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Abstract Margin-based active learning remains the most

widely used active learning paradigm due to its simplicity

and empirical successes. However, most works are limited

to binary or multiclass prediction problems, thus restricting

the applicability of these approaches to many complex

prediction problems where active learning would be most

useful. For example, machine learning techniques for nat-

ural language processing applications often require com-

bining multiple interdependent prediction problems—

generally referred to as learning in structured output

spaces. In many such application domains, complexity is

further managed by decomposing a complex prediction

into a sequence of predictions where earlier predictions are

used as input to later predictions—commonly referred to

as a pipeline model. This work describes methods for

extending existing margin-based active learning techniques

to these two settings, thus increasing the scope of problems

for which active learning can be applied. We empirically

validate these proposed active learning techniques by

reducing the annotated data requirements on multiple

instances of synthetic data, a semantic role labeling task,

and a named entity and relation extraction system.

Keywords Active learning � Structured predictions �
Structured output spaces � Pipeline models

1 Introduction

As machine learning techniques become more widely

adopted, there has been an increased interest in reducing the

costs associated with deploying such systems. Although

more robust and less expensive to develop than traditional

expert system solutions (e.g. [77]) to similar problems, the

successful application of machine learning techniques to

practical scenarios is often predicated on procuring large

labeled data sets. These issues are exacerbated when we

require the system perform well over a wide range of data,

such as designing an information extraction system that is

trained primarily on newswire data knowing that it will be

also utilized for financial documents amongst other domains.

This observation regarding the expense of labeled data

has motivated copious recent work regarding reducing

labeled data requirements. At one extreme of the spectrum

is unsupervised learning [32, 40], where all available data is

unlabeled and used to perform operations including density

estimation, clustering, and model building. As unsupervised

learning is often not directly applicable to prediction tasks,

a related strategy is to pre-cluster the data and only require

labels from representative points [46]. A particularly nota-

ble point along the continuum from unsupervised learning

to supervised learning is semi-supervised learning (see [81]

for a survey), where the learning algorithm is provided with

a small amount of labeled data and a large amount of

unlabeled data, exploiting regularities over both data sets;

popular approaches in this vein include bootstrapping [1]

and co-training [11]. The specific paradigm for reducing

annotation through partial labeling studied in this work is
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active learning (see [63] for a survey), where the learning

algorithm again receives a small labeled training set and a

large unlabeled training set. The innovation of active

learning is that the learning algorithm maintains access to

the annotator and is allowed to select additional instances to

be labeled between training rounds, attempting to reduce

costs by labeling exclusively what are expected to be the

most useful instances for learning.

Even with large quantities of labeled data, for many

applications such as named entity recognition (NER),

semantic role labeling (SRL), or relation extraction (RE), it

is infeasible to learn a single function which can accurately

identify all of the named entities and relations within a

sentence. For instance, consider the information extraction

example shown in Fig. 1, where we wish to extract all of the

{PEOPLE, LOCATION, ORGANIZATION} entities and label any

existing relations from a predefined set (e.g. {LOCATEDIN,

ORGANIZATIONBASEDIN, SUBSIDIARYOF, LIVESIN,…}).

In these scenarios, a more practical approach is to learn

a model which decomposes the learning problem into

several local subproblems and then reassembles them to

return a predicted global annotation. We refer to a learning

problem for which the global prediction task is decom-

posed into several subtasks which are composed into a

global prediction as learning in structured output spaces. A

second related strategy for managing complexity is to

decompose the target prediction into a sequence of pre-

dictions where the output from one prediction stage is used

as input to later stages, referred to as a pipeline model. For

example, the system of Fig. 1 may be decomposed into the

stages of entity identification, entity classification, and

relation classification. For these two structured prediction

settings, data is particularly expensive and the active

learning protocol is particularly suitable for ameliorating

the practical labeling costs required for effective learning.

This work describes margin-based active learning

methods for both structured output spaces and pipeline

models. First, Sect. 2 provides a brief overview of margin-

based learning algorithms and margin-based active learn-

ing algorithms, which gives an intuition for some of the

active learning principles used throughout this paper.

Section 3 then introduces a method for active learning in

structured output spaces where the interdependencies

between output variables are described by a general set of

constraints able to represent arbitrary structural forms.

Specifically, we examine active learning querying func-

tions which can query entire structures (querying complete

labels) and querying functions which query substructures

(querying partial labels). Section 4 extends this work to

include pipeline predictions by deriving an active learning

framework which looks to sufficiently learn each stage

sequentially in order to limit error propagation between

learned classifiers. Section 5 empirically validates our

methods for active learning in structured output spaces on

both synthetic data and the semantic role labeling (SRL)

task. Section 6 proceeds by validating our active learning

for pipeline models approach on a three-stage named entity

and relation extraction system. Finally, Sect. 7 overviews

related work and Sect. 8 provides some broad conclusions

and future directions for this vein of study.

2 Preliminaries

This section provides background material for the

remainder of this work regarding margin-based learning

algorithms and margin-based active learning.

2.1 Margin-based learning algorithms

The most widely studied and well understood learning pro-

tocol is supervised learning, where a learning algorithm uses

labeled instances to formulate a predictive model. More

formally, a supervised learning algorithm A : S �H�
L ! h is minimally specified by the following variables:

• x 2 X represents members of an input domain X :
• y 2 Y represents members of an output space. The

output space specification often defines the learning

problem including regression, Y ¼ R, binary classifi-

cation, Y ¼ f�1; 1g, multiclass classification, Y ¼
fx1;x2; . . .;xkg; amongst others. The form of Y will

be clear from the problem setting.

• DX�Y represents a distribution over X � Y from which

supervised data is drawn.

• A training sample S ¼ fðxi; yiÞgm
i¼1 is drawn i.i.d from

the probability distribution DX�Y :
• A hypothesis space H : X ! Y is a family of functions

from which the learned hypothesis h 2 H may be

selected.

• A loss function L : Y � Y ! R
þ measures the dis-

agreement between two output elements.

Using this terminology, a learning algorithm is formal-

ized by the following definition:

Definition 1 (Learning algorithm) Given m training

examples S ¼ fðxi; yiÞgm
i¼1 drawn i.i.d. from a distribu-

tion DX�Y ; a hypothesis space H; and a loss function L;

His father was rushed to Westlake Hospital , an arm of

Resurrection Health Care , in west suburban Chicagoland

organization
organization

location
subsidiary of

organization
based in

Fig. 1 Named entity and relation extraction from unstructured text

4 Int. J. Mach. Learn. & Cyber. (2010) 1:3–25

123



a learning algorithm A returns a hypothesis function ĥ 2 H
which minimizes the expected loss L on a randomly

drawn example from DX�Y ; ĥ ¼ argminh02H Eðx;yÞ�DX�Y
ðL h0ðxÞ; yð ÞÞ:

While it is theoretically desirable to design a learning

algorithm as stated in Definition 1 for classification, this is

often not feasible in practice. Namely, since the distribu-

tion DX�Y is unknown and only a finite set of training

instances are provided, practical algorithms instead mini-

mize the empirical loss, ĥ ¼ argminh02H
Pm

i¼1 L h0ðxiÞ; yð Þ:
Secondly, although minimization of zero-one loss is a

meaningful goal as it generally serves as the basis of

classifier evaluation, this problem is intractable in its direct

form. Therefore, many learning algorithms instead mini-

mize a differentiable function as a surrogate to the ideal

loss function for a given task. One widely studied family of

learning algorithms which does this are the margin-based

learning algorithms [2]. To formulate a margin-based

learning algorithm in these terms requires the specification

of the following additional variables:

• A family of real-valued hypothesis scoring functions

F : X � Y ! R is a surjective mapping onto H such

that ŷ ¼ hðxÞ ¼ argmaxy02Y fy0 ðxÞ:
• The margin of an instance q : X � Y � F ! R

þ is a

non-negative real-valued function such that q = 0 iff

ŷ ¼ y and its magnitude is associated with the confi-

dence of a prediction ŷ for the given input x relative to a

specific hypothesis h.

• A margin-based loss function L : q! R
þ measures the

disagreement between the predicted output and true

output based upon its margin relative to a specified

hypothesis.

Based upon this additional terminology, a margin-based

learning algorithm is defined as follows:

Definition 2 (Margin-based learning algorithm) Given

m training examples S ¼ fðxi; yiÞgm
i¼1 drawn i.i.d. from a

distributionDX�Y ; a hypothesis scoring function space F ; a

definition of margin q, and a margin-based loss function L;
a margin-based learning algorithm A returns a hypothesis

scoring function f̂ 2 F which minimizes the empirical loss

over the training examples to select a hypothesis scoring

function f̂ ¼ argminf 02F
Pm

i¼1 L qðx; y; f 0Þð Þ:

An example margin-based loss function which has

received significant recent attention in the context of sup-

port vector machines (SVM) [75] is hinge loss, defined as

Lhinge ¼ maxf0; 1� qðx; y; f Þg: ð1Þ

Many classic and more recently developed learning

algorithms can be cast in this framework by defining an

appropriate margin-based loss function including

regression, logistic regression, decision trees [51], and

AdaBoost [34].

2.2 Margin-based active learning

Pool-based active learning [20] is a training scheme in

which the learning algorithm has access to a pool of

unlabeled examples and can request the labels for a number

of them with the goal of minimizing the total number of

labeled examples required for performance competitive to

training with a completely labeled data set. In contrast to

passive learning, where the learning algorithm receives a

random sample of training data to all be processed in a

single round of training, active learning allows the learner

to incrementally select instances over multiple interactive

rounds. During each round, the learner selects those

instances which it believes will be most beneficial for later

rounds of training. More formally, pool-based active

learning begins with a passive learning algorithm A; an

initial data sample S ¼ Sl [ Su where it is assumed that

there are few labeled instances and many unlabeled

instances (i.e. jSlj � jSuj), a querying function Q to select

instances for labeling, and access to a domain expert. The

primary technical necessity for effective active learning is

the querying function as specified by Definition 3.

Definition 3 (Querying function) Given a partially

labeled set of instances S ¼ Sl [ Su; where Sl and Su are

the labeled and unlabeled data respectively, and a learned

hypothesis ĥ 2 H; a querying functionQ : S �H ! Sselect

returns a set of instances Sselect � Su which will be labeled

by the expert and added to Sl:

The goal of Q is to select the subset of Su such that

when labeled and added to Sl will generate the largest

improvement in the performance of A; the learning algo-

rithm which generates ĥ: Given a querying function and

access to a domain expert capable of labeling any instance

in the input domain X ; active learning alternates between

the three states of learning a new hypothesis ĥ based upon

the current data S and learning algorithm A; using ĥ in

coordination with Q to select unlabeled instances Sselect;

and having the expert label Sselect which is then added to Sl

for the next round of training. Within the active learning

framework, the primary research question is the design of

the querying function for a particular learning algorithm

and application setting. For settings which use a margin-

based learning algorithm, the specification of margin can

also be used to derive a suitable querying function,

resulting in a margin-based querying function.

Denoting the margin of an example relative to the

hypothesis scoring function as qðx; y; f Þ; a margin-based

Int. J. Mach. Learn. & Cyber. (2010) 1:3–25 5
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learning algorithm is a learning algorithm which selects a

hypothesis by minimizing a loss function L : R! ½0;1Þ
using the margin of instances contained in Sl: We corre-

spondingly define an active learning algorithm with a

querying function dependent on qðx; y; f Þ as a margin-

based active learning algorithm. For example, for binary

classification (i.e. Y 2 f�1; 1g), a common definition of

margin is qbinaryðx; y; f Þ ¼ y � f ðxÞ: As the magnitude of q
indicates the confidence of the prediction of h on a given

unlabeled instance, a commonly used querying function for

binary classification is the minimum margin instance [14,

61, 72] stated as

Qbinary : xH ¼ argmin
x2Su

jf ðxÞj: ð2Þ

For multiclass classification, a widely accepted definition

for multiclass margin is qmulticlassðx; y; f Þ ¼ fyðxÞ � f _yðxÞ
where y represents the true label and _y ¼ argmaxy02Yny fy0 ðxÞ
corresponds to the highest activation value such that _y 6¼ y

[39]. Previous work on multiclass active learning [12, 78]

advocates a querying function closely related to this

definition of multiclass margin where ŷ ¼ argmaxy02Y fy0 ðxÞ
represents the predicted label and ~y ¼ argmaxy02Ynŷ fy0 ðxÞ
represents the label corresponding to the second highest

activation value,

Qmulticlass : xH ¼ argmin
x2Su

½fŷðxÞ � f~yðxÞ�: ð3Þ

By using the active learning protocol with appropriately

defined querying functions, the costs associated with

obtaining labeled data can often be dramatically reduced,

thus facilitating the application of machine learning

protocols to more complex application domains.

3 Active learning for structured output spaces

One important framework for learning complex models is

learning in structured output spaces, where multiple local

learners are trained to return predictions which are com-

bined into a global coherent structure through an inference

procedure. A classic example of a structured output clas-

sifier is the Hidden Markov Model (HMM) [52], which

describes a generative model for learning sequential

structures. More recently, many conditional structured

models have been introduced including Conditional Ran-

dom Fields (CRF) [43], structured Support Vector

Machines [73], structured Perceptron [22], and Max-Mar-

gin Markov Networks (M3 N) [68]. The particular frame-

work we study in this work is the Constrained Conditional

Model (CCM) [19, 57], which can also be used to frame

many of these other structured output formulations [58].

As an illustrative example of structured output, consider

the named entity recognition (NER) task shown in Fig. 2.

The NER task requires that, given a sentence, to identify all

of the entities that belong to a specified set of word classes

[62]. For this particular example, we are considering the

classes {PEOPLE, LOCATION, ORGANIZATION}. Therefore, the

output space for local predictions would be Yi ¼ fB; Ig �
fPeople;Location;Organizationg þ O; where B represents

the beginning word of a candidate named entity, I repre-

sents a non-beginning (inside) word of a candidate named

entity, and O represents a word that is not part of (outside)

a candidate named entity. This formulation accounts for

both segmentation of the words into entities and labeling

the resulting segments. For this particular sentence, we

want to annotate Michael Jordan as a PEOPLE and Chicago

Bulls as an ORGANIZATION. In Fig. 2, the histograms at the

top represent the local hypothesis scoring functions without

structural dependencies. When only considering local

context, situations may result in both Michael and Jordan

being first names (i.e. B-PEOPLE) or that Chicago would

most likely be considered a LOCATION. However, the his-

tograms at the bottom of Fig. 2 represent local predictions

which consider structural dependencies. In this hypotheti-

cal case, Michael Jordan would be considered a single

entity comprised of two words due to sequential labeling

features and Chicago Bulls would be considered a single

entity comprised of two words due to output constraints,

namely that I-ORGANIZATION must follow a B-ORGANIZATION.

Naturally, complex applications which benefit from a

structured output formulation also require more labeled

data in addition to each label being of higher annotation

cost than for simpler settings. This section describes a

margin-based method for active learning in structured

output spaces where the interdependencies between output

variables are described by a general set of constraints able

to represent arbitrary structural form. Specifically, we

study two different querying protocols and propose novel

querying functions for active learning in structured output

space scenarios: querying complete labels and querying

Fig. 2 Learning in structured output spaces
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partial labels. In the NER example, these two protocols

correspond to requiring the learner to request the labels for

entire sentences during the instance selection process or

single terms, such as Bulls, respectively. We then describe

a specific algorithmic implementation of the developed

machinery based on the structured Perceptron algorithm

and derive a mistake-driven intuition for the relative per-

formance of the querying functions. Finally, we provide

empirical evidence on both synthetic data and the semantic

role labeling (SRL) task to demonstrate the effectiveness of

the proposed methods in Sect. 5.

3.1 Constrained conditional models

The constrained conditional model (CCM) framework for

learning in structured output spaces is described in terms of

the following variables:

• The input x 2 X � R

Pnx

i¼1
di which is derived by concat-

enating several local feature vectors xðiÞ 2 Xi � R
di

such that i = 1,…,nx where nx is the number of input

components for an input structure and di is the resulting

dimensionality of the ith local input component.

• y 2 Y represents elements of a structured output space

when Y can be decomposed into several local output

variables Y ¼ Y1 � � � � � Yny
where ny is the number

of local predictions with respect to a particular instance

and Yi ¼ fx1;x2; . . .;xki
g:

• s : Y ! Y represents a deterministic transformation

function which converts the output structure into a vector

of local predictions y 2 Y: Conversely, s�1 : Y! Y
converts a vector of predictions into an output structure.

In a slight abuse of notation, a single transformed output

vector is represented by y ¼ hyð1Þ; yð2Þ; . . .; yðnyÞi:
• A global hypothesis scoring function, F : X� Y ! R;

which is a sum over local hypothesis scoring functions,

F i : Xi � Yi ! R; resulting in the global score f ðx; yÞ ¼
Pny

i¼1 fyðiÞðxðiÞÞwhere y(i) is the ith element of y and x(i) is

the local input vector component used to predict ŷðiÞ:
• A set of constraints C : 2Y ! f0; 1g enforces global

consistency on Y to ensure that only coherent output

structures are generated. To enforce constraints, we

require an inference procedure which restricts the output

space as per the constraints, which we denote by CðYÞ:

Using this terminology, learning in structured output

spaces can be defined as follows:

Definition 4 (Learning algorithm for structured output

spaces) Given a set of structural constraints C;m training

examples S ¼ fðxi; yiÞgm
i¼1 drawn i.i.d. from a distribution

DX�CðYÞ; a hypothesis space H; and a loss function L; a

structured learning algorithm A returns a hypothesis

function ĥ 2 H which minimizes the expected loss L on a

randomly drawn example from DX�CðYÞ; ĥ ¼ argminh02H
Eðx;yÞ�DX�CðYÞ ðL h0ðxÞ; yð ÞÞ:

Given an instance x, the resulting classification is given by

ŷC ¼ hðxÞ ¼ argmax
y02CðYÞ

f ðx; y0Þ: ð4Þ

The output variable assignments are determined by a

global hypothesis scoring function f(x, y) which can be

decomposed into local scoring functions fyðiÞðxðiÞÞ such that

f ðx; yÞ ¼
Pny

i¼1 fyðiÞðxðiÞÞ:When structural consistency is not

enforced, the global scoring function will output the value

f ðx; ŷÞ resulting in assignments given by ŷ ¼
argmaxy02Y f ðx; y0Þ: An inference mechanism takes the

scoring function f(x, y), an instance (x, y), and a set of

constraints C; returning an optimal structurally coherent

assignment ŷC based on the global score f ðx; ŷCÞ consistent

with the defined output structure. Specifically, we will use

general constraints with the ability to represent any structure

and return a top-k ranking of structures, thereby require a

general search mechanism for inference to enforce structural

consistency [28]. As active learning querying functions are

designed to select instances by exploiting specific structural

properties, we define the notions of locally learnable

instances and globally learnable instances for exposition

purposes. Informally, locally learnable instances are those

instances which can be learned without structural constraints,

whereas exclusively globally learnable instances require

structural constraints to learn an accurate classifier.

Definition 5 (Locally learnable instance) Given a clas-

sifier, f 2 F ; an instance (x, y) is locally learnable if

fyðiÞðxðiÞÞ[ fy0ðiÞðxðiÞÞ for all y0ðiÞ 2 YinyðiÞ: In this situa-

tion, ŷ ¼ ŷC ¼ y:

Definition 6 (Exclusively globally learnable instance)

Given a classifier, f2F ; an instance (x, y) is globally

learnable if f ðx; yÞ[ f ðx; y0Þ for all y0 2 Yny: We will refer

to instances that are globally learnable, but not locally

learnable as exclusively globally learnable in which case

ŷ 6¼ ŷC ¼ y:

3.2 Querying complete labels

The first scenario we examine is the more straightforward

case of querying complete labels. The task of a querying

function for complete labels requires selecting instances

x during each round of active learning such that all output

labels associated with the specified instance will be pro-

vided by the domain expert. Consider the word alignment

example shown in Fig. 3 (example from [29]). Generally

accepted as an important subtask of machine translation,

Int. J. Mach. Learn. & Cyber. (2010) 1:3–25 7
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word alignment is the problem where the input is two

parallel strings of text (i.e. a bitext) and the desired output

is a bipartite matching between the words of the two strings

[47]. Easily modeled as a structured output problem, que-

rying complete labels entails querying the entire bitext.

When querying complete labels, the question from the

learner to the expert would be, ‘‘Can you provide a word

alignment for the following bitext?’’ From one perspective,

querying complete labels is the more natural active learn-

ing scenario as the annotator often makes annotations

based upon the entire text, and designing an appropriate

cost function for anything other than the entire structure

may require modeling the subtleties of an expert who

performs an analysis for the entire structure but labels only

a substructure versus simply labeling the entire structure.

Following the margin-based approach for designing

querying functions in the multiclass setting (i.e. Qmulticlass),

an analogous definition of margin for structured output

spaces is stated as

qglobalðx; y; f Þ ¼ f ðx; yÞ � f ðx; _yCÞ;

where _yC ¼ argmaxy02CðYÞny f ðx; y0Þ: This definition of

margin corresponds to the score associated with the

correct structure minus the second highest scoring

structure (which is not the correct structure). In the ideal

case, the querying function would be aware of the correct

label, selecting the instance for which the prediction most

strongly disagrees with the correct label. However, since the

hypothesis cannot guarantee the correct label for unlabeled

instances, the predicted label is assumed correct as a proxy

for the correct label in the querying function. The semantics

of this querying function is selecting instances for the which

the learner believed there were many plausible predictions.

The corresponding querying function for a structured learner

that incorporates the constraints into the learning model for

strictly global predictions is defined by

Qglobal : xH ¼ argmin
x2Su

½f ðx; ŷCÞ � f ðx; ŷCÞ�; ð5Þ

where ~yC ¼ argmaxy02CðYÞnŷC f ðx; y0Þ; the second highest

scoring structure (which is thereby not the predicted

structure). It should be noted that Qglobal does not require

f(x, y) to be decomposable, thereby allowing its use with

arbitrary loss functions. The only requirement is that the

inference mechanism must be capable of calculating

f ðx; ŷCÞ and f ðx; ~yCÞ for a given structured instance.

One of the stronger arguments for margin-based active

learning is the principle of selecting instances which

attempt to halve the version space with each selection [4,

72]. It is straightforward to see that structured output is a

special case of multiclass classification where the output

space is exponential in the number of variables. For

structured output, the version space is stated as

Vglobal ¼ ff 2 Fjf ðx; yÞ[ f ðx; _yÞ; 8ðx; yÞ 2 Slg:

Analogously to the multiclass case in Eq. 3, if we wish to

select instances which are most likely to halve the hypothesis

space, we should look for instances which are closest to this

decision boundary as shown by Qglobal in Eq. 5.

However, for many structured learning settings the scoring

function and consequently the loss function is decomposable

into local classification problems. Furthermore, it has been

observed that when the local classification problems are easy

to learn without regard for structural constraints during

training, directly optimizing these local functions often leads

to a lower sample complexity [49]. As these findings are

predicated on making concurrent local updates during

learning, selecting structured examples that make as many

local updates as possible will generally be desirable for such

situations. This observation motivates a querying function

which selects instances based on local predictions, resulting

in the margin-based strategy of selecting examples with a

small average local multiclass margin,

Q
localðCÞ : xH ¼ argmin

x2Su

Pny

t¼1½fŷCðiÞðxðiÞÞ � f~yCðiÞðxðiÞÞ�
ny

;

where ŷCðiÞ ¼ argmaxy0ðiÞ2Yi
fy0ðiÞðxðiÞÞ; the local prediction

after inference has applied the constraints, and ~yCðiÞ ¼
argmaxy0ðiÞ2YinŷCðiÞ fy0ðiÞðxðiÞÞ; the second highest prediction

after constraints have been applied to ensure a coherent

structure. We will observe in Sect. 5 that Qglobal is appro-

priate when the problem output space is highly constrained

and Q
localðCÞ is more appropriate when the problem can be

learned effectively by learning local variables.

3.3 Querying partial labels

We noted that Qglobal makes no assumptions regarding

decomposability of the scoring function and Q
localðCÞ

requires only that the scoring function be decomposable in

accordance with the output variables such that the individual

local scores may be considered. We now consider active

learning in settings where f(x, y) is decomposable and the

local output variables can be queried independently, defined

as querying partial labels. The intuitive advantage of que-

rying partial labels is that we are no longer subject to cases

where a structured instance has one output variable with a

very informative label, but the other output variables of the

the black cat likes fish

le chat noir aime le poisson

Fig. 3 Bitext word alignment
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same instance are minimally useful and yet add cost to the

labeling effort. In the word alignment example of Fig. 3,

querying partial labels would be akin to having the learner

ask the question, ‘‘Which of the French words does likes

align with?’’ This is an appealing model in many cases as the

learner may be very confident regarding a subset of the

predictions, but is unsure about a few substructures. While

this configuration is not immediately usable for applications

with a scoring function not easily decomposable into local

output variables that can be independently queried (e.g.

parsing), we will see this approach is very beneficial in

scenarios where such capabilities are available (e.g.

semantic role labeling, chunking, word alignment).

Observing that querying partial labels requires requesting

a single multiclass classification, the naive querying func-

tion for this case is to simply ignore the structural infor-

mation and useQmulticlass; resulting in the querying function

Qlocal : xðiÞ
H
¼ argmin

xðiÞ2Su

i¼1;...;ny

fŷðiÞðxðiÞÞ � f~yðiÞðxðiÞÞ
� �

: ð6Þ

Continuing with the argument that it is desirable to

select instances which attempt to halve the version space

with each instance selection, we design an active learning

querying function which performs this on the basis of a per

local level prediction. A local classifier which either

ignores or is ignorant of the structural constraints maintains

a version space described by

V local ¼ f 2 FjfyðiÞðxðiÞÞ[ f _yðiÞðxðiÞÞ; 8ðx; yÞ 2 Sl

� �
:

If the learning algorithm has access to an inference

mechanism that maintains structural consistency, the

version space is only dependent on the subset of possible

output variable assignments that are consistent with the

global structure,

V localðCÞ ¼ f 2 FjfyðiÞðxðiÞÞ[ f _yCðiÞðxðiÞÞ; 8ðx; yÞ 2 Sl

� �

where _yCðiÞ ¼ argmaxy0ðiÞ2CðYÞnyðiÞ fy0ðiÞðxðiÞÞ: Therefore, if

the learning algorithm enforces structural consistency

within the learning model, we advocate also utilizing this

information to augment Qlocal; resulting in the querying

function

QlocalðCÞ : xðiÞ
H
¼ argmin

xðiÞ2Su

i¼1;...;ny

fŷCðiÞðxðiÞÞ � f~yCðiÞðxðiÞÞ
� �

While the version space argument provides some

theoretical justification for QlocalðCÞ; there is also a

practical argument related to correction propagation [23].

Again consider the example shown in Fig. 3, and assume

that the classifier is very confident in its alignment

predictions for the and fish. At this point, any single

prediction significantly constrains the predictions of the

remaining words by reducing the coherent output structures.

In many cases, this will dramatically reduce the feasible

output space and thus reduce the need for additional partial

queries at the cost of only the inference procedure. We

empirically demonstrate in Sect. 5 that when possible,

partial queries will often outperform complete queries under

the same local prediction driven annotation cost model.

3.4 Active learning with structured perceptron

Now that we have established potentially appropriate que-

rying functions for structured output scenarios, we apply it

to learning within the hypothesis space of linear classifiers.

This work specifically utilizes classifiers of a linear repre-

sentation with parameters learned using the structured

(Collins) Perceptron algorithm [22]. In this case, f ðx; yÞ ¼
a � Uðx; yÞ represents the global scoring function such that

a ¼ ðayð1Þ; . . .; ayðnyÞÞ is a concatenation of the local ayðiÞ
vectors and x ¼ Uðx; yÞ ¼ ðU1ðx; yÞ; . . .;Uny

ðx; yÞÞ is a

concatenation of the local feature vectors, xðiÞ ¼ Uiðx; yÞ:
Utilizing this notation, fyðiÞðxðiÞÞ ¼ ayðiÞ � Uiðx; yÞ where

ayðiÞ 2 R
di is the learned local weight vector and Uiðx; yÞ 2

R
di is the feature vector for local classifications.

Margin-based active learning generally relies upon the

use of support vector machines [72, 78]. While this would

naturally extend to existing work on SVM for structured

output [73], the incremental nature of active learning over

large data sets associated with structured output makes

these algorithms impractical for such uses. As in the binary

and multiclass scenarios, we require a learning algorithm

that can maintain selection batch sizes such that the domain

expert is always labeling instances which improve the most

current hypothesis. Along this vein, this work builds upon

the inference based training (IBT) learning strategy [22,

49] shown in Algorithm 1, which incorporates the struc-

tural knowledge into the learning procedure. The basic

premise of IBT is to make a sequence of local predictions,

perform inference to obtain a coherent structure, and then

make additive updates relative to the output vector asso-

ciated with the coherent output.

However, to facilitate use with active learning, we make

a few important modifications. We first modify the IBT

algorithm for partial labels by updating only local com-

ponents which have been labeled, thus requiring an infer-

ence procedure capable of handling unassigned output

variables. Secondly, we add a notion of large margin to the

IBT algorithm heuristically by requiring thick separation c
between class activations. Finally, after training is com-

plete, we use the averaged Perceptron [35] method where

the final hypothesis is a weighted average of hypotheses

used for updates as weighted by their survival counts. This

adds stability to the learning procedure and results in a

substantial performance improvement.
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3.4.1 Mistake-driven active learning

A greedy criteria for active learning querying functions

looks to make the most immediate progress towards

learning the target function with each requested label. For

the mistake-driven Perceptron algorithm, a suitable mea-

surement for progress is to track the number of additive

updates for each query. In the structured setting, this

intuition motivates two metrics to explain the performance

results of a given querying function, average Hamming

error per query, MHamming; and average global error per

query, Mglobal: For a specific round of active learning, the

current hypothesis is used to select a set of instances Sselect

for labeling. Once the labels are received, we calculate the

Hamming loss,

Hammingðh; xÞ ¼
X

i¼1

ny

ðxðiÞ;yðiÞÞ2Sl

½½ ŷCðiÞ 6¼ yðiÞ��

and the global loss

Gðh; xÞ ¼ ½½ ŷC 6¼ y��

at the time when the instance is first labeled.1 In Sect. 5, we

will compare and observe a correlation between the quality

of a querying function and the average of the number of

updates induced by all queries up to the specified round of

active learning. To successfully utilize active learning in a

mistake-bound algorithm, we require querying functions

which can select examples which update the current

hypothesis during each round of active learning.

Noting that Hamming(h, x) is only useful for partial

labels, we hypothesize that for partial label queries or cases

of complete label queries where the data sample S is lar-

gely locally separable, the relative magnitude ofMHamming

will determine the relative performance of the querying

functions as this will increase the number of local updates.

Alternatively, for complete queries where a significant

portion of the data is exclusively globally separable,

Mglobal will be more strongly correlated with querying

function performance as it will ensure at least one update,

relying on the correction propagation principle to constrain

the other variables. We support this hypothesis empirically

in Sect. 5.

4 Active learning with pipeline models

In addition to structured output scenarios, pipeline models

are a second important formalism for successfully applying

machine learning approaches to complex problems. In

many such cases, there are substantial performance

advantages to decomposing the overall task into a sequence

of several simpler sequential stages where each stage

solves a progressively more difficult problem based on the

output of previous stages. Similar to structured output

scenarios, a distinguishing feature of applications requiring

pipeline models is that they often require significant

quantities of labeled data to learn accurately, motivating

the study of active learning in such scenarios. This section

presents a novel strategy for combining local active

learning instance querying strategies into a global strategy

which minimizes the annotation requirements for the

overall task. Using this method, we present promising

empirical results for a three-stage entity and relation

1 I ½½p�� is an indicator function such that I ½½p�� if p is true and 0

otherwise.
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extraction system which significantly reduces supervised

data requirements in Sect. 6.

Decomposing complex classification tasks into a series

of sequential stages, where the local classifier at a specified

stage is explicitly dependent on the predictions from the

previous stages, is a common practice in many engineering

disciplines. In the machine learning and natural language

processing communities, this widely used paradigm is

commonly referred to as a pipeline model [13, 18, 33]. For

example, again consider the named entity extraction (NER)

task shown in Fig. 2. In this case, instead of making several

local predictions regarding both segmentation and classi-

fication for each word and assembling them into a global

prediction, a pipeline model would first learn an entity

identification (segmentation) classifier and use this as input

into an entity labeling classifier, which is then assembled

into a two stage pipeline NER system as shown in Fig. 4.

More formally, we first want to learn a segmentation

classifier where each local prediction is within the output

space Yi ¼ fB; I;Og where, as before, B represents the

beginning word of a named entity, I represents an inside

word of a named entity, O represents a word outside any

named entity, and an I label can only follow a B label. In

addition to our segmentation classifier, we also learn a

classifier that makes predictions over already segmented text

in the output spaceYi ¼ {PEOPLE, LOCATION, ORGANIZATION}.

Furthermore, these stages may be preceded by other sim-

pler related natural language processing tasks such as part

of speech (POS) tagging or word sense disambiguation

(WSD).

The primary motivation for modeling complex tasks as a

pipelined process is the difficulty of solving such applica-

tions with a single monolithic classifier; that expressing a

problem such as relation extraction directly in terms of

unprocessed input text will result in a complex function

that may be impossible to learn with reasonable labeled

data constraints. A second relevant aspect of such domains

is the corresponding high cost associated with obtaining

sufficient labeled data for good learning performance. As

previously stated, active learning often mitigates this

dilemma by allowing the learning algorithm to incremen-

tally select unlabeled examples for labeling by the domain

expert with the goal of maximizing performance while

minimizing the labeling effort [21]. This section extends

active learning for a single classifier by assuming that an

active learning querying function exists for each stage of a

pipelined learning model and develops a strategy that

jointly minimizes the annotation requirements for the

pipelined process.

This section presents a general method for combining

separate active learning strategies from multiple pipelined

stages into a single strategy that exploits properties par-

ticular to pipeline models. Specifically, we propose a cri-

teria that begins by preferring instances which most benefit

early pipeline stages until they are performing sufficiently

well, at which point instances are selected which target

later stages of the pipeline. This method attempts to reduce

error propagation and supply all pipeline stages with suf-

ficiently error free input for effective learning. Further-

more, we instantiate this method for a three stage named

entity and relation extraction system in Sect. 6, demon-

strating significant reductions in annotation requirements.

4.1 Learning pipeline models

Our pipeline model formulation specifically utilizes clas-

sifiers based upon a feature vector generating procedure

UðxÞ ! x and generates the output assignment using a

scoring function f : UðXÞ � Y ! R such that the predic-

tion is stated as ŷ ¼ hðxÞ ¼ argmaxy02Y fy0 ðxÞ: In a pipeline

model, each stage j = 1,…,J has access to the input

instance in addition to the classifications from all previous

stages, UðjÞðx; ŷð0Þ; . . .; ŷðj�1ÞÞ ! xðjÞ: Each stage of a pipe-

lined learning process takes m training instances SðjÞ ¼
fðxðjÞ1 ; y

ðjÞ
1 Þ; . . .; ðxðjÞm ; y

ðjÞ
m Þg as input to a learning algorithm

AðjÞ and returns a classifier, h(j), which minimizes the

respective loss function of the jth stage. Note that each stage

may vary in complexity from a single binary prediction,

y(j) [ { - 1, 1}, to a multiclass prediction, yðjÞ 2 fx1; . . .;

xkg; to a structured output prediction, yðjÞ 2 YðjÞ1 � � � � � YðjÞny
:

Once each stage of the pipeline model classifier is learned,

global predictions are made sequentially with the expressed

goal of maximizing performance on the overall task,

ŷ ¼ hðxÞ ¼ argmax
y02YðjÞ

f
ðjÞ
y0 xðjÞ
� �

* +J

j¼1

: ð7Þ

Michael Jordan played for the Chicago Bulls.

Segmentation

[ Michael Jordan ] played for the [ Chicago Bulls ] .

Named Entity 
Classification

[ Michael Jordan ]People played for the [ Chicago Bulls ]Organization .

Fig. 4 Pipeline model for named entity recognition (NER)

Int. J. Mach. Learn. & Cyber. (2010) 1:3–25 11

123



4.2 Querying functions for pipelines

As previously stated, the key difference between active

learning and standard supervised learning is a querying

function, Q; which when provided with the data S and the

learned classifier h returns a set of unlabeled instances

Sselect � Su: These selected instances are labeled and

added to the supervised training set Sl used to update the

learned hypothesis. This work requires that all querying

functions (one for each stage) determine instance selection

using an underlying query scoring function Q : x! R such

that instances with smaller scoring function values are

selected,

Q : xH ¼ argmin
x2Su

QðxÞ: ð8Þ

For notational convenience, we assume that the query

scoring function only requires the instance x to return a

score and implicitly has access to facilities required to

make this determination (e.g. f, h, U, properties of Y; etc.).

Furthermore, in the pipeline setting, we enforce that each

Q(j) be of similar range and shape such that the values may

be effectively compared and combined. This restriction is

not difficult to obey in practice as the classifiers at each

stage generally use similar features and classification

algorithms; however, there may be circumstances where

this would be a technical issue requiring further

investigation.

Given a pipeline model and a query scoring function for

each stage of the pipeline, Q(j), this work develops a gen-

eral strategy for combining local query scoring functions

into a joint querying function for the global pipeline task of

the form

Qpipeline : xH ¼ argmin
x2Su

XJ

j¼1

bðjÞ � QðjÞðxÞ: ð9Þ

Based upon this formulation, the goal is to set the values

of bt for each querying phase of the active learning

protocol by exploiting properties of pipeline models. By

varying the relative magnitude of each component of b; we

are able to alter the relative influence of the query scoring

function, thereby emphasizing different stages throughout

the procedure as appropriate. Some observed properties of

a well designed pipeline which most strongly affect

selecting values for bt include the following desiderata:

1. The results of earlier stages are useful, and often

necessary, for later stages [18].

2. Earlier stages should be easier to learn than later stages

[56].

3. Errors from early stages will propagate to later stages.

To design a global querying function for such archi-

tectures, examination of the pipeline model assumptions is

required. Given a sequence of pipelined functions, the

idealized global prediction function for a pipeline model is

stated by

ŷ ¼ argmax
y02Yð1Þ�����YðJÞ

XJ

j¼1

pðjÞ � f ðjÞ
yðjÞ0 xðjÞ
� �

ð10Þ

where p is used to determine the relative importance

associated with correct predictions for each stage of the

pipeline, noting that in most cases p ¼ ½0; . . .; 0; 1� and the

goal is to maximize the performance exclusively in regards

to the final stage. Comparing Equation 10 to the pipelined

prediction function of Eq. 7, we see that the pipeline model

assumption is essentially that the learned function for each

stage abstracts sufficient information such that each stage

can be learned independently and only the predictions are

required to propagate information between stages as

opposed to a joint learning model. Naturally, this

alleviates the need to predict joint output vectors with

interdependent variables and will result in a much lower

sample complexity if the assumption is true. However, to

satisfy the pipeline model assumption, we first observe that

each stage j possesses a certain degree of robustness to

noise from the input UðjÞðx; ŷð0Þ; . . .; ŷðj�1ÞÞ. If this tolerance

is exceeded, stage j will no longer make reliable

predictions and will lead to errors cascading to later

stages. This notion results in the primary criteria for

designing a querying function for pipeline models, that

early stages must be performing sufficiently well before

later stages influence the combined querying function

decision. Therefore, the global querying function should

possess the following properties:

1. Early stages should be emphasized for earlier iterations

of active learning, ideally until learned perfectly.

2. Significant performance improvement at stage

j implies that stages 1; . . .; ðj� 1Þ are performing

sufficiently well and stage j should be emphasized.

3. Conversely, lack of performance improvement at stage

j either implies that stages 1; . . .; ðj� 1Þ are not

performing well and should be emphasized by the

querying function or stage j has plateaued in perfor-

mance and later stages should be emphasized.

The first criteria is trivial to satisfy by setting b0 ¼
½1; 0; . . .; 0�: The remaining criteria are more difficult as an

estimate of querying function performance at each stage is

required to update b without labeled data for cross-vali-

dation. Based upon work regarding the early stopping of

active learning algorithms, [31] prescribes such a procedure
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in the context of determining crossover points with que-

rying functions specifically suitable for two different

operating regions of the active learning protocol for a

single binary prediction. This method calculates the aver-

age expected error over Su after each iteration,

�̂ ¼
P

x2Su
E½ðŷ� yÞ2jx�
jSuj

where

E½ðŷ� yÞ2jx� ¼
X

y2Y
L0=1ðŷ; yÞPðyjxÞ ð11Þ

and L0=1 is the 0/1 loss function. Once the change in

expected error is small from the current round t to the next

round t ? 1 for a specified prediction, D�̂\d; the current

configuration is deemed to be achieving diminishing

returns and the second querying function more appropriate

for different operating regions should be used. By using

this method, the appropriate querying functions are used

for each operating range, thus improving the overall result

of active learning.

This work derives an analogous method in the context of

pipeline models, where operating regions correspond to the

segment of the pipeline being emphasized when querying

instances. The first observation is that we cannot directly

extend the aforementioned procedure and maintain suffi-

cient generality as the loss function at each stage is not

necessarily L0=1 and it is difficult to accurately estimate

PðyjxÞ for the arbitrarily complex classifiers comprising

each stage, in contrast with the earlier work discussed

above. Furthermore, relatively precise knowledge of these

parameters is required to reasonably specify dðjÞ (i.e. the

crossover criterion for different operating regions). How-

ever, an important observation is that Eq. 11 is their query

scoring function which we generalize to basing the method

for determining crossover points on the average of the

query scoring function over the unlabeled data,

U
ðjÞ
t ¼

P
x2Su

QðjÞðxÞ
jSuj

:

The intuition is that Ut
(j) represents the certainty of f(j) for

each iteration of active learning and once this value stops

increasing between iterations, Q(j) is likely entering an

operating region of diminishing returns and should be

discounted. However, since d would be difficult to calibrate

for multiple stages and irrevocable crossover points would

be undesirable in the pipeline model case, we opt for an

algorithm where each stage competes with other stages for

relative influence on the global querying function of Eq. 9

based on the relative value changes in U(j). This reasoning

leads to Algorithm 2.

Algorithm 2 begins by taking as input the seed labeled

data Sl; unlabeled data Su; the learning algorithm for

each stage AðjÞ; a query scoring function for each stage

Q(j), an update rate parameter k, and an active learning

stopping criteria K: Lines 2–8 initialize the algorithm by

learning an initial hypothesis h0
(j) for each stage, calcu-

lating the initial average query scoring function value U0
(j)

for each stage, and setting b0 ¼ ½1; 0; . . .; 0�: Line 9

checks if active learning stopping criteria has been met. If

not, lines 10-12 select instances Sselect according to the

current b which are removed from Su; labeled, and added

to Sl: Lines 13–17 update the hypothesis for each stage

and calculate the new values of Ut
(j) for each stage. After

Dt is normalized (line 18), we update the value of bt
(j) for

each stage based on the relative improvements of Ut
(j).

Finally, b is normalized (line 22) and the process is

repeated. Fundamentally, based upon earlier stated prin-

ciples, Algorithm 2 assumes that b ¼ ½1; 0; . . .; 0� is the

optimal mixing parameter at t = 0 and tracks this non-

stationary parameter over t based on the feedback pro-

vided by ðUðjÞt � U
ðjÞ
t�1Þ at line 16 to set the values of b for

each round of active learning with pipeline models. We

empirically validate this algorithm on a three-stage entity

and relation extraction system in Sect. 6.
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5 Empirical results for structured output spaces

We demonstrate particular properties of the proposed

querying functions of Sect. 3 by first conducting several

active learning simulations on synthetic data each intended

to elucidate performance characteristics on different

structured learning scenarios. We then verify practical use

for actual applications by performing experiments on a

restricted for of the semantic role labeling (SRL) task.2

5.1 Synthetic data

Our synthetic structured output problem is comprised of

five multiclass classifiers, h1,…,h5, each with the output

space Yi ¼ x1; . . .;x4: In addition, we define the output

structure using the practical constraints shown in Fig. 5. To

generate the synthetic data, we first create four linear

functions of the form ay0ðiÞ � xðiÞ þ by0ðiÞ such that ay0ðiÞ 2
½�1; 1�100

and by0ðiÞ 2 ½�1; 1� are generated at random from

a uniform distribution for each hy0ðiÞ where y0ðiÞ 2
fx1; . . .;x4g: These weight vectors are held constant

throughout the data generation process. To generate data,

we first produce five local examples xðiÞ 2 f0; 1g100
where

the normal distribution Nð20; 5Þ determines the number of

features assigned the value 1, distributed uniformly over

the feature vector. Each vector is then labeled according to

the function argmaxi¼1;...;k ayðiÞ � xþ byðiÞ
� �

resulting in the

label vector ylocal ¼ ðh1ðxð1ÞÞ; . . .; h5ðxð5ÞÞÞ: We then use

the inference procedure to obtain the final labeling y of the

instance x to ensure that the output y 2 CðYÞ: If ŷC 6¼ ŷ;

then the data is exclusively globally separable. We control

the total amount of such data with the parameter j which

represents the fraction of exclusively globally separable

data in S: We further filter the difficulty of the data such

that all exclusively globally separable instances have a

Hamming error drawn from a stated normal distribution

Nðl; rÞ: We generate 10000 structured instances for each

configuration, or equivalently 50000 local instances, in this

for each set of data parameters we use. This process is

outlined in Fig. 6.

When conducting complete label active learning

experiments with synthetic data, we report results for

Q
localðCÞ; the querying function based upon the averaging of

local output predictions, Qglobal; the querying function

based upon the global output scores, QlocalðCÞ; the querying

function which bases its score on the output of the single

local prediction of minimum certainty, and Qrandom; the

querying function which selects instances randomly from a

uniform distribution over the unlabeled data Su at each

step. For experiments using complete queries, we use a

querying schedule which begins with five labeled examples

and selects five instances during each round of active

learning, jSlj ¼ 5; 10; . . .; 8000: For all synthetic experi-

ments, T = 7 and c = 0.5 for Algorithm 1 and fivefold

cross validation is performed with error bars indicating

95% confidence intervals.

5.1.1 Complete queries with locally separable data

The first case we consider for complete queries is where

j ¼ 0; the situation where the data is completely locally

learnable and the constraints are not necessary to learn the

target function with linear classifiers as shown in Fig. 7. As

hypothesized, Q
localðCÞ performs better in this setting than

Qglobal: By using Q
localðCÞ; we achieve a performance level

equivalent to training on all examples at jSlj 	 1500;

which is approximately a 81% reduction in labeled data.

When using Qglobal; we achieve a labeled data reduction of

approximately 73%. This difference is also reflected in the

plot of MHamming; where Q
localðCÞ induces significantly

more local updates on average. Finally, we note that

Fig. 5 Constraints used for

generating synthetic data

Fig. 6 Procedure used to generate synthetic data

2 Empirical discrepancies between the performance reported in this

work and that of [54] is accounted for by the use of averaged

Perceptron and smaller batch sizes during instance selection.
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QlocalðCÞ performs nearly identically to Qglobal as the dif-

ferences between two structures in this scenario often will

rely on a single local prediction. Note that we omitted error

bars for QlocalðCÞ for clarity as they were very similar to

Qglobal:

5.1.2 Complete queries with exclusively globally

separable data

The second case we consider is the setting where j ¼ 0:3

and the Hamming error of the generated data is drawn from

Nð3; 1Þ; with results shown in Fig. 8. For this case, the

output space is much more heavily constrained and as

hypothesized, Qglobal works better than Q
localðCÞ: By using

Qglobal; we achieve a performance level equivalent to

training on all 8000 examples at Sl 	 3000; which is

approximately a 63% reduction in labeled data require-

ments. Conversely, when using Q
localðCÞ; we achieve a

labeled data reduction of approximately 25% (not shown

on this graph). This difference is also reflected in the plot

of Mglobal; relative to Mglobal where Q
localðCÞ may induce

more local updates on average, but the number of global

updates does not correspond accordingly. This implies that

Q
localðCÞ is making local update which do not affect the

global prediction. Note that we omitted error bars for

Q
localðCÞ for clarity as its performance is clearly statistically

worse than Qglobal:

5.1.3 Partial queries on synthetic data

We continue our study with synthetic data by conducting

experiments which make partial queries during each round

of active learning. For the partial query setting, we report

results using the two partial querying functions Qlocal and

QlocalðCÞ in addition to Qrandom on three sets of data. For

partial queries, the querying schedule starts by querying 10

partial labels at a time from jSlj ¼ 10; 20; . . .; 40000; once

again performing fivefold cross validation to demonstrate

statistical significance with 95% confidence intervals.

The first data set for partial queries is when j ¼ 0:0 and

the data is completely locally separable as in our experiment

for complete queries. The results for this configuration are

displayed in Fig. 9, demonstrating a savings in labeled data

requirements of approximately 80% for QlocalðCÞ: In this

case, active learning for both Qlocal and QlocalðCÞ perform

better than Qrandom: Somewhat more surprising is the result

that QlocalðCÞ performs noticeably better that Qlocal even

though they often query similar points for j ¼ 0:0: How-

ever, we hypothesize is that when there is only a small

quantity of labeled data, the constraints provide additional

information which guides the learned hypothesis toward the

target hypothesis by querying instances which will make

more updates to the current hypothesis. We see this phe-

nomena to some degree in the plot ofMHamming as QlocalðCÞ
results in more updates in the IBT algorithm than Qlocal:

The second partial querying experiment we conduct is

for the synthetic data set j ¼ 0:3;Nð3; 1Þ as shown in

Fig. 10. This configuration demonstrates a similar perfor-

mance ordering as when j ¼ 0:0; where QlocalðCÞ outper-

forms Qlocal which in turn outperforms Qrandom with

QlocalðCÞ achieving a label savings of approximately 65%.

Furthermore, early in the active learning process, we see

that Qlocal performs worse than Qrandom: The plot of the

number of updates in combination with this fact implies

that the number of updates is not the sole indicator of

performance, but that when constraints are used, the

selected instances must make updates as targeted by the

correct version space.

Finally, we perform a partial querying experiment with

synthetic data set where j ¼ 1:0;Nð5; 1Þ; meaning that the

data is completely exclusively globally separable and the

difference between QlocalðCÞ and Qlocal will be different at

all predictions for most examples. These results are shown

in Fig. 11. In this configuration, QlocalðCÞ performs signifi-

cantly better than Qlocal demonstrating the benefit of
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considering the structural constraints when requesting

labels for unlabeled instances. Specifically, QlocalðCÞ
achieves a reduction in labeled data requirements of

approximately 75% while Qlocal achieves a savings of

approximately 63%, although this actually understates the

case as QlocalðCÞ performs much better at earlier data points.

In this case, we once again observe that although the

learning algorithm is making many updates, they are

seemingly not updates which assist the learning algorithm

in learning the target hypothesis.
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5.2 Semantic role labeling

As a practical application, we also perform experiments on

the (SRL) task as described in the CoNLL-2004 shared task

[15]. For SRL, the goal is given a sentence to identify for

each verb in the sentence which constituents fill a semantic

role and determine the type of the specified argument as

shown in Fig. 12. For this particular example, A0 repre-

sents the leaver, A1 represents the item left, A2 represents

the benefactor, and AM-LOC is an adjunct indicating the

location where the action occurs. Examples of specifying

structural relationships to ensure coherence include

declarative statements such as every sentence must contain

exactly one verb, certain arguments may only attach to

specific verbs, or no arguments may overlap.

To model this problem, we essentially follow the model

described in [49] where linear classifiers fA0; fA1; . . . are

used to map constituent candidates to one of 45 different

classes. For a given argument/predicate pair, the multiclass

classifier returns a set of scores which are used to produce

the output ŷC consistent with the structural constraints

associated with other arguments relative to the same

predicate. We simplify the task by assuming that the con-

stituent boundaries are given, making this an argument

classification task. We use the CoNLL-2004 shared task

data, but restrict our experiments to sentences that have

greater than five arguments to increase the number of

instances with interdependent variables and take a random

subset of this to get 1500 structured examples comprised of

9327 local predictions. For our testing data, we also restrict

ourself to sentences with greater than five arguments,

resulting in 301 structured instances comprised of 1862

local predictions. We use the features in Table 1 and the

applicable subset of families of constraints which do not

concern segmentation shown in Fig. 13 as described by

[50].

Figure 14a shows the empirical results for the SRL

experiments when querying complete labels. For the

complete labels querying scenario, we start with a querying

schedule of jSlj ¼ 50; 80; . . .; 150 and slowly increase the

step size until ending with jSlj ¼ 1000; 1100; . . .; 1500:

When using Algorithm 1, we set c = 1.0 and T = 5. In this

setting, we observe that Q
localðCÞ performs better than

Qglobal; implying that the data is largely locally separable

which is consistent with the findings of [49] for this high

dimensional feature space. Essentially, when using such a

high dimensional feature space, the efforts of the querying

function are best spent inducing as many local updates as

possible as the performance of the local classifiers inde-

pendent of the global constraints will most significantly

affect performance. However, we observe that both

Q
localðCÞ and Qglobal perform better than Qrandom with

approximately a 35% reduction in labeling effort require-

ments with Q
localðCÞ:

For partial labels, we used a similar experimental setup

with a querying schedule that starts at jSlj ¼
100; 200; . . .; 500 and increases step size until ending at

jSlj ¼ 6000; 7000; . . .; 9327: In this case, QlocalðCÞ performs

better than Qlocal and Qrandom; requiring approximately

45% of the data to be labeled. While both QlocalðCÞ and

Qlocal performs better than Qrandom;QlocalðCÞ likely selects

instance components for which the constraints do not

provides sufficient information to make a confident pre-

diction and thus is using information based upon the

hypothesis space of the target function. A final observation

is that QlocalðCÞ requires approximately 4000 instances to

achieve the performance of the final state of Qrandom:

Conservatively estimating all instances to have exactly six

components, this corresponds to *670 complete instances,

which we observe in Fig. 14b is not the final performance

level. This reaffirms our contention that partial queries

should be used whenever possible and a realistic cost

model can be specified.

6 Experiments on a three-stage pipelined entity

and relation extraction system

The experimental setting we explore with our pipeline

active learning protocol is the three-stage entity and rela-

tion extraction system shown in Fig. 15. For each pipeline

stage, sentences comprise the instance space of the learning

problem which when selected are labeled for all pipeline

stages. Secondly, each stage requires multiple predictions,

thereby being a structured prediction problem for which we

follow the active learning framework for structured output

scenarios as presented in Sect. 3. Let x 2 X1 � � � � � Xnx

represent an input instance and y 2 CðYÞ represent a

structured assignment in the space of output variables

Y1 � � � � � Yny
: C represents a set of constraints that

enforces structural consistency on y, making the prediction

function ŷC ¼ hðxÞ ¼ argmaxy02CðYÞ f ðx; y0Þ for the struc-

tured output space.

While active learning often relies upon the use of

complex algorithms with high running times such as sup-

port vector machines [72] or conditional random fields [23,

64], Sect. 5 demonstrated good results with a regularized

version of the structured Perceptron algorithm [22]. InFig. 12 Semantic role labeling (SRL)

Int. J. Mach. Learn. & Cyber. (2010) 1:3–25 17

123



designing an active learning algorithm with complete

queries for the stated system, the learning algorithm for

each stage, AðjÞ; is an instance of the IBT algorithm as

described by Algorithm 1. As a discriminative framework,

performance is strongly correlated to the quality of the

feature vector generating procedure UðjÞ: We extract

Table 1 Features for semantic role labeling classifier

Name Description

Predicate lemma and POS tag A conjunction of the lemma and POS tag of predicate

Voice Indicates voice (active/passive) of predicate

Position Indicates if the target argument is before or after the predicate

Clause position Indicates position of the target argument relative to the predicate in the parse tree

Clause path The path formed by the parse tree containing only clauses an chunks

Chunk pattern Encodes the sequence of chunks from the current argument to the predicate

Word and POS tag Word and POS tags of the first word, last word, and head word

Named entity Indicates if any element of the predicate is an element of a named entity

Chunk Indicates if any element of the predicate is an element of a noun phrase

Length The length of the target phrase both in number of words and number of chunks

Verb class The class of the active predicate described in the frame files

Phrase type The target argument phrase type (e.g. VP, PP, NP)

Sub-categorization Sequence of phrase types of predicate chunk and segments around the predicate

Baseline Features based on heuristics for identifying AM-NEG and AM-LOC

Clause coverage Indicates how much of the predicate clause is covered by the argument

Chunk pattern length Counts the number of chunk patterns in the argument phrase

Conjunctions A pairwise conjunction of all pairs of features above

Boundary words and POS tags The words and tags within a window of size 2

Bigrams Bigrams of words and POS tags within a window of size 2

Sparse collocation A sequence of one word/tag from window of two before argument, first word/tag of argument,

last word/tag of argument, and one word/tag from window of two after argument

Fig. 13 Constraints for

semantic role labeling classifier
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features in a method similar to [57] except segmentation is

not assumed, but the first stage in our pipeline. For seg-

mentation, each target word and its context extracts a

feature set including words from a window of size 3 on

each side of the target, bigrams within a window of size 2,

and the capitalization of words within a window of size

one. Furthermore, we check if either of the previous two

words have membership in a list of male and female names

taken from U.S. census data. Finally for segmentation, we

also check membership in a list of months, days, and cities

compiled in advance. These features are summarized by

Table 2. For entity classification, we extract features

including the words of the segment, words within a win-

dow of size 2 around the segment, the segment length, and

a capitalization pattern. Secondly, we check if any word is

in a list of cities, countries, names, and professional titles

compiled in advance. These features are summarized in

Table 3. Finally, for relation classification, we first extract

a conjunction of the features used for the two entities, the

labels of the two entities, the length the entities, the dis-

tance between them, and membership in a set of extraction

patterns [57] (e.g. Uarg1;prof ;arg2 (CNN reporter David

McKinley) = 1) as summarized in Table 4.

6.1 Active entity and relation extraction

As stated, this formulation for active learning with pipeline

models requires that each stage of the pipeline has a pre-

defined query scoring function Q(j). To design Q(j) for each

stage of our system, we build upon the active learning for

structured output as described in Sect. 3, based upon the

decomposition of structured predictions into a vector of

multiclass predictions and deriving active learning query-

ing functions based upon the expected multiclass margin.

Dole 's wife , Elizabeth , is a native of Salisbury , N.C.

Dole 's wife , Elizabeth , is a native of Salisbury , N.C.
E1 E2 E3 E4

Segmentation

Entity Classification

Relation Classification

Unannotated Text

E1 = person

E2 = person

E3 = location

E4 = location

R(E1,E2) = spouse_of

R(E1,E3) = no_relation

R(E1,E4) = no_relation

R(E2,E3) = born_in

R(E2,E3) = born_in

R(E3,E4) = located_in

Fig. 15 A three-stage pipeline model for named entity and relation

extraction

Table 2 Feature generation functions for segmentation

Name Description

Word The lowercase version of the target word

Context words Lowercase version of words within a

window of size 3 from the target word

Context bigrams Lowercase version of bigrams within a

window of size 2 from target word

Capitalized Returns if target word is capitalized

Capitalized context Returns in words within window of size 1

are capitalized

Male name Checks if the target word is a male name

(from census data)

Female name Checks if the target word is a female

name (from census data)

Month Checks if the target word is a month

Day Checks if the target word is a day

City Checks if the target word is a city

Context names Checks if previous two words are

members of male name or female name

Table 3 Feature generation functions for named entity recognition

Name Description

Word The lowercase version of the word in the target

segment

Phrase The n-gram of lowercase words in the segment

Capitalization Capitalization pattern of phrase (e.g. Duke of

Earl ? XxX)

Length Target segment length

Context word Words surrounding target segment within

window size 2

Male name Checks if any target word is a male name (from

census data)

Female name Checks if any target word is a female name

(from census data)

Country Checks if any target word is a country

Title Checks if any target word is a professional title

City Checks if the any target word is a city

Table 4 Feature generation functions for relation extraction

Name Description

Entity Features A position sensitive conjunction of all

features from Table 3

Entity labels The labels of the two features in sequence

Distance The number of words between the two

entities in a sentence

Pattern Extraction patterns taken from [57]
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As previously stated, to extend Qmulticlass to structured

predictions, we must consider the types of predictions

made by each stage of the pipeline. For segmentation, the

local scoring function fsegment outputs an estimate of P(y |

xi) for each word in the input sentence over Y 2 fB; I;Og:
The constraints C enforce a valid structure by ensuring that

inside only follows a begin label for BIO segmentation. We

follow the principles for locally learnable instances and use

a variant of the average margin where we do not include

high frequency words contained in a stoplist and emphasize

capitalized words. This results in the segmentation query

scoring function

Qsegment ¼
Pny

i¼1 fŷCðiÞðxðiÞÞ � f~yCðiÞðxðiÞÞ
� �

ny
: ð12Þ

For entity classification, we begin with segmentation

from the previous stage and classify these segments into

Y 2 {PEOPLE, LOCATION, ORGANIZATION}. In this case, there

are a small number of entities per sentence and we

empirically determined that the least certain entity (i.e.

QlocalðCÞ from Sect. 3) best captures the uncertainty of the

entire sentence. The resulting query scoring function is

stated by

QNER ¼ min
i¼1;...;ny

fŷðiÞðxðiÞÞ � f~yðiÞðxðiÞÞ
� �

: ð13Þ

Finally, relation classification begins with named entity

classifications and label each entity pair with Y 2
{LOCATEDIN, WORKFOR, ORGBASEDIN, LIVEIN, KILL}

�fleft; rightgþ NORELATION. Once again, we find that the

least certain single local instance works best for

determining which sentence to annotate, but exploit the

knowledge that the NORELATION classification is by far the

dominant class and will receive adequate annotation

regardless of the querying function. Therefore, we define

Yþ ¼ YnNORELATION and do not consider this label when

calculating the query scoring function,

Qrelation ¼ min
i¼1;...;ny

fŷþðiÞðxðiÞÞ � f~yþðiÞðxðiÞÞ
� �

: ð14Þ

The data for our experiments was derived from [59],

which is an annotation of a set of sentences from TREC

documents. In our data, there are 1987 sentences which

contain 4645 entities, and 6909 intrasentence pairs of

entities (including NORELATION). The entity labels include

1648 PEOPLE entities, 1872 LOCATION entities, and 858

ORGANIZATION entities. The relation labels include 420

LOCATEDIN, 394 WORKFOR, 451 ORGBASEDIN, 529 LIVEIN,

and 270 KILL. These data properties are summarized in

Table 5.

For active learning experiments, we first selected 287 of

the 1436 sentences (20%) with at least one active relation

for testing. From the training data, we constructed 10

different seed sets of labeled data such that each set

contains four instances of each type of relation in Yþ ¼
Yn NORELATION, ignoring direction. Each data point is an

average of the ten different Sl as the initial seed. For each

querying phase, jSselectj ¼ 1; and labeled instances are

added to Sl until we meet the stopping criteria, K; of the

performance level of training on all sentences. We present

results in terms of the commonly used F1 measure,

F1 ¼ 2 
 precision 
 recall

precision þ recall
ð15Þ

and plot every fifteenth point to improve clarity.

In addition to previously defined querying functions, we

also compare the results to a non-adaptive pipeline que-

rying function, Quniform; which sets b ¼ ½1J; . . .; 1
J� for all

iterations. This querying function can be viewed as a

structured output active learning querying function from

Sect. 3 that is not aware of the pipeline assumptions and

treats all stages equally. Finally, we also compare the

querying functions to Qrandom which selects a random

instance for each round of active learning in Algorithm 2.

6.2 Segmentation

The first experiment conducted is active learning for

complete queries for the segmentation task, with results

shown in Fig. 16. Note that despite good results for active

learning on segmentation, this is not the task that we are

interested in directly, but only for its utility to downstream

processes. However, this specific stage can be viewed as a

further affirmation of the framework introduced in for

locally learnable instances. The first important observation

is that both Quniform and Qpipeline perform better than

Qrandom; although Quniform begins by performing worse

earlier in the process. The more important observation is

that Qpipeline significantly outperforms Quniform and Qrandom

throughout all phases of the protocol. The explanation for

Table 5 Data properties for entity and relation extraction task

Sentences 1987

Total entities 4645

PEOPLE 1648

LOCATION 1872

ORGANIZATION 858

MISCELLANEOUS 267

Total (binary) relations 2064

LOCATEDIN 420

WORKFOR 394

ORGANIZATIONBASEDIN 451

LIVEIN 529

KILL 270
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this phenomena seems straightforward as Qpipeline empha-

sizes Qsegment early in the procedure, to the point that they

are virtually identical for early rounds of active learning.

Another interesting point is that Qsegment performs better

than Qpipeline: Given that this is the first pipeline stage, this

result is not particularly surprising as Qsegment selects sen-

tences as if this was a single stage task, which we will see

hurts performance when later stages should receive greater

consideration. However, the final result for segmentation

annotation withQpipeline is that the effort is reduced by 45%

as Qpipeline reaches the K performance level when the

quantity of labeled data, jSlj is approximately 950

instances.

6.3 Entity classification

Figure 17 presents results for active learning on the entity

classification stage. For entity classification, once again

both Qpipeline and Quniform perform better than Qrandom with

Qpipeline significantly outperforming Quniform: A second

observation is that we also included Qsegment to show that

there is significant value in dynamically changing the query

scoring function weighting, as even though Qsegment does

well initially, eventually it reaches a point of diminishing

returns and is discounted in favor of later stages. However,

it is also interesting to note that Qsegment still outperforms

Quniform; demonstrating the value of having earlier stages

performing well before emphasizing later stages to reduce

error propagation. This experiment is the first to demon-

strate that querying instances based on earlier stages

ameliorates issues associated with error propagation by

ensuring early stages are performing sufficiently well

before emphasizing later stages, while also demonstrating

that later stages should be emphasized once earlier stages

are performing at a level where error propagation is man-

ageable. The final result for entity classification with the

proposed methods is that by using Qpipeline; the annotation

effort is reduced by 42%.

6.4 Relation classification

Figure 18 presents active learning results for the relation

classification stage of the pipeline, also measured by F1 as

given in Eq. 15. As we see, both Qpipeline and Quniform once

again perform better than Qrandom with Qpipeline signifi-

cantly outperforming Quniform: Secondly, both Quniform and

Qpipeline require more queries early in the process than in

other stages before they demonstrate significantly acceler-

ated learning over Qrandom: This should likely be attributed

to the examples that are selected early in the process are

being used to learn previous stages and improvements for

relation classification is largely a byproduct of reduction in

error propagation. This delay is reflected in the overall

annotation effort, where we require more examples relative

to the segmentation or entity classifications tasks to achieve

the same performance as learning with all of the data.

However, we still achieve an overall savings of 35%. At

the point where Qpipeline returns a hypothesis such that

PðĥtÞ�K;Qpipeline outperforms Qrandom by 5.8 F1 score (a

relative improvement of 11.4%) at this stage of learning.

Note that as we move down the pipeline, we tend to require

a greater annotation effort as Qpipeline has to ensure that

previous stages are learned adequately before continuing to

the present stage as each successive stage builds upon the

results of previous stages. A final observation is a com-

parison of these results to [59], where our final F1 score of

0.57 for the relation extraction task and 0.83 for the entity

extraction task are competitive with previously reported
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Fig. 16 Experimental results for the segmentation stage of the

pipeline. The proposed querying function Qpipeline outperforms

Quniform and Qrandom; reducing the annotation effort by 45%
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Fig. 17 Experimental results for the entity classification pipeline

stage. The proposed querying function Qpipeline outperforms all other

querying functions, including Qsegment and reduces the annotation

effort by 42%
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results. However, our system is capable of using raw text as

input.

7 Related work

Active learning has gained significant research attention

recently, making it nearly impossible to succinctly sum-

marize all of the various strategies; however, several recent

theses and surveys do this admirably [48, 63, 66]. One of

the earliest active learning works for complex prediction

tasks is [69] which studies active learning for both natural

language parsing and information extraction from the

perspective of unreliability sampling [10]. Since then, there

has been additional research on active learning in the

context of syntactic parsing [41, 67], named entity recog-

nition [65], and other information extraction subtasks

[23, 64].

From the perspective of active learning frameworks for

structured predictions, the earliest work was for sequence

labeling in the context of HMMs [3, 24, 60] although there

have been extensions for CRFs [23, 64]. Recently, some of

these principles for active learning in structured spaces

have been extended to settings where both semi-supervised

and active learning are combined by automatically labeling

certain local predictions and querying uncertain substruc-

tures [70]. More application targeted active learning strat-

egy which emit general principles capable of being

extended to other settings include active learning for

probabilistic context free grammars (PCFGs) [8, 41]. Pre-

dating many of these works in structured output spaces,

although relying on similar margin-based principles,

include studies regarding active learning for multiclass

classification [12, 36, 45, 78] and active learning for ranked

data [12, 30].

Our pipeline model framework builds on work regarding

methods for autonomously determining the progress of

active learning. Works exist which attempt to determine

operating regions of the active learning cycle to switch

between more exploration driven cycles to more exploita-

tion driven cycles [9, 31]. A closely related concept is

attempting to indicate when active learning has achieved its

maximum performance without cross-validation data,

referred to as deriving a stopping criteria [14, 44, 61, 71,

76, 79, 80].

While margin-based active learning remains by far the

most popular formalism despite a lack of strong perfor-

mance guarantees, there have been several recent works

examining active learning based upon the PAC learning

model [74] for realizable concept classes [7, 16, 25, 27, 37]

and the agnostic learning model [42] for broader concept

classes [5, 6, 26, 38]. However, while these results are

important, it should also be noted that they make

assumptions which render them generally less applicable to

the complex applications where active learning in most

useful, although this is certainly a direction for future

study.

8 Conclusions and future directions

This work first describes a margin-based active learning

approach for structured output spaces building upon the

constrained conditional model (CCM) framework. This

facilitates applying active learning to a very general family

of structured output scenarios. We first examine the setting

of querying complete labels, definingQglobal; which is most

appropriate when the scoring function f(x, y) is not

decomposable or the data is expected to be exclusively

globally learnable. Furthermore, a querying function based

on the average margin over component predictions,

Q
localðCÞ; is shown to perform better when the scoring

function is decomposable and the data is expected to be

locally learnable. We further demonstrate that in cases

where the local classifications can be queried indepen-

dently, the labeling effort is most drastically reduced using

partial label queries with the querying function QlocalðCÞ:

These findings are supported empirically on both synthetic

data and the semantic role labeling (SRL) task.

We extend this work to develop a framework for active

learning with pipeline models, a widely used paradigm for

complex applications where the global task is decomposed

into a sequence of predictions where each pipeline stage

uses the output of earlier stages as input. This work spe-

cifically prescribes a general method for combing the

querying functions associated with each pipeline stage into

a joint active learning strategy which explicitly exploits

properties of a pipeline model. We demonstrate the
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Fig. 18 Experimental results for the relation classification pipeline

stage. The proposed querying function Qpipeline reduces the overall

annotation effort by 35%

22 Int. J. Mach. Learn. & Cyber. (2010) 1:3–25

123



effectiveness of this approach on a three-stage named

entity and relation extraction system, where we observe a

significant reduction in labeled data requirements.

There appears to be many dimensions for future work

within both of these frameworks. From the perspective of

structured output spaces, an interesting direction would be

to examine scenarios where subsets of the output variables

can be queried, providing a continuum between single and

complete labels. Furthermore, developing a more realistic

model of annotation cost along this continuum would likely

facilitate the application of this work to a wider range of

structured output applications. Finally, there has been

recent work regarding combining active and semi-super-

vised learning for sequence labeling [70] that seems

directly applicable to this work, particularly if substruc-

tures can be queried. From the perspective of pipelines, the

most immediate direction for future work would be to

examine both deeper pipelines and more general feedfor-

ward network structures (e.g. POS and WSD being parallel

input to segmentation). Finally, combining active learning

with domain adaptation [17, 53] is particularly appropriate

for cases where structural information may inform the

querying function by allowing structural similarities

between domains to be specified and possibly lead to fur-

ther reductions in annotation requirements.
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