outputs exceeds a given threshold, otherwise

it is labelled as legitimate. SpamAssassin can thus be

viewed as a linear classifier with Boolean features. Default

values are provided for the threshold and the feature

weights.1 They are obtained by manually tuning the ones

produced by a linear classifier, which is currently a per-

ceptron.2 Note that manual tuning is done by the Spa-

mAssassin developers to improve robustness, given that the

weights produced by learning algorithms are not consid-

ered reliable enough. For this reason, it is interesting to

evaluate whether the strategy proposed in [35] to improve

robustness of linear classifiers can be effectively exploited

in the practical application scenario of SpamAssassin. In

our experiments, we used again the SVM and LR linear

classifiers, and also considered the default weights for

comparison. Since about half of the SpamAssassin tests

gave zero (‘False’) as output value for all the TREC 2007

emails, we disregarded them to reduce the computational

complexity. The remaining number of tests (features)

turned out to be n = 549. Since SpamAssassin includes a

text classifier, we used the first 10,000 emails (in chrono-

logical order) of TREC 2007 to train it. The next 20,000

emails were used as training set for our linear classifiers,

and the following 20,000 ones were used as testing set.

The performance of bagging and the RSM was evalu-

ated for different values of their parameters, to investigate

how they affect robustness and accuracy. Ensemble of 5,

10 and 20 base classifiers were considered. For the RSM,

we considered feature subset sizes equal to 30, 50 and 80%

of the original feature set size. For bagging we also con-

sidered different training set sizes of the bootstrap repli-

cations (which is one of the variants proposed in the

literature), equal to 30, 50 and 100% of the original training

set size. Since bagging and the RSM are respectively based

on a random selection of training samples and feature

subsets, we averaged the results over 5 runs of the

experiments.

5.1.2 Performance and weight evenness measures

Robustness was evaluated as described in Sect. 4, under the

worst-case and the two non-worst-case scenarios of Sect. 4.

Classification performance was evaluated with a measure

derived from the area under the ROC curve (AUC). Since

in tasks like spam filtering false positive (FP) errors are

typically more harmful than false negative (FN) ones, the

region of interest of the ROC curve is restricted to low FP

rate values. As proposed in [35], we used a more infor-

mative measure than the AUC, defined as the area of the

region of the ROC curve corresponding to FP rates in

the range [0, 0.1]: AUC10% = $0
0.1 TP(FP)dFP. Note that

AUC10% [[0,0.1].

To evaluate the weight evenness we used a measure

proposed in [35]. It is defined as a function F(k) given by

the ratio of the sum of the k highest absolute weight values

to the sum of all absolute weight values, for k = 1,…, n:

FðkÞ ¼
Pk

i¼1 jwðiÞjPn
j¼1 jwjj

; ð1Þ

where |w(1)|, |w(2)|,…, |w(n)| denote the weights sorted in

descending order of their absolute values, i.e., |w(1)|

1 For a detailed list of tests and corresponding weights, see

http://spamassassin.apache.org/tests_3_2_x.html.
2 http://spamassassin.apache.org/full/3.0.x/dist/masses/README.

perceptron.

Int. J. Mach. Learn. & Cyber. (2010) 1:27–41 33

123

http://plg.uwaterloo.ca/~gvcormac/treccorpus07
http://plg.uwaterloo.ca/~gvcormac/treccorpus07
http://spamassassin.apache.org/tests_3_2_x.html
http://spamassassin.apache.org/full/3.0.x/dist/masses/README.perceptron
http://spamassassin.apache.org/full/3.0.x/dist/masses/README.perceptron

C |w(2)| C ��� C |w(n)|. Note that w0 is not considered, since

it is not associated to any feature. The most even weight

distribution is given by identical weights, which

corresponds to F(k) = k/n. The most uneven distribution

is attained when only one weight is different from zero, and

thus F(k) = 1 for each k value. Therefore, a flatter line

corresponds to a more even weight distribution [35]. Since

F(k) is not a scalar, we chose to use a more concise, scalar

measure given by:

E ¼ 2

n� 1
n�

Xn

k¼1

FðkÞ
" #

: ð2Þ

It is easy to see that the range of E is [0, 1], and that E = 0

and E = 1 correspond respectively to the most uneven and

to the most even weight distribution.

5.2 Experimental results on text classifiers

We analyse first the classification performance of all the

considered linear text classifiers, when they are not under

attack, and the evenness of their weight distribution. Then we

analyse their robustness across the different attack scenarios.

In Tables 1 and 2 we report the testing AUC10% for the

LR and SVM base classifiers, when they are not under

attack, and their weight evenness E (Eq. 2). We remind the

reader that AUC10% ranges from 0 to 0.1, and that the

results for MCSs were averaged over 5 repetitions, since

the MCSs were built using different random feature subsets

(RSM) or bootstrap replications (bagging).

The AUC10% values of the two individual base classi-

fiers are similar and very high. Nevertheless, both bagging

and the RSM almost always slightly outperformed the

corresponding individual classifier. Moreover, bagging and

the RSM also produced more evenly distributed weights

than the corresponding individual classifiers, with some

exception for the RSM, when only 5 classifiers were

combined, or small feature subset sizes were used (30%).

Note also that the weight evenness of the MCSs almost

always increases as the ensemble size increases, while its

behaviour as a function of the training size (for bagging) or

feature subset size (for RSM) is not clear-cut.

Consider now the robustness under the different attack

scenarios.

5.2.1 Worst-case attack

Figures 1 and 2 show the robustness against a worst-case

attack (these figures are best viewed in colour), in terms of

AUC10% as a function of the attack strength, namely, the

maximum number of modified feature values. Note that the

AUC10% values for zero attack strength are the ones

attained by the classifiers when they are not under attack,

and are therefore the same as in Tables 1 and 2. Note also

that the AUC10% values drop to zero as the attack strength

increases. This means that, after a given number of features

has been modified, all spam emails are misclassified as

legitimate. Although this is not the focus of this work, we

point out that, in this kind of analysis, it is interesting for

the designer of a pattern recognition system to analyse the

behaviour of AUC10% as the attack strength increases: the

more graceful its decrease, the more robust the classifier.

Figures 1 and 2 show that the behaviour of bagging and

the RSM in terms of robustness, with respect to the cor-

responding base classifier, almost always agrees with the

one hypothesised in [35] in terms of weight evenness. In

particular, bagging always improved the robustness of both

the LR and SVM base classifiers, besides providing more

evenly distributed weights as discussed above. Similarly,

the RSM slightly improved the robustness of the LR

classifier, except when the ensemble size was 5, and its

performance improved as the ensemble size increased.

These are the same conditions under which the weight

evenness of the RSM increased, and exceeded the one of

the individual classifier. Finally, it can also be seen that the

more evenly distributed the weight values of RSM and

bagging, the higher their robustness. The only exception to

Table 1 Average classification performance (AUC10%) and weight

evenness (E) for the individual LR text classifier (first row) and the

LR ensembles built by the RSM and bagging, when they are not under

attack

Classifier AUC10% E

LR 0.0994 0.309

LR-RSM-5-30 0.0996 0.258 ± 0.0043

LR-RSM-5-50 0.0996 0.308 ± 0.0031

LR-RSM-5-80 0.0996 0.325 ± 0.0016

LR-RSM-10-30 0.0996 0.311 ± 0.0037

LR-RSM-10-50 0.0996 0.33 ± 0.0023

LR-RSM-10-80 0.0996 0.338 ± 0.0023

LR-RSM-20-30 0.0996 0.335 ± 0.0029

LR-RSM-20-50 0.0996 0.341 ± 0.0029

LR-RSM-20-80 0.0996 0.342 ± 0.0029

LR-bag-5-30 0.0996 0.33 ± 0.0046

LR-bag-5-50 0.0997 0.337 ± 0.0037

LR-bag-5-100 0.0996 0.335 ± 0.0046

LR-bag-10-30 0.0997 0.341 ± 0.0046

LR-bag-10-50 0.0996 0.338 ± 0.002

LR-bag-10-100 0.0996 0.341 ± 0.0035

LR-bag-20-30 0.0997 0.343 ± 0.0047

LR-bag-20-50 0.0997 0.346 ± 0.0026

LR-bag-20-100 0.0997 0.345 ± 0.0029

In the row headers LR-X-Y-Z, X denotes the MCS technique, Y the

ensemble size, and Z the feature subset size (for the RSM) or the

training set size (for bagging)

34 Int. J. Mach. Learn. & Cyber. (2010) 1:27–41

123

this behaviour is that the RSM never improved the

robustness of the SVM classifier, although it produced

slightly more evenly distributed weights for larger

ensemble sizes or feature subset sizes.

The above results show a rather clear correlation

between the increase in weight evenness and the increase in

robustness, which provides further support to the strategy

suggested in [35]. Our results also suggest that both bagging

and the RSM are able to provide more evenly distributed

weights and to improve the robustness of an individual linear

classifier, provided that their parameters are properly cho-

sen. In particular, in the considered data set the RSM seemed

more effective for large ensemble and feature subset sizes,

while bagging benefited from small training set sizes.

5.2.2 Non-worst-case attacks

For the sake of brevity, we report in Fig. 3 only the results

attained with an ensemble size of 10, when bagging was

trained on 50% of the original training set size, and the

RSM was trained on subsets of 50% of the original feature

set. For an easier comparison, we also report the corre-

sponding results of the worst-case attack. The value of the

weight evenness measure E is the same as above, since

only the attack strategy is different. Note that in the con-

sidered cases the weight evenness was higher than the one

of the individual classifier.

As expected, the ‘‘non-worst-case’’ attack scenario is

less harmful for the classifiers than the worst-case attack.

This can be seen from the higher AUC10% values attained

under the former attack, being equal the attack strength.

Analogously, the ‘‘random’’ attack (simulating the case

when the adversary has no knowledge on the relative dis-

criminant capability of features) is the least harmful. For

example, the AUC10% of the individual LR classifier and of

ensembles of LR classifiers is reduced to 0.08 by modify-

ing less than 20 features (i.e., words in spam emails) in the

worst-case, while more than 60 features have to be modi-

fied in the ‘‘non-worst-case’’ attack, and more than 400

features in the ‘‘random’’ attack.

Table 2 Average classification performance (AUC10%) and weight

evenness (E) for the individual SVM text classifier (first row) and the

SVM ensembles built by the RSM and bagging, when they are not

under attack

Classifier AUC10% E

SVM 0.0993 0.233

SVM-RSM-5-30 0.0993 0.192 ± 0.0018

SVM-RSM-5-50 0.0993 0.225 ± 0.004

SVM-RSM-5-80 0.0993 0.232 ± 0.0011

SVM-RSM-10-30 0.0994 0.232 ± 0.0034

SVM-RSM-10-50 0.0993 0.239 ± 0.0018

SVM-RSM-10-80 0.0994 0.237

SVM-RSM-20-30 0.0992 0.251 ± 0.0027

SVM-RSM-20-50 0.0993 0.248 ± 0.0012

SVM-RSM-20-80 0.0994 0.238

SVM-bag-5-30 0.0997 0.261 ± 0.006

SVM-bag-5-50 0.0997 0.258 ± 0.008

SVM-bag-5-100 0.0995 0.252 ± 0.0019

SVM-bag-10-30 0.0997 0.267 ± 0.0051

SVM-bag-10-50 0.0997 0.263 ± 0.0019

SVM-bag-10-100 0.0996 0.254 ± 0.0024

SVM-bag-20-30 0.0997 0.274 ± 0.0013

SVM-bag-20-50 0.0997 0.265 ± 0.0018

SVM-bag-20-100 0.0996 0.252 ± 0.0013

See caption of Table 1 for the meaning of row headers. The standard

deviation is reported, when greater than 10-3

Fig. 1 Average AUC10% (solid lines) with standard deviation

(dashed lines), versus the attack strength, for the single LR (top)

and SVM (bottom) text classifiers, and for their ensembles built with

the RSM, against the worst-case attack. In the legends, X-RSM-Y-Z

denotes the base classifier (X), the ensemble size (Y), and the

percentage feature subset size (Z)

Int. J. Mach. Learn. & Cyber. (2010) 1:27–41 35

123

From Fig. 3 it can be seen that both bagging and the RSM

slightly improved the robustness of the LR base classifier

(taking into account the larger variance than in the worst case

attack), while the robustness of the SVM classifier is

improved by both bagging and the RSM under the ‘‘random’’

attack, and by bagging only under the ‘‘non-worst-case’’

attack. As in the worst-case scenario, the relationship

between classifier robustness and weight evenness agrees

rather well with the one hypothesised in [35].

5.3 Experimental results on SpamAssassin

Tables 3 and 4 show the AUC10% and weight evenness

values when SpamAssassin is not under attack. The

individual LR and SVM classifiers exhibited a similar

AUC10% value, while LR produced more evenly distributed

weights. Bagging performed slightly worse than the single

LR classifier and slightly better than the SVM one, and did

not always improve their weight evenness. The RSM often

performed worse than the corresponding individual clas-

sifier (sometimes, significantly worse), but always pro-

duced more evenly distributed weights.

The weight evenness tends to increase as the feature

subset size of RSM decreases (which is opposite to the

behaviour observed in previous experiments), and as the

training set size of bagging increases. The weight evenness

tends to increase also as the ensemble size increases, as in

the previous experiments. The behaviour of the RSM in

Fig. 2 Average AUC10% (solid lines) with standard deviation

(dashed lines), versus the attack strength, for the single LR (top)

and SVM (bottom) text classifiers, and for their ensembles built with

bagging, against the worst-case attack. See caption of Fig. 1 for the

meaning of figure legends

Fig. 3 Average AUC10% (solid lines) with standard deviation

(dashed lines), versus the attack strength, for the single LR (top)

and SVM (bottom) text classifiers, and for their ensembles built with

bagging and the RSM. Left worst-case attack; middle non-worst-case

attack; right random attack. See the caption of Figs. 1 and 2 for the

meaning of figure legends

36 Int. J. Mach. Learn. & Cyber. (2010) 1:27–41

123

this respect can be explained with the fact that, among

SpamAssassin tests, only the nine ones associated to its text

classifier exhibit a very high discriminant capability.

Hence, the base classifiers are likely to assign high absolute

weight values only to these tests. On the contrary, when

using small subsets of features to train the base classifiers,

some of them are likely to include few (or none) of the

features (tests) associated to the text classifier. Conse-

quently, the other features get higher absolute weight val-

ues. Accordingly, the average values of the feature weights

of the individual classifier of the ensemble are likely to be

more evenly distributed.

Consider finally the default weight values of SpamAs-

sassin. They attain a worse classification performance than

the LR and SVM individual classifier, as well as most of

their ensembles. However, they are also much more evenly

distributed than any set of weight produced by the con-

sidered learning algorithms. The criteria used by the Spa-

mAssassin developers to manually tune the weights appear

therefore coherent with the strategy proposed in [35], and

seem to push the trade-off between classification perfor-

mance (without attacks) and robustness to attacks (namely,

weight evenness) in favour of the latter, much more than

the considered learning algorithms.

5.3.1 Worst-case attack

Robustness against the worst-case attack is shown in

Figs. 4 and 5. It is easy to see that the robustness of both

bagging and the RSM follows a behaviour which is in good

agreement with their weight evenness, as hypothesised in

[35]. RSM-based ensembles are almost always more robust

than the corresponding base classifier, and their robustness

increases under the same conditions under which their

weight evenness increases. Analogously, the robustness of

bagging-based ensembles is very similar to the one of the

corresponding base classifier, as the evenness of their

weights. Contrary to text classifiers, the RSM turned out to

be more effective than bagging in improving the robustness

of SpamAssassin, at least for the ensemble parameters

considered here. Finally, it is interesting to note that, while

the default SpamAssassin weights exhibit a much higher

robustness than the individual LR and SVM classifiers, and

of their ensembles built with bagging, the RSM attained the

same robustness for high attack strengths, and sometimes

even a better robustness. This result is promising under the

viewpoint of the reliability of pattern recognition systems

in adversarial classification tasks.

Table 3 Average classification performance (AUC10%) and weight

evenness (E) of SpamAssassin when it is not under attack, attained by

the default weights (first row), the individual LR text classifier (sec-

ond row), and the LR ensembles built by the RSM and bagging

Classifier AUC10% E

Def. weights 0.0974 0.601

LR 0.0984 0.2

LR-RSM-5-30 0.0976 0.219 ± 0.025

LR-RSM-5-50 0.0979 0.222 ± 0.022

LR-RSM-5-80 0.0981 0.214 ± 0.011

LR-RSM-10-30 0.0971 0.269 ± 0.015

LR-RSM-10-50 0.0978 0.256 ± 0.016

LR-RSM-10-80 0.0983 0.213 ± 0.0076

LR-RSM-20-30 0.0977 0.287 ± 0.0073

LR-RSM-20-50 0.098 0.271 ± 0.011

LR-RSM-20-80 0.0982 0.231 ± 0.01

LR-bag-5-30 0.0977 0.19 ± 0.0033

LR-bag-5-50 0.098 0.195 ± 0.0023

LR-bag-5-100 0.0983 0.206 ± 0.004

LR-bag-10-30 0.0977 0.191 ± 0.0013

LR-bag-10-50 0.098 0.196 ± 0.0037

LR-bag-10-100 0.0983 0.206 ± 0.0012

LR-bag-20-30 0.0977 0.192 ± 0.0014

LR-bag-20-50 0.098 0.196

LR-bag-20-100 0.0983 0.206 ± 0.0013

See caption of Table 1 for the meaning of row headers. The standard

deviation is reported, when greater than 10-3

Table 4 Average classification performance (AUC10%) and weight

evenness (E) of SpamAssassin when it is not under attack, attained by

the default weights (first row), the individual SVM text classifier

(second row), and the SVM ensembles built by the RSM and bagging

Classifier AUC10% E

Def. weights 0.0974 0.601

SVM 0.0983 0.147

SVM-RSM-5-30 0.0966 ± 0.0013 0.251 ± 0.069

SVM-RSM-5-50 0.0967 ± 0.0012 0.271 ± 0.03

SVM-RSM-5-80 0.0978 0.186 ± 0.063

SVM-RSM-10-30 0.0952 ± 0.0017 0.394 ± 0.027

SVM-RSM-10-50 0.097 ± 0.0012 0.314 ± 0.029

SVM-RSM-10-80 0.098 0.177 ± 0.046

SVM-RSM-20-30 0.0968 0.434 ± 0.025

SVM-RSM-20-50 0.0973 0.365 ± 0.021

SVM-RSM-20-80 0.0982 0.207 ± 0.058

SVM-bag-5-30 0.0983 0.126 ± 0.0092

SVM-bag-5-50 0.0983 0.142 ± 0.0081

SVM-bag-5-100 0.0985 0.15 ± 0.0077

SVM-bag-10-30 0.0984 0.137 ± 0.0079

SVM-bag-10-50 0.0985 0.154 ± 0.0072

SVM-bag-10-100 0.0984 0.159 ± 0.0043

SVM-bag-20-30 0.0984 0.143 ± 0.0082

SVM-bag-20-50 0.0984 0.154 ± 0.0062

SVM-bag-20-100 0.0985 0.162 ± 0.0037

See caption of Table 1 for the meaning of row headers. The standard

deviation is reported, when greater than 10-3

Int. J. Mach. Learn. & Cyber. (2010) 1:27–41 37

123

5.3.2 Non-worst-case attacks

As in Sect. 5.2 we only consider ensembles of 10 classifiers,

trained on 50% of the original features for the RSM, and on

50% of the training set size for bagging. In Fig. 6 the

robustness of the different classifiers considered is shown, as

well as the default SpamAssassin weights, for the ‘‘non-

worst-case’’ and ‘‘random’’ attacks. The same consider-

ations of Sect. 5.2 apply here, about classifier robustness

under the different scenarios. Figure 6 shows that the only

significant improvement in robustness is attained by the

RSM with the SVM classifier. Note that the RSM applied to

SVMs provided the highest robustness improvement also

under the worst-case attack. The relationship between the

weight evenness and robustness is thus confirmed by these

results also in non-worst-case attack scenarios. Note finally

that in the ‘‘non-worst-case’’ attack both the individual LR

and SVM classifiers attain a similar robustness as the default

SpamAssassin weights, while they attain an even better

robustness in the ‘‘random’’ attack scenario.

To sum up, the RSM turned out to be quite effective in

improving both the accuracy and robustness of the LR and

SVM base classifiers, when they were used to set the weights

of the SpamAssassin’s tests. Instead, bagging turned out to

be not better than the corresponding base classifier in this

task. These behaviour is somewhat opposite to the one

Fig. 4 Average AUC10% (solid lines) with standard deviation

(dashed lines) of SpamAssassin, versus the attack strength, attained

by the default weights and by weights produced by the single LR (top)

and SVM (bottom) text classifiers, and by their ensembles built with

the RSM, against the worst-case attack. See caption of Fig. 1 for the

meaning of figure legends

Fig. 5 Average AUC10% (solid lines) with standard deviation

(dashed lines) of SpamAssassin, versus the attack strength, attained

by the default weights and by weights produced by the single LR (top)

and SVM (bottom) text classifiers, and by their ensembles built with

bagging, against the worst-case attack. See caption of Fig. 1 for the

meaning of figure legends

38 Int. J. Mach. Learn. & Cyber. (2010) 1:27–41

123

observed in text classifiers. A possible explanation is that the

RSM is much more effective than bagging in forcing the

evenness of weight distributions, when few features exhibit a

relatively high discriminant capability. This is indeed the

case of the SpamAssassin tests, as pointed out above, while

in the case of text classifiers (where bagging was slightly

more effective than the RSM), the feature weights of the base

classifiers were relatively more evenly distributed. Never-

theless, also these experiments showed a good agreement

between the observed behaviour of the weight evenness and

the robustness of bagging and the RSM, and the behaviour

hypothesised in [35].

6 Conclusions

The use of pattern recognition systems in adversarial

environments poses new challenges to researchers in the

pattern recognition field, since current theory and design

methods do not take into account the possibility of actively

manipulating data in an adversarial way, to make a clas-

sifier ineffective. In this work, after introducing adversarial

classification and giving an overview of the (still limited)

literature to make the reader aware of the main issues in

this new research field, we focused on the issue of how to

design pattern classifiers which are robust to manipulations

of malicious samples made at operation phase. In particu-

lar, we considered one of the very few practical strategies

proposed so far to improve classifier robustness, which is

not tied to a specific application and a specific attack [35].

Such strategy was proposed for linear classifiers with

Boolean features, for contexts in which robustness can be

measured in terms of the number of feature values which

have to be modified to get a malicious sample misclassified

as legitimate. It consists in keeping the feature weights in

the discriminant function as evenly distributed as possible,

with the rationale that this forces an adversary to modify a

large number of feature values to evade the classifier. In

this paper we investigated the possibility of implementing

this strategy using the well known RSM and bagging

randomisation-based MCS construction techniques. This

was implicitly envisaged in [35], and in the case of linear

classifiers it has the advantage of not increasing the com-

putational complexity at operation phase.

In this paper we gave only an experimental investiga-

tion, given that it turned out to be not straightforward to

analytically evaluate the effect of randomisation-based

MCS construction techniques on the evenness of weight

distributions of linear classifiers. Our experiments were

carried out on a case study related to a spam filtering task,

and encompassed the two kinds of linear classifiers which

have been considered so far in the spam filtering literature,

as well as classifiers which are used in real spam filters:

text classifiers in which features correspond to words in

emails, and classifiers used to set the weights of the deci-

sion function of the SpamAssassin filter.

While the original goal of MCSs is to improve classifi-

cation accuracy with respect to a single base classifier, we

found evidence that the RSM and bagging can also produce

more evenly distributed weights as a side effect, and that

this often results in improving robustness under attack. The

extent of this effect turned out to depend on the the training

set size for bagging, the feature subset size for the RSM, and

the ensemble size for both. Although the effect of these

parameters could not be clearly explained by our results,

some patterns seemed to emerge. The RSM seems more

Fig. 6 Average AUC10% (solid lines) with standard deviation

(dashed lines) of SpamAssassin, versus the attack strength, attained

by the default weights and by weights produced by the single LR (top)

and SVM (bottom) text classifiers, and by their ensembles built with

the RSM and bagging. Left worst-case attack; middle non-worst-case

attack; right random attack. See caption of Fig. 1 for the meaning of

figure legends

Int. J. Mach. Learn. & Cyber. (2010) 1:27–41 39

123

effective than bagging in improving robustness, if a very

small number of features exhibit a very high discriminant

capability, as in the case of the SpamAssassin filter. A

possible explanation for the RSM is the one given in [35]:

since in the RSM the ensemble members are trained on

subsets of the original feature set, the most discriminant

features are likely to be not used by several individual

classifiers. Their average weights will thus be lower than in

a single classifier trained on all features, while the average

weights of the other features will be higher, which implies a

more even weight distribution. We add to this explanation

that bagging is less likely to produce this effect, since its

individual classifiers are trained on the same features. On

the other hand, we observed that bagging performs better

than the RSM when the weights of the original feature set

are more evenly distributed, as happened in text classifiers.

Furthermore, we found that the weight evenness of both

the RSM and bagging tends to increase as the ensemble size

increases. Finally, the behaviour of the weight evenness

produced by the RSM, as the feature subset size of individual

classifiers increases, was somewhat contradictory across the

two kinds of linear classifiers: it increased for text classifiers,

and decreased in the SpamAssassin filter. For bagging, the

weight evenness increased as the training set size of indi-

vidual classifiers increases, but only on text classifiers.

To sum up, our results show that randomisation-based

MCS construction techniques can be useful to improve the

robustness of linear classifiers with Boolean features in

adversarial environments, and provide some hints to better

understanding their behaviour in such context. These

results suggest a further investigation on this issue, given

the relevance that MCSs have gained in the design of

pattern recognition systems.

Acknowledgments This work was partly supported by a grant

awarded to B. Biggio by Regione Autonoma della Sardegna, PO

Sardegna FSE 2007–2013, L.R. 7/2007 ‘‘Promotion of the scientific

research and technological innovation in Sardinia’’.

References

1. The Apache Spam Assassin Project. http://spamassassin.apache.org/

2. Barreno M, Nelson B, Sears R, Joseph AD, Tygar JD (2006) Can

machine learning be secure? In: ASIACCS ’06: proceeding 2006

ACM symposium on information, computer and communications

security, New York, NY, USA. ACM, New York, pp 16–25

3. Benediktsson JA, Kittler J, Roli F (eds) (2009) Multiple classifier

systems, 8th international workshop (MCS 2009). In: Lecture

notes in computer science, vol 5519. Springer, New York

4. Biggio B, Fumera G, Roli F (2008) Adversarial pattern classifi-

cation using multiple classifiers and randomisation. In: 12th Joint

IAPR international workshop on structural and syntactic pattern

recognition (SSPR 2008). LNCS, vol 5342. Springer-Verlag,

New York, pp 500–509

5. Biggio B, Fumera G, Roli F (2009) Evade hard multiple classifier

systems. In: Okun O, Valentini G (eds) Supervised and unsu-

pervised ensemble methods and their applications. Studies in

computational intelligence, vol 245. Springer, Berlin, pp 15–38

6. Biggio B, Fumera G, Roli F (2009) Multiple classifier systems for

adversarial classification tasks. In: Benediktsson JA, Kittler J,

Roli F (eds) Multiple classifier systems, 8th international work-

shop (MCS 2009). Lecture notes in computer science, vol 5519.

Springer, New York, pp 132–141

7. Biggio B, Fumera G, Roli F (2010) Multiple classifier systems

under attack. In: Gayar NE, Kittler J, Roli F (eds) MCS. Lecture

notes in computer science. Springer, Berlin, pp 74–83

8. Bishop CM (2007) Pattern recognition and machine learning

(Information science and statistics), 1st edn. Springer, Berlin

9. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

10. Breiman L (2001) Random forests. Mach Learn 45:5–32

11. Bühlmann P, Yu B (2002) Analyzing bagging. Ann Stat 30(4):

927–961

12. Buja A, Stuetzle W (2000) The effect of bagging on variance,

bias, and mean squared error. Technical report. AT&T Labs-

Research

13. Cárdenas AA, Baras JS (2006) Evaluation of classifiers: practical

considerations for security applications. In: AAAI workshop on

evaluation methods for machine learning, Boston, MA, USA

14. Chang C-C, Lin C-J (2001) LibSVM: a library for support vector

machines. http://www.csie.ntu.edu.tw/*cjlin/libsvm/

15. Cormack GV (2007) Trec 2007 spam track overview. In: Voo-

rhees EM, Buckland LP (eds) TREC, volume special publication

500-274. National Institute of Standards and Technology (NIST)

16. Cretu GF, Stavrou A, Locasto ME, Stolfo SJ, Keromytis AD

(2008) Casting out demons: sanitizing training data for anomaly

sensors. In: IEEE symposium on security and privacy, pp 81–95

17. Dalvi N, Domingos P, Mausam, Sanghai S, Verma D (2004)

Adversarial classification. In: Tenth ACM SIGKDD international

conference on knowledge discovery and data mining (KDD),

Seattle, pp 99–108

18. Domingos P (1997) Why does bagging work? a bayesian account

and its implications. In: Proceedings of 3rd international con-

ference on knowledge discovery and data mining, pp 155–158

19. Drucker H, Wu D, Vapnik VN (1999) Support vector machines for

spam categorization. IEEE Trans Neural Netw 10(5):1048–1054

20. Fogla P, Sharif M, Perdisci R, Kolesnikov O, Lee W (2006)

Polymorphic blending attacks. In: USENIX-SS’06: proceedings

of 15th conference on USENIX security symposium. USENIX

Association

21. Friedman JH, Hall P (2007) On bagging and nonlinear estimation.

J Stat Plan Inference 137(3):669–683. Special issue on non-

parametric statistics and related topics: in honor of M.L. Puri

22. Galbally-Herrero J, Fierrez-Aguilar J, Rodriguez-Gonzalez JD,

Alonso-Fernandez F, Ortega-Garcia J, Tapiador M (2006) On the

vulnerability of fingerprint verification systems to fake fingerprint

attacks. In: Proceedings of IEEE international Carnahan confer-

ence on security technology, ICCST, pp 130–136

23. Gargiulo F, Kuncheva LI, Sansone C. Network protocol verifi-

cation by a classifier selection ensemble. In: Benediktsson JA,

Kittler J, Roli F (eds) (2009) Multiple classifier systems, 8th

40 Int. J. Mach. Learn. & Cyber. (2010) 1:27–41

123

http://spamassassin.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

international workshop (MCS 2009). In: Lecture notes in com-

puter science, vol 5519. Springer, New York, pp 314–323

24. Globerson A, Roweis ST (2006) Nightmare at test time: robust

learning by feature deletion. In: Cohen WW, Moore A (eds)

ICML. ACM international conference proceeding series, vol 148.

ACM, New York, pp 353–360

25. Graham P (2002) A plan for spam. http://paulgraham.com/

spam.html

26. Graham-Cumming J (2004) How to beat an adaptive spam filter.

In: MIT Spam conference, Cambridge, MA, USA

27. Grandvalet Y (2004) Bagging equalizes influence. Mach Learn

55:251–270

28. Haindl M, Kittler J, Roli F (eds) (2007) Multiple classifier sys-

tems. 7th international workshop, MCS 2007, Prague, Czech

Republic, May 23–25, 2007. Proceedings, lecture notes in com-

puter science, vol 4472. Springer, New York

29. Hershkop S, Stolfo SJ (2005) Combining email models for false

positive reduction. In: KDD ’05: Proceedings of 11th ACM

SIGKDD international conference on knowledge discovery in

data mining. ACM, New York, pp 98–107

30. Ho TK (1998) The random subspace method for constructing

decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):

832–844

31. Jorgensen Z, Zhou Y, Inge M (2008) A multiple instance learning

strategy for combating good word attacks on spam filters. J Mach

Learn Res 9:1115–1146

32. Kemmerer RA, Vigna G (2002) Intrusion detection: a brief his-

tory and overview (supplement to Computer magazine). Com-

puter 35:27–30

33. Kittler J, Hatef M, Duin RP, Matas J (1998) On combining

classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239

34. Kloft M, Laskov P. A ’poisoning’ attack against online anomaly

detection. In: Laskov P, Lippmann R (eds) Neural information

processing systems (NIPS) workshop on machine learning in

adversarial environments for computer security. http://mls-nips07.

first.fraunhofer.de

35. Kolcz A, Teo CH (2009) Feature weighting for improved clas-

sifier robustness. In: 6th conference on Email and Anti-Spam

(CEAS)

36. Kuncheva LI (2004) Combining pattern classifiers: methods and

algorithms. Wiley, Hoboken

37. Laskov P, Kloft M (2009) A framework for quantitative security

analysis of machine learning. In: AISec ’09: proceedings of 2nd

ACM workshop on security and artificial intelligence. ACM,

New York, pp 1–4

38. Laskov P, Lippmann R (eds) (2007) Neural information processing

systems (NIPS) workshop on machine learning in adversarial

environments for computer security. http://mls-nips07.first.

fraunhofer.de

39. Lewis DD (1992) An evaluation of phrasal and clustered repre-

sentations on a text categorization task. In: SIGIR ’92: proceed-

ings of 15th annual international ACM SIGIR conference

research and development in information retrieval, New York,

NY, USA, pp 37–50

40. Lowd D, Meek C (2005) Adversarial learning. In: Press A (ed)

Proceedings of 11th ACM SIGKDD international conference on

knowledge discovery and data mining (KDD), pp 641–647

41. Lowd D, Meek C (2005) Good word attacks on statistical spam

filters. In: 2nd conference on Email and Anti-Spam (CEAS)

42. Meyer TA, Whateley B (2004) Spambayes: effective open-

source, bayesian based, email classification system. In: 1st con-

ference on Email and Anti-Spam (CEAS)

43. Perdisci R, Dagon D, Lee W, Fogla P, Sharif M (2006) Mis-

leading worm signature generators using deliberate noise injec-

tion. In: IEEE symposium on security and privacy, pp 15–31

44. Perdisci R, Gu G, Lee W (2006) Using an ensemble of one-class

svm classifiers to harden payload-based anomaly detection sys-

tems. In: International conference on data mining (ICDM). IEEE

Computer Society, pp 488–498

45. Rodrigues RN, Ling LL, Govindaraju V (2009) Robustness of

multimodal biometric fusion methods against spoof attacks. J Vis

Lang Comput 20(3):169–179

46. Ross AA, Nandakumar K, Jain AK (2006) Handbook of multi-

biometrics. Springer, New York

47. Skillicorn DB (2009) Adversarial knowledge discovery. IEEE

Intell Syst 24:54–61

48. Skurichina M, Duin RPW (1998) Bagging for linear classifiers.

Pattern Recognit 31:909–930

49. Skurichina M, Duin RPW (2002) Bagging, boosting and the

random subspace method for linear classifiers. Pattern Anal Appl

5(2):121–135

50. Stern H (2008) A survey of modern spam tools. In: 5th confer-

ence on Email and Anti-Spam (CEAS)

51. Sutton C, Sindelar M, McCallum A (2005) Feature bagging:

preventing weight undertraining in structured discriminative

learning. IR 402, University of Massachusetts

52. Tran T, Tsai P, Jan T (2008) An adjustable combination of linear

regression and modified probabilistic neural network for anti-

spam filtering. In: International conference on pattern recognition

(ICPR08), pp 1–4

53. Uludag U, Jain AK (2004) Attacks on biometric systems: a case

study in fingerprints. In: Proceedings of SPIE-EI 2004, security,

steganography and watermarking of multimedia contents VI,

pp 622–633

Int. J. Mach. Learn. & Cyber. (2010) 1:27–41 41

123

http://paulgraham.com/spam.html
http://paulgraham.com/spam.html
http://mls-nips07.first.fraunhofer.de
http://mls-nips07.first.fraunhofer.de
http://mls-nips07.first.fraunhofer.de
http://mls-nips07.first.fraunhofer.de

	Multiple classifier systems for robust classifier design in adversarial environments
	Abstract
	Introduction
	Background
	Theoretical works
	Application-specific works
	MCSs in adversarial classification tasks

	Robust linear classifiers
	Robust linear classifiers
	MCS-based strategies to design robust linear classifiers

	Robustness evaluation
	Worst-case attack
	Non-worst-case attacks

	Experimental results
	Experimental setup
	Data sets and classifiers
	Performance and weight evenness measures

	Experimental results on text classifiers
	Worst-case attack
	Non-worst-case attacks

	Experimental results on SpamAssassin
	Worst-case attack
	Non-worst-case attacks

	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

