
Vol.:(0123456789)

Translational Stroke Research 
https://doi.org/10.1007/s12975-024-01261-w

REVIEW

Imaging of Intracranial Aneurysms: A Review of Standard 
and Advanced Imaging Techniques

Sricharan S. Veeturi1,2 · Samuel Hall3 · Soichiro Fujimura4,5 · Mahmud Mossa‑Basha6 · Elena Sagues7 · 
Edgar A. Samaniego7 · Vincent M. Tutino1,8

Received: 16 April 2024 / Revised: 16 April 2024 / Accepted: 13 May 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The treatment of intracranial aneurysms is dictated by its risk of rupture in the future. Several clinical and radiological risk 
factors for aneurysm rupture have been described and incorporated into prediction models. Despite the recent technological 
advancements in aneurysm imaging, linear length and visible irregularity with a bleb are the only radiological measure used 
in clinical prediction models. The purpose of this article is to summarize both the standard imaging techniques, including 
their limitations, and the advanced techniques being used experimentally to image aneurysms. It is expected that as our 
understanding of advanced techniques improves, and their ability to predict clinical events is demonstrated, they become an 
increasingly routine part of aneurysm assessment. It is important that neurovascular specialists understand the spectrum of 
imaging techniques available.
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Introduction

Unruptured intracranial aneurysms (UIA) are cerebral out-
pouchings that can rupture and cause subarachnoid hem-
orrhage (SAH) which has a high mortality and morbidity 
rate. A meta-analysis by Vlak et al. estimated the prevalence 
of UIA to be 3.2% in adults 50 years old [1]. Populations 
with certain comorbidities including autosomal dominant 
polycystic kidney disease (ADPKD) (prevalence ratio = 6.9), 
family history of intracranial aneurysms (prevalence 
ratio = 3.4), and female gender (prevalence ratio = 2.2) [1]. 
Among populations of particular conditions, the prevalence 
of aneurysms is particularly high such as Marfan syndrome 
(12%) [2] and ADPKD (9%) [3]. UIA may also be more 
prevalent in older adults [4, 5]. The aneurysms identified 
in these population studies are most likely to be < 7 mm [1, 
4] and found in the anterior circulation although it is incon-
sistent which is the most common location between middle 
cerebral artery (MCA) [1], anterior communicating artery 
(AComm) [6], or internal carotid artery (ICA) [4]. Preva-
lence of UIAs also varies based on the geographic popula-
tion as indicated in a population-based study by Greving 
et al. Herein, the authors found that individuals of Japanese 
and Finnish origin had a 2.8 and 3.6 times increased risk of 
IA rupture, respectively.
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Imaging of IAs is paramount for management of UIAs. 
The first ever use of angiography for visualization of cere-
bral vessels was in 1927 by Egas Moniz [7, 8]. Moniz named 
this procedure “arterial encephalography” as the theory of it 
was to improve contrast of blood vessels by injecting opaque 
material in the blood vessels not unlike the then common 
practice of using pseudo-encephalography developed by 
Dandy[9]. Since then, imaging techniques have evolved con-
currently with our knowledge of IA natural history. From the 
routine clinical imaging which enables clinicians to identify 
potential IAs without autopsy, to risk assessment and suc-
cessive treatment planning, imaging is needed for the entire 
IA management pipeline. Indeed, imaging plays a key role 
in determining IA size and morphology which forms the 
basis of clinical risk stratification of IAs. Lastly, imaging is 
crucial to the treatment of IAs, namely during endovascular 
treatment which is done using fluoroscopic imaging such as 
digital subtraction angiography which will be discussed in 
subsequent sections.

The purpose of this review is to understand the role of 
imaging in detection and clinical management of IAs and to 
reflect on standard as well as non-traditional imaging of IAs. 
For standard imaging, the purpose, advantages, and limita-
tions of computed tomography angiography (CTA), mag-
netic resonance angiography (MRA), and digital subtraction 
angiography (DSA) are discussed in subsequent sections. 
Additionally, we will also discuss other emerging advanced 
imaging modalities, namely vessel wall imaging (VWI), 
4D flow, and 4D CTA. Finally, we will review the potential 
usage of artificial intelligence (AI) in routine clinical imag-
ing. AI can be used to enhance existing imaging, better risk 
stratification, and treatment planning as will be discussed in 
upcoming sections.

Role of Imaging in Risk Assessment of IA

Clinical imaging provides precise visualization of intracra-
nial vessels and hence, can assist in better and early detec-
tion of IAs. Clinical risk assessment of IAs is primary based 
on size and morphology of the IA at the time of imaging 
with large and irregular IAs being at higher risk of rupture 
than smaller more regular ones [10]. Imaging enables robust 
3D quantification of IA size and morphology thus helping in 
robust risk stratification [11]. Furthermore, morphology of 
IA has also been associated with long-term treatment out-
come [12]. Studies have shown that morphology of the IA at 
the time of imaging can help predict long-term outcome in 
patients treated with flow diverters as well as coils [13, 14].

Intersection of imaging and IA risk assessment happens 
in quantification of aneurysm size and morphology. The 
standard approaches to measuring aneurysm morphology 
include linear measurements and descriptions of sac shape. 

The simplest linear measurement, sac width in the longest 
dimension referred to as the IA size, is repeatedly borne out 
as a risk factor for rupture [15–17]. One of the first large 
cohort international studies aimed at using patient history 
and IA size for risk stratification was the ISUIA study [18]. 
Herein, the authors found that patients with previous SAH 
having IAs > 7 mm and located in either the internal carotid 
artery (ICA), middle cerebral artery (MCA), the anterior 
communicating artery (AComm), or especially the poste-
rior communicating artery (PComm) had the highest risk 
of IA rupture over a 5-year period. They found that IA size 
had a relative risk of 3.3 for 7–12 mm IAs and 17.0 for 
IAs > 12 mm. Similarly, IA location had a relative risk of 2.1 
for PComm, 0.15 for cavernous artery, and 2.3 for basilar tip 
IAs. In the PHASES Study, compared to < 5 mm, the rupture 
hazard ratio for size increases to 1.1, 2.4, 5.7, and 21.3 for 
aneurysms 5–7 mm, 7–10 mm, 10–20 mm, and > 20 mm, 
respectively [19]. Other linear measurements such as dome-
neck ratio or aspect ratio have been examined in case–con-
trol studies, but none were included for primary analysis of 
the prospective natural history studies. A recent comprehen-
sive meta-analysis, incorporating data from 13,025 aneu-
rysms found that ruptured aneurysms typically presented 
with a size of 6.1 mm (95% CI, 5.6 to 6.5 mm). In contrast, 
unruptured aneurysms had a smaller average size of 4.9 mm 
(95% CI, 4.5 to 5.3 mm) [10]. Additionally, an aspect ratio 
of 1.5 (95% CI of 1.4 to 1.6) was identified as a marker for 
aneurysms that were ruptured at the time of presentation. 
This is compared to a lower aspect ratio of 1.1 (95% CI of 
1.1 to 1.2), for aneurysms that had not ruptured.

In addition to size, IA morphology and irregularity also 
play a key role in risk assessment of IAs. The UCAS study 
[15], the largest contributor to PHASES, and the more recent 
prospective series by Murayama et al. [20] both identified 
the presence of a daughter sac as an indicator of high-risk 
IAs with a hazard ratio of 1.6 and 11.1, respectively. A sub-
sequent case–control analysis of the ISUIA data found that 
neither a daughter nor multilobes were significantly associ-
ated with rupture; however, only a small number of cases of 
each were identified [21]. This study also looked at linear 
measurements and found that size-ratio and perpendicular 
height were significantly associated with ruptured aneu-
rysms [21]. Accordingly, aneurysm shape is included in the 
ELAPPS score for predicting growth [22] and the UIATS 
consensus-based model for guiding treatment [23].

The increasing use of cranial imaging over recent decades 
is resulting in a higher number of incidental UIAs being 
diagnosed [24]. Less common routes to diagnosis include 
screening scans such as those with a positive family history 
or unruptured aneurysms presenting with symptoms such as 
the acute oculomotor nerve palsy, sentinel headache, vision 
loss, or embolic event [25]. Once the diagnosis is estab-
lished, the risk assessment for rupture begins, starting with 
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standard imaging and progressing to newer advanced tech-
niques. Standard imaging techniques such as CTA, MRA, 
and DSA can provide measurements of the aneurysm lumen 
and are the basis for the natural history data so far. Advanced 
techniques, including mural wall imaging such as vessel wall 
imaging (VWI), have not been prospectively assessed for 
their role in predicting rupture risk and incorporating them 
in UIA assessment varies between units. A recent ASNR 
survey of VWI use, predominantly from USA responders, 
found that only half of physicians are using VWI and only 
40% of those are using for aneurysm assessment [26]. This 
is even lower in the UK where only 10% of units are using 
VWI for UIA assessment [27].

Standard Imaging Approaches

CTA 

CTA is a cross-sectional imaging modality utilizing helical 
tomography. It is non-invasive and fast to acquire however 
has the disadvantages of requiring ionizing radiation and 
iodine-based contrast agents. Modern CT is developed to use 
multidetector arrays which are either 64, 128 or 256 rows 
and provide sub-millimeter resolution. Ultra-high-resolution 
CT can improve on this further with a resolution of 0.23mm 
and better artifact reduction techniques [28]. Recently, dual-
energy computed tomography has also been introduced into 
the clinical setting which boasts a better tissue characteriza-
tion as it involves using multiple X-ray spectra for. However, 
it is currently only used in <10% of clinics for head imaging 
purposes as a recent survey found out, primarily due to lack 
of experience [29].

The sensitivity of CT angiography for detecting aneu-
rysms is referenced against DSA as the gold standard. Meta-
analysis of CT angiography for detecting aneurysms identi-
fied an overall sensitivity of 97%, ranging from 93 to 99.2% 
when using single detector or 64-row multidetector scanners, 
respectively [30]. The number of detector rows has a more 
significant influence on smaller aneurysms. Single-detector 
arrays show similar sensitivity (96%) to 64-row multidetec-
tor arrays for detecting aneurysms greater than 4 mm diam-
eter. However, for aneurysms < 4-mm multidetector arrays 
are significantly better with a sensitivity of 92% compared 
75% for a single array [30]. Other series looking at small 
aneurysms < 3 mm report a sensitivity falling to 86–92% 
[31–33]. While sub-3-mm aneurysms have a lower rupture 
risk and are unlikely to be treated, a false negative still has 
implications for decisions on further surveillance imaging 
for the patient.

A weakness of CT angiography is detecting aneurysms 
near the skull base due to artifact from the bone. Bone sub-
traction CT is one technique to avoid this problem [34]. 

Other limitations include venous contamination with “kiss-
ing artifacts” of veins adjacent to arteries resembling aneu-
rysms and the misrepresentation of infundibula as aneu-
rysms where the apex vessel is too small to be resolved on 
CT imaging [35].

CT angiography can also be used as part of surveillance 
programs to monitor for aneurysm growth; however, there 
are no studies comparing its performance against a gold 
standard. In the absence of this comparison an in vitro phan-
tom-based study was performed which showed poor ability 
of CT angiography to detect aneurysm growth with only 
a 58% detection rate for linear growth [36]. Despite this, 
CT angiography has been demonstrated to be effective in 
detecting aneurysm growth or bleb formation on aneurysm 
follow-up in the clinical setting [37]. The risk of causing 
cancer from a CT-based surveillance programs is relatively 
low and reaches 0.1% in men and 0.03% in woman [38] 
after 51 annual CT angiograms. Furthermore, the risk per 
exposure increases roughly by 0.0026% on average per CTA 
performed.

MRA

MRA is often preferred for aneurysm detection because it 
avoids ionizing radiation combined with its low cost and 
relatively quick acquisition. MRA may also include VWI 
techniques that facilitate the analysis of aneurysm wall 
enhancement [39]. Meta-analysis has shown that the sensi-
tivity of time-of-flight (TOF) MRA for detecting aneurysms 
is 95%, which rises to 97% for contrast-enhanced (CE)-MRA 
[40]. The sensitivity of 3 T MRA was better (98 vs. 92%, 
p = 0.054) than lower field strengths for detecting aneurysms 
[40]. In a single-center series directly comparing 3 T-TOF 
with CE-MRA, the sensitivity of CE-MRA for aneurysm 
detection was considerably higher than TOF (0.95 vs. 0.86). 
Direct comparison of 64-row CTA and 3 T TOF MRA has 
shown a comparable sensitivity for aneurysm detection [41].

More recently, 7 T MRA is available for clinical use 
which has improved signal-to-noise ratio compared to 3 T. 
7 T MRA is comparable to DSA for assessing UIA morphol-
ogy [42] and reduces over-diagnosis of unruptured aneu-
rysms in equivocal imaging compared to 3 T [43, 44] with 
greater interrater reliability and diagnostic certainty [44]. 
However, 7 T MRA is available in a limited number of cent-
ers and is not routinely used in screening UIAs.

Despite the high sensitivity of MRA for aneurysm 
detection, it shows worse performance for determin-
ing aneurysm morphology. The sensitivity for detecting 
irregularity of the aneurysm sac is only 60% compared to 
DSA [45]. This has implications for risk assessment given 
the links between sac irregularity and rupture described 
above. MRA for growth surveillance also needs to be 
used with some caution as a phantom model study has 
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shown that detection rates for aneurysm growth of only 
54% [46] and clinically serial MRA measurements have 
up to 10% margin of error compared to 3D rotational angi-
ography [47]. MRA is also unable to determine vessel/
aneurysm calcification, which is an important technical 
factor, particularly when considering microsurgical clip 
reconstruction.

DSA

Digital subtraction angiography is an invasive catheter-
based imaging modality which has good spatial and tem-
poral resolution of luminal blood flow. It has long been 
considered the gold standard method for cerebrovascular 
imaging however its invasive nature carries risks such as 
stroke, radiation exposure, and iodine-based contrast com-
plications. The rate of permanent stroke following DSA in 
large modern series is approximately 0.1–0.5% [48–51]. 
It is therefore used for assessment and treatment planning 
of known aneurysms rather than screening although it is 
possible for UIA to be incidentally diagnosed on DSA per-
formed for another aneurysm given its higher sensitivity 
than CTA/MRA.

The next evolution from two-dimension DSA is 3D rota-
tional angiography (3DRA). This involves a spin of the 
X-ray tube around a patient during catheter angiogram with 
machine-injected contrast. It allows 3D reconstruction for 
better visualization of the vascular anatomy and provides 
significant benefits over 2D DSA for detecting small aneu-
rysms (< 2–3 mm) missed on 2D DSA [52, 53]. In addition 
to being the gold standard for IA size quantification and 
vessel visualization, DSA provides fluoroscopic imaging 
which is critical during endovascular IA treatment. Clini-
cians routinely use contrast-based DSA imaging to navigate 
the catheter, endovascular treatment, and to assess efficacy 
of the endovascular procedure.

Advanced Imaging Applications

Although conventional imaging like CTA and MRA are 
widely prevalent in clinical aneurysm detection and man-
agement, studies have shown that they can grossly underes-
timate the volume and size of saccular IAs as compared to 
gold standard catheter angiography [54, 55]. This could lead 
to subjectivity and misinformed rupture risk assessment of 
UIAs or treatment planning. Additionally, they offer limited 
spatial resolution and pathobiological insight [56]. To this 
end, recent advances in imaging modalities and techniques 
have led to new, more complex imaging that can offer addi-
tional information on the IA wall pathobiology.

Vessel Wall Imaging

VWI is a potential imaging biomarker for IA growth and 
rupture [57, 58]. Herein, a T1 weighted pre-contrast MRI 
is performed as a baseline scan, followed by a gadolinium 
(Gd)-based T1 weighted post-contrast MRI. IAs that demon-
strate an uptake of the contrast (observed in the post-contrast 
MRI) are said to exhibiting aneurysm wall enhancement 
(AWE). Multiple cross-sectional as well as longitudinal 
studies have shown that IAs that have positive AWE are 
more likely to grow and be symptomatic [59–62].

Early qualitative studies have used subjective adjudica-
tion of AWE, generally described as circumferential or focal 
enhancement. The intensity of enhancement has also been 
adjudicated subjectively as weak versus strong [61, 63, 64]. 
This subjective assessment has high inter-user variability, 
especially in smaller IAs [65]. To better quantify AWE 
objectively, few first-order metrics using IA wall signal 
intensities on the post-contrast MRI normalized to intensities 
at different landmarks in the brain like the pituitary stalk or 
corpus callosum have been proposed [66]. Others have used 
the relative difference between pre- and post-contrast MRI 
[66, 67]. However, these first order metrics could not quan-
tify the distribution of contrast across the aneurysm wall and 
only quantified the average enhancement. To address this, 
recent studies have focused on leveraging three-dimensional 
(3D) mapping of AWE and engineering features from these 
3D maps. While some groups used histogram-based analysis 
of pre- and post-contrast MRI [68], others quantified the 
percentage of enhancing areas in the IA wall [69] (Fig. 1). 
Although, these semi-automated approaches could result in 
better visualization and robust quantification of AWE, the 
features obtained are limited.

Recently Veeturi et al. have demonstrated the potential 
utility of radiomics in the quantification and analysis of 
AWE [70]. Radiomics is a high-dimensional data characteri-
zation tool that quantifies the textural pattern of a region of 
interest which in our case would be the distribution of inten-
sities on the aneurysm wall. The authors demonstrated that 
radiomics-based quantification of AWE outperforms conven-
tional metrics such as the ratio obtained after normalization 
with the pituitary stalk  (CRStalk) and the ratio obtained after 
normalization with the corpus callsoum  (CCRatio). Quantifi-
cation of AWE has progressed significantly in the past dec-
ade and future studies should address the validation of these 
methodologies in multi-center and longitudinal cohorts.

One of the key aspects of AWE is its potential correlation 
with histological changes in the aneurysm wall, suggestive 
of inflammation and aneurysm wall degradation [71]. Ini-
tial observations by Hasan et al. have suggested that mac-
rophages may phagocytose super-magnetic particles like 
ferumoxytol, allowing the in vivo imaging of aneurysm wall 
inflammation [72]. However, due to the black box nature of 
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this contrast agent, further studies lacked interest paving the 
way for Gd-based contrast agents [73]. Although Gd had a 
shorter half-life (29 min) as compared to ferumoxytol (15 h), 
which reduces the window for post-contrast scan time, Gd 
is extensively used in clinical MRI studies [74]. Multiple 
histopathological studies have demonstrated a correlation 
between gadolinium enhancement and inflammation, neo-
vascularization, and presence of vaso-vasorum [71, 75–77]. 
A few studies have also shown that partially thrombosed and 
IA with microbleeds can also exhibit focal AWE [63, 78, 
79]. Future studies based on pooled large cohorts and better 
quantitative metrics of AWE can help unveil nuances in type 
of enhancement and underlying histopathology.

Over the years, multiple clinical risk assessment metrics 
have been developed to assess the risk of IA rupture like 

PHASES, UIATS, and ELAPSS [19, 22, 80]. In follow-up 
studies, these have been shown to correlate well with IA 
growth which is also an important indicator of impending 
IA rupture [81, 82]. Other studies have tried to use local 
IA hemodynamics and morphology to complement clinical 
information but have not gained traction [83, 84]. The major 
reason being that although these clinical metrics can be used 
as a back of the envelop evaluation of IA risk, they do not 
convey any pathobiological information. As AWE can be 
used as an indicator of local IA wall inflammation, this can 
be used to complement current clinical metrics. Indeed, past 
studies have demonstrated that AWE does not correlate well 
with existing clinical metrics such as PHASES and ELAPSS 
mostly because they are primarily based on the size of the IA 
[85]. Hence, objectively quantified AWE can be used as an 

Fig. 1  Representative symptomatic and asymptomatic cases. The top 
row shows the pre-contrast and post-contrast MRI scans on the sagit-
tal plane with the aneurysm enclosed in the white box. The second 
row shows the 3D mapping of intensity normalized to the corpus cal-
losum using two different pipelines (from Buffalo and Iowa, respec-

tively). We observe similar intensity distributions using both pipe-
lines (encircled in the figure). The bottom row shows the histogram 
of normalized intensities using both mapping techniques. We observe 
higher distribution of high-intensity points on the symptomatic case 
due to aneurysm wall enhancement (AWE)
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additional tool to complement current clinical management 
of IA risk assessment and treatment.

4D Flow and CFD

Aneurysm formation, growth, and rupture are a complex 
multi-faceted process. A potential key component in the pro-
cess of aneurysm growth and rupture is the local hemody-
namics inside the aneurysm sac [86]. Numerous tools have 
been developed in the past for hemodynamic assessment of 
IAs. Recently, phase contrast MRI (PC-MRI) has emerged as 
a non-invasive tool for hemodynamic assessment of IAs. PC-
MRI relies on the quantification of blood causing a change 
in “phase” as compared to stationary non-flowing tissue. 
Phase refers to the alignment of the protons with respect to 
the MRI scanner’s magnetic field. Generally, there are two 
images acquired, one with a phase encoding gradient and 
one without. The phase encoding gradient creates a differ-
ence in MRI signal intensity between stationary and mov-
ing fluids which is proportional to the velocity of the fluid. 
These two images are then subtracted from each other to 
yield a difference image that has just information about the 
velocity of the moving fluid. This was initially used on 2D 
slices across cross-sections to get planar velocity values and 
has now evolved into 3D temporally resolved flow infor-
mation called 4D flow [87]. Hemodynamic metrics such as 
wall shear stress (WSS), oscillatory shear index (OSI), and 
relative residence time (RRT) derived from 4D flow have 
been used in the past for risk assessment of IAs [88, 89]. 
Hence, hemodynamics obtained from direct measurement 
of flow using 4D flow can give an additional modality of 
patient-specific information which can add to existing IA 
specific data.

4D flow outputs 3D flow information such as velocity of 
blood flowing through the arteries and in the IA. Velocity 
fields can then be processed to obtain relevant hemodynamic 
metrics such as WSS, OSI, and RRT. High values of WSS 
and positive WSS gradient have been hypothesized to play a 
key role in IA formation through loss of internal elastic lam-
ina, media thinning, and bulge formation [90–92]. WSS has 
also been used for hemodynamics-based risk stratification of 
IAs although the true mechanism remains unknown [86, 93]. 
Pathobiological studies have shown that both abnormally 

high and low WSS are correlated with local inflammation 
of IA wall with high WSS having more inflammation [94]. 
Studies have also shown that lower WSS can give raise to 
slow recirculating flow in the aneurysm, leading to poten-
tial deposition of atherosclerotic plaques [95, 96]. Similarly, 
WSS divergence, which is a measure of the stretch being 
exerted on the IA wall, has also been shown to be associated 
with thicker looking walls [97]. OSI is another commonly 
used hemodynamic metric that measures the directional 
change of WSS in a cardiac cycle. OSI has been associated 
with higher wall permeability in porcine models which could 
explain why a combination of high OSI and low WSS is 
a favorable environment for IA formation and rupture [98, 
99]. Apart from these, studies have also shown that non-
traditional metrics such as RRT, pressure, transverse WSS, 
etc., can also be used for risk stratification of IAs as well as 
gaining pathobiological insights [84, 96, 100, 101].

4D flow is an extremely useful and accurate tool for 
hemodynamic characterization of IAs as it is based on the 
flow of the arteries. However, one of the major limitations is 
the resolution of information and potential imaging artifacts 
[102–104]. To this end, computational fluid dynamics (CFD) 
has also emerged as a potential tool where the Navier–Stokes 
equations are solved using different discretization schemes 
(finite volume solvers are most commonly used). A brief 
comparison of salient features of both is listed in Table 1. 
The most important difference is the lack of resolution in 
4D flow and the lack of accuracy in CFD [105, 106]. Hence, 
studies have proposed using a combination of both, wherein 
4D flow derived boundary conditions are used in CFD to 
compute high-resolution patient-specific hemodynamics 
[107].

4D flow is a clinically viable tool for assessment of intra-
aneurysmal hemodynamics as it is a direct measurement of 
in vivo flow without additional processing. However, high 
spatial and temporal resolution scans warrant higher scan 
times which is not ideal [87]. To this end, recent studies 
have introduced new methodologies wherein scan time 
is ~ 10 min with 0.5 mm isotropic spatial resolution and a 
temporal resolution of 30 ms [108]. Furthermore, a recent 
study by Abderezai et al. introduced aFlow (which is based 
on 4D flow) to quantify wall movement in aneurysms [109]. 
The authors then used this algorithm to quantify differences 

Table 1  Salient features and 
differences between 4D flow 
and CFD

4D flow CFD

Direct imaging In-silico computation
Based on velocity of blood Based on generic inlet and outlet assumptions
Low spatial and temporal resolution High spatial and temporal resolution
High accuracy to in vivo flow Moderate to low accuracy based on assumptions
Acquisition time ~ 10 min A few hours based on resolution
High uncertainties in hemodynamic metrics High resolution hemodynamic metrics
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in wall motion between stable and unstable aneurysms [110]. 
These advances in 4D flow show an increasing trend of 
translational research with reduced scan times and quantifi-
cation of patient-specific features. Future studies should aim 
at using CFD and 4D flow in tandem for better assessment 
of patient-specific hemodynamics.

The comprehensive analysis of aneurysms with differ-
ent imaging techniques that include VWI, CFDs, and finite 
element analysis allows a better analysis of the potential 
mechanisms of aneurysm formation, growth, and rupture. 
Raghuram et al. has shown with 7 T MRI that areas of focal 
high AWE in the sac and blebs of UIAs are associated with 
low wall tension, low wall shear stress, and low flow condi-
tions [111]. Conversely, the neck had average AWE, high 
wall tension, high wall shear stress, and high flow condi-
tions. The aneurysm dome and the aneurysm neck have 
different morpho-mechanical environments, with increased 
mechanical load at the neck. These findings, suggest that the 
neck of the aneurysm is exposed to higher flow conditions, 
which may lead to an inflammatory process within the wall, 
which lead to aneurysm growth and ultimately aneurysm 
rupture.

4D CTA 

4D CTA is similar to 4D flow wherein temporal data of the 
IA is recorded for imaging blood flow or wall motion using 
the basic principles of CTA [112]. Herein, CTA images are 
acquired dynamically throughout the cardiac cycle with 
usually low scan time (estimates putting it between 30 s 
to a few minutes). However, one of the major differences 
between CTA and 4D-CTA is the amount of radiation dos-
age. Although the individual dosage of each CTA acquisition 
can be lower than conventional CTA, the cumulative dosage 
of a 4D CTA (which is the sum of all individual acquisitions) 
is substantially higher [113]. Reduction of dosage in indi-
vidual acquisitions leads to more noise in the scan; however, 
image filtering techniques could help reduce dosage with 
low or no change to image quality [114].

4D CTA has been used in the evaluation of morphol-
ogy of IAs. In a recent study, Dissaux et al. found that IA 
volume (among others) and volume variation had the least 
inter- and intra-user variability and can be obtained using 
a low cumulative 4D CTA dosage (0.6 mSv) [115]. 4D 
CTA can also be used in tandem with electrocardiogram 
(ECG) gating for clinical evaluation of IA morphology. A 
recent study by Yang et al. compared morphological met-
rics derived from ECG-gated 4D CTA against gold standard 
DSA [116]. They observed high correlation in determining 
the location (k = 1.0), shape (k = 0.76), diameter (k = 0.94), 
and neck (k = 0.79) of the IA. Notably, they observed that 
the dosage required for 4D CTA was lower than the DSA 
(0.32 vs. 0.84 mSv).

Recent studies have used 4D CTA for quantification of wall 
motion during the cardiac cycle [117, 118]. A study by Gu 
et al. demonstrated that there were significant differences in IA 
morphology (aspect ratio and size ratio) and pulsation points 
between ruptured and unruptured IAs computed through ECG 
gated 4D-CTA [119]. A similar study by Zhou et al. on a large 
cohort of 217 IAs showed that irregular pulsation of IA as well 
as IA morphology were independently associated with IA rup-
ture [120]. Another study on a cohort of 117 IAs, the authors 
performed 4D CTA and observed that IAs with irregular pul-
sation had a 6-fold higher risk as compared to IAs without 
pulsation [121]. Indeed, quantification of wall motion through 
high-resolution 4D CTA could help in rupture risk stratifica-
tion. Future studies could focus on augmenting traditional low-
dosage 4D CTA with deep learning to increase spatiotemporal 
resolution which could help improve detection and rupture risk 
assessment of IAs [122].

AI Applications

Deep learning in management of IAs has gained a lot of trac-
tion over the past decade [123–127]. Deep learning (frequently 
termed as artificial intelligence or AI) is used for multiple 
applications; however, in the context of IAs, it is primarily 
used for detection, risk stratification, or treatment planning. 
Briefly, deep learning is a tool wherein a model such as 2D or 
3D convolutional neural networks (CNN) are “trained” using 
a dataset of examples of the task to be performed which could 
be any of the above-mentioned applications. The model is then 
tested on an independent testing dataset to evaluate the perfor-
mance through difference metrics specific to the task at hand.

For the detection of IAs, studies have used either a stan-
dalone CNN or used it to better assist a user. A recent meta-
analysis on the application of deep learning for IA detection 
showed that IA detection using standalone deep learning 
techniques has a sensitivity of 91.2% and specificity of 83.5% 
(ROC-AUC = 0.936), whereas the deep-learning assisted 
user detection of IAs had a sensitivity of 90.3% and specific-
ity of 92.1% (ROC-AUC = 0.91)[126]. Once an IA has been 
detected, accurate segmentation is paramount for assessment 
of morphology which is dependent on the underlying imag-
ing modality. Deep learning–based segmentation approaches 
typically use either a U-Net architecture or some variation of 
it [128]. A commonly used metric to evaluate the accuracy of 
segmentation in deep learning is dice similarity coefficient 
(DSC) defined as

where A and B are the ground truth segmentation and the 
deep learning segmentation output, respectively [129]. 
Studies using CTA as the base modality for segmentation 

DSC =
2 ∗ |A ∩ B|

|A| + |B|
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have demonstrated lower performance in IA morphology 
evaluation (DSC = 0.57–0.77) [130]. Similarly, a study by 
Ham et al. also demonstrated moderate DSC when using 
TOF-MRA as the imaging modality (DSC = 0.755) [131]. 
A recent study by Nishi et al. used 3D rotational angiogra-
phy and demonstrated a high segmentation accuracy (mean 
DSC = 0.87, median DSC = 0.92) [132]. This is due to the 
higher resolution and better signal-to-noise ratio of the rota-
tional angiography as compared to CTA and TOF-MRA 
[118]. A potential solution to mitigate this challenge is to 
use a combination of modalities. Indeed, recently Patel et al. 
demonstrated that training a deep learning model using a 
combination of DSA and CTA pairs results in better segmen-
tation of CTA images [133]. Herein, they demonstrated a 
novel approach where a DeepMedic architecture was used to 
train a model which could segment a CTA scan at the resolu-
tion of a DSA. They also demonstrated that this approach 
leads to better identification of aneurysms and more accurate 
morphological assessment of IAs.

The segmented geometry is then used for risk stratifica-
tion. A common approach is to derive morphological fea-
tures such as size, size ratio, and aspect ratio, to train a sim-
ple logistic regression model or a machine learning model 
to identify high-risk IAs which could be defined through 
rupture status, IA growth, or symptomatic status. A recent 
study by Lin et al. demonstrated that in a cohort of 322 MCA 
aneurysms, machine learning models can be trained with 
an accuracy of 75% solely based on IA morphology and 
patient demographics [134]. To make this approach more 
clinical, studies have developed nomograms based on IA 
morphology and patient demographics that can readily be 
used in a clinical setting [135]. Another approach to rupture 
risk stratification is directly using a CNN on the input image 
as demonstrated in a study by Kim et al. [136]. Herein, the 
authors used six images proximal to the IA from different 
directions as input to predict the rupture status of an IA. 
They showed that the CNN had an accuracy of 77% on an 
independent test dataset. In addition to morphology assess-
ment, deep learning can also be used as a tool for accel-
erating hemodynamic assessment of IAs. Hemodynamic 
evaluation of IAs is a complicated process and generally 
takes a few hours using CFD. In an effort to decrease com-
putational cost, recent studies have started exploring phys-
ics informed neural networks (PINNS) as a potential tool 
to augment conventional CFD calculations [137]. A recent 
study by Sarabian et al. demonstrated the potential utility of 
PINNS wherein they used a combination of TOF-MRA and 
transcranial Doppler measurements from different locations 
in the brain to predict velocity and pressure maps in the 
major brain vessels [138]. Additionally, they also validated 
the outputs through 4D flow and observed an error of 0.2% 
in their best model.

Although deep learning has demonstrated an ability to 
perform similar to a clinician within reasonable error, its 
ability to handle bulk data warrants notice. Automated seg-
mentation, morphological assessment, risk assessment, and 
treatment planning can all be done with the help of deep 
learning tools [125]. However, this has not gained traction 
as a viable clinical tool primarily due to its lack of interpret-
ability black box nature [139]. Research groups have started 
to develop studies targeted toward “explainable AI” and 
using “attention maps”; however, demonstration of this in a 
clinical setting is still lacking [140]. The hope is that deep 
learning can be used as a tool to augment current clinical 
practice and potentially reduce time for IA workup, assess-
ment, and treatment planning.

Conclusions

Imaging of IAs is continually advancing, encompassing 
applications such as detection, detailed characterization, 
and identification of biological processes occurring within 
the aneurysm wall. The deployment of high-resolution 
imaging techniques, more powerful scanners, sophisticated 
post-acquisition protocols, and AI technology enhances our 
ability to accurately characterize aneurysms. These advance-
ments not only facilitate improved diagnosis and manage-
ment but also drive the development of customized treatment 
strategies, ultimately enhancing patient outcomes.
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