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Abstract
Stroke was the 2nd leading cause of death and a major cause of morbidity. Unfortunately, there are limited means to pro-
mote neurological recovery post-stroke, but research has unearthed potential targets for therapies to encourage post-stroke 
neurogenesis and neuroplasticity. The occurrence of neurogenesis in adult mammalian brains, including humans, was not 
widely accepted until the 1990s. Now, adult neurogenesis has been extensively studied in human and mouse neurogenic brain 
niches, of which the subventricular zone of the lateral ventricles and subgranular zone of the dentate gyrus are best studied. 
Numerous other niches are under investigation for neurogenic potential. This review offers a basic overview to stroke in the 
clinical setting, a focused summary of recent and foundational research literature on cortical neurogenesis and post-stroke 
brain plasticity, and insights regarding how the meninges and choroid plexus have emerged as key players in neurogenesis and 
neuroplasticity in the context of focal cerebral ischemia disrupting the anterior circulation. The choroid plexus and meninges 
are vital as they are integral sites for neuroimmune interactions, glymphatic perfusion, and niche signaling pertinent to neural 
stem cells and neurogenesis. Modulating neuroimmune interactions with a focus on astrocyte activity, potentially through 
manipulation of the choroid plexus and meningeal niches, may reduce the exacerbation of stroke by inflammatory media-
tors and create an environment conducive to neurorecovery. Furthermore, addressing impaired glymphatic perfusion after 
ischemic stroke likely supports a neurogenic environment by clearing out inflammatory mediators, neurotoxic metabolites, 
and other accumulated waste. The meninges and choroid plexus also contribute more directly to promoting neurogenesis: 
the meninges are thought to harbor neural stem cells and are a niche amenable to neural stem/progenitor cell migration. 
Additionally, the choroid plexus has secretory functions that directly influences stem cells through signaling mechanisms 
and growth factor actions. More research to better understand the functions of the meninges and choroid plexus may lead to 
novel approaches for stimulating neuronal recovery after ischemic stroke.
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Introduction to Stroke

Stroke is the third leading cause of years of life lost [1] and 
remains a leading cause of serious long-term disability in 
the USA [2]. Each year about 795,000 Americans experi-
ence a new or recurrent stroke [3]. Unfortunately, therapies 
for stroke recovery are limited and survivors often exhibit 
a high degree of morbidity and long-term disability. Stroke 

is the disruption of blood supply to the brain, and there are 
two main classifications: (1) ischemic stroke, where there 
is cessation of blood flow, and which is typically caused 
by thrombus at the site of the brain vessel or embolus from 
the heart; and (2) hemorrhagic stroke, which is caused by 
the rupture of a blood vessel, aneurysm, or other vascular 
lesion, and which not only disrupts flow to the normal brain 
parenchyma, but the hemorrhage also compresses brain tis-
sue, compounding the injury. Acute ischemic stroke (AIS), 
the focus of this review, is commonly differentiated into five 
subtypes based on the Trial of Org 10172 in Acute Stroke 
Treatment (TOAST) classification system [4] (Fig. 1). Ulti-
mately, both acute ischemic and hemorrhagic stroke result 
in neurological impairment due to tissue damage in the brain 
from the loss in blood flow and reduced oxygenation of the 
tissue.

Stroke affects 16.9 million people worldwide [5]. Approx-
imately 5.5 million people die of stroke per year, making it 
the second leading cause of death [6], but there are more 
than 80 million stroke survivors across the globe. The preva-
lence of stroke is such that 1 in 4 adults will suffer a stroke in 

Fig. 1   TOAST classification of 
stroke etiology. Vascular causes 
of stroke include cardioembolic 
disease (CE), small vessel dis-
ease (SVD) in the brain vessels, 
and large artery atherosclero-
sis (LAA) as depicted in the 
internal carotid artery (ICA) or 
the first segment of the middle 
cerebral artery (MCA). Yellow 
represents core infarct and blue 
represents the penumbra, which 
is threatened brain that can be 
salvaged by revascularization
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their lifetime. It is estimated that stroke-related medical costs 
will increase from 61.5 billion US dollars (USD) in 2015 to 
183 billion USD in 2035, due to both acute care and the fact 
that approximately 50% of stroke survivors have residual 
deficits at 6 months and beyond [7].

The main causal and modifiable risk factors associated 
with stroke include hypertension, hypercholesterolemia, 
carotid stenosis, and atrial fibrillation [5]. In addition, 
tobacco abuse, diabetes mellitus, alcohol abuse, obesity, 
poor nutrition or high-risk diets, sedentary lifestyle, sleep 
apnea, chronic kidney disease, chronic inflammation, stress, 
and depression are likely also causal factors. Non-modifiable 
causal risk factors include age, sex, and genetic predisposi-
tion. The risk of stroke increases with age, doubles for every 
subsequent decade in life, and approximately ¾ of all strokes 
occur in people age 65 years or older [8]. Stroke has histori-
cally been thought of as a disease predominantly affecting 
men, however, of the seven million survivors of stroke in 
the USA, 54.2% are women [7]. The genetic predisposition 
to ischemic stroke is 37.9%, calculated using genome-wide 
complex trait analysis [6].

Given the striking clinical risks of stroke, there is a 
demand for more research on mechanisms in neurorecov-
ery following stroke-induced brain damage. The discovery 
and acceptance of adult neurogenesis through the turn of 
the twenty-first century has generated interest in promoting 
neural repair, plasticity, and neurogenesis to improve post-
stroke neurological recovery and to reduce morbidity. Of the 
almost 800,000 patients who suffer a stroke each year, 87% 
are ischemic [3], and almost 75% of these occur in the ante-
rior circulation [9]. The first section of this review covers 
the clinical aspects of stroke and the second section covers 
research literature on cortical neurogenesis, post-stroke brain 
plasticity, and known or novel factors that could be useful 
therapeutic targets for treatment after focal cerebral ischemia 
disrupting anterior circulation.

Clinical Observations in the Care of Acute 
Ischemic Stroke

Current Treatments for AIS

Patients who present with stroke have a sudden onset of focal 
neurological deficit including headache, dizziness, blurred 
vision, facial weakness or drooping, arm or leg weakness, 
and changes in balance and speech. Upon arrival to the 
hospital, suspected stroke patients are evaluated for these 
symptoms by the National Institute of Health Stroke Scale 
(NIHSS). After an initial NIHSS exam, stroke patients are 
taken immediately for a non-contrast computerized tomog-
raphy (CT) scan of the brain, to determine if the stroke is 
ischemic or hemorrhagic. Following this, a CT of brain 

and neck is performed with injection of dye, called a CT 
angiogram (CTA), which identifies if there is a narrowing 
or occlusion in the carotid arteries leading to the brain, or 
in the brain vessels themselves. Perfusion scans have been 
validated to identify patients who present with large vessel 
occlusion (LVO) strokes to undergo endovascular thrombec-
tomy (EVT) [10, 11]. These days, a CT perfusion of the 
brain may be performed and analyzed by artificial intelli-
gence to delineate the ischemic core infarct from the penum-
bra (that is, brain tissue irreversibly affected by the stroke 
versus tissue around the core infarct that is at risk of infarc-
tion but can be salvaged if blood flow is re-established).

Without resolution of blood supply, cells in the penumbra 
lose proper ion homeostasis, structural integrity, and ability 
to complete transcription and protein synthesis required for 
apoptotic cell death. Thus, they are more likely to die by 
necrosis and elicit extensive neuroinflammation. It may be 
therapeutic to block this progression of events to counteract 
cell death by necrosis, reduce inflammation, and optimally 
promote post-stroke neurogenesis. However, no such treat-
ment is currently used in the standard of care for AIS.

Two primary treatments exist for patients who present 
with AIS. The first is pharmacological thrombolysis with 
recombinant tissue plasminogen activator (rtPA). Patients 
who present with AIS within 3–4.5 h, and meet safety crite-
ria for drug administration, can improve after rtPA treatment 
[12, 13]. More recently, in patients who present with LVO 
stroke, performing an endovascular thrombectomy using 
catheters and stents can improve outcomes up to 24 h after 
onset [10, 11, 14–19]. An LVO stroke is defined as a clot in 
the intracranial portion of the internal carotid artery (ICA), 
the first segment of the middle cerebral artery (MCA) or the 
anterior cerebral artery (ACA).

Despite these two available treatment options, almost 
80% of patients who present with AIS do not receive acute 
treatment. The limited time window of rtPA administration, 
and the patients who either do not have an LVO stroke or 
present after the time window for EVT, or those in whom 
the stroke has already occurred, renders treatment futile and 
potentially dangerous. This has resulted in the large major-
ity of patients being left with debilitating effects related to 
their stroke.

Clinical Evidence for Neurological Recovery After 
AIS

Past clinical trials have targeted key steps in the patho-
physiology of ischemic stroke for therapeutic adjustment. 
These pharmacological therapies were intended to optimally 
promote post-stroke neurological recovery, a process that 
involves both neurogenesis and neuroplasticity, by coun-
teracting cell death and reducing inflammation (Table 1) 
[20–31].
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Without oxygen, glycolytic metabolism in neural tissue 
generates cellular acidosis that leads to loss of substrates 
and low pH, which halts ATP production. Subsequently, 
Na+-K+ ATPases fail to maintain homeostatic membrane 
potential [32, 33]. Increased intracellular [Na+] leads to 
depolarization that allows an influx of Ca2+ into cells [34]. 
High intracellular [Ca2+] activates calpain proteases, phos-
pholipases, and endonucleases which degrade the integrity 
of cellular structures, membranes, and nuclear contents, 
thus leading to cell death [35, 36]. Calcium channel block-
ers have been tested in clinical trials and show variable 
effects on stroke outcome [25–27].

Widespread depolarization causes neurons to fire in 
the core infarct and release neurotransmitters. Synaptic 
release of glutamate is particularly significant as it acts as 
an agonist on N-methyl-D-aspartate (NMDA) receptors 
and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA)/kainate receptors to further disrupt calcium 
homeostasis [37–40]. Glutamate also acts as an agonist on 
metabotropic receptors that increase proteolysis and lipol-
ysis, and stimulate protein kinase activity, which alters the 
function of receptors, membrane channels, and ion translo-
cases by promoting protein phosphorylation [40]. NMDA 
and AMPA antagonists have been tested in clinical trials 
and either did not affect or worsened outcomes [31–33].

Mitochondria sequester the high levels of Ca2+ in 
hypoxic cells, damaging the organelles that are already 
failing to supply the cell with energy due to a lack of oxy-
gen, leading to release of damaging reactive oxygen spe-
cies (ROS). Due to high [Ca2+], mitochondrial depolariza-
tion and swelling ensue and the mitochondrial transition 
pore opens. Subsequently, organellar contents such as 
cytochrome C are released and initiate apoptosis [34]. Fur-
thermore, the activity and expression of enzymes like nitric 
oxide synthase (NOS) are induced, favoring the produc-
tion of reactive oxygen species (ROS) such as peroxynitrite 
[41]. Free radical scavengers have been tested in clinical 
trials and have no effect on stroke outcomes [23, 24].

When pushed out of ion homeostasis, cells in the penum-
bra lose structural integrity, lose transcription and protein 
synthesis abilities required for controlled cell death, and are 
more likely to elicit neuroinflammation. The above phar-
macological strategies to promote post-stroke neurological 
recovery largely aimed to make an environment conducive 
to neurogenesis and neuroplasticity after injury by interrupt-
ing neuroinflammation caused by cell death. Largely, these 
pharmacological approaches were unsuccessful, potentially 
because they only modified one pathological feature of stroke 
in isolation. Future treatments could ideally modify multiple 
features of the complex pathophysiology of stroke to greater 
effect. Interestingly, the choroid plexus and meninges emerge 
as key sites for this therapeutic adjustment and require new 
research approaches to uncover new therapeutic strategies.Ta
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The Current Clinical Relevance of Choroid Plexus 
and Meninges in AIS

Due to their important roles in neuroinflammation, discussed 
in later sections, the choroid plexus and meninges are clini-
cally relevant to the pathophysiology of AIS but have not 
yet been targeted in standard clinical therapies. Anti-inflam-
matory drugs to treat stroke have been tested but are largely 
administered orally or by the intravenous route, and enter 
the brain through the blood-brain barrier (BBB), bypass-
ing the meninges and choroid plexus [42]. Drug delivery 
through the brain-cerebrospinal fluid (CSF) barrier has been 
implicated in transmeningeal placement of drug-delivering 
devices in people with focal epilepsy [43], and this could 
be a model for drug delivery modified for stroke treatment. 
Efforts to harness the choroid plexus for potential drug deliv-
ery, biotherapeutics, and gene therapy to increase beneficial 
biological agents in the CSF are early in development, but 
have merit [44]. The ability to modulate what choroid plexus 
epithelial cells secrete into the CSF would be particularly 
useful if it could reduce the detrimental immune cell entry 
to the central nervous system (CNS) through the meninges 
and choroid plexus, which is so damaging in ischemic injury 
[45]. Most of the work to understand the roles of the menin-
ges and choroid plexus in brain disease have been conducted 
in pre-clinical mouse models. More translational studies 
are necessary to understand how the meninges and choroid 
plexus can be targeted for therapy after stroke in humans.

New Mechanistic Insights for the Care of AIS

Adult Neurogenesis Under Physiological Conditions

Only in the past few decades has it become widely accepted 
that the CNS retains plasticity throughout adulthood. Previ-
ously, convention dictated the vertebrate brain to be fixed, 
nonregenerative, and unchanging in adults, as described 
by renowned histologist and Nobel Prize laureate Ramón 
y Cajal [46]. The first evidence of neurogenesis in adults 
was provided by Josef Altman who detected the creation of 
adult-born neurons and glia in the rat brain by labeling pro-
liferating cells with tritiated thymidine. Subsequent in vitro 
evidence for stem cells in the subventricular zone (SVZ) and 
subgranular zone (SGZ) later followed [47–49]. Since then, 
a variety of factors have been demonstrated to upregulate 
neurogenesis in mammals, including exercise, environmental 
enrichment, antidepressants, pregnancy, stroke, and injury 
[50–57], while other factors have the opposite effect and 
impede adult neurogenesis, such as stress, mental illness, 
aging, excess alcohol and opioid use, and neurodegenerative 
diseases [58–63].

In healthy basal conditions, adult neurogenesis has been 
demonstrated in several brain regions, some of which are 
better described than others. Currently, there are two well-
described neurogenic niches in the adult mouse and human 
brains where adult neural stem cells (NSCs) reside: the den-
tate gyrus (DG) of the hippocampus and the walls of the 
lateral ventricles, including the ventricular-subventricular 
zone (V-SVZ; Fig. 2). Adult NSCs or precursor cells in the 
DG occur in the two- to three-cell layer thick SGZ and give 
rise to excitatory glutamatergic neurons that end up in the 
DG granule cell layer and play an important role in spatial 
and temporal memory processing [64]. In the walls of the 
lateral ventricles, adult NSCs occur in the SVZ and give 
rise to neuroblasts that travel through the rostral migratory 
stream (RMS) to the olfactory bulb (OB), particularly in 
mice, where they can become interneurons that play an 
important role in olfaction-related behaviors [65].

In humans, the patterns of adult neurogenesis are differ-
ent, but NSCs are believed to reside in the adult human SGZ 
and SVZ. While SGZ neurogenesis does contribute new neu-
rons to the human hippocampus as in mice, SVZ neurogen-
esis contributes more new neurons to the human striatum 
than the olfactory bulb, unlike the mouse [66, 67]. For more 
information, the reader is referred to two review articles that 
summarize the literature and controversy on adult neuro-
genesis in humans [68, 69], including the ongoing debate 
about hippocampal neurogenesis in humans. Importantly, 

Fig. 2   Ventricular neurogenesis in the adult mouse and human 
brain. Subventricular zone (SVZ) neurogenesis in the mouse (left) 
and human (right) brain. Sagittal (top) or coronal (bottom) sections 
are shown to illustrate how neural stem cells (NSCs) residing in the 
SVZ give rise to neuroblasts that migrate along the rostral migratory 
stream (RMS) to the olfactory bulb (OB) and then differentiate into 
mature neurons. The final destination of SVZ-derived neurons is dif-
ferent between mice and humans. In mice, the SVZ more prominently 
gives rise to neurons in the OB (thick arrow, top left) but can contrib-
ute new neurons elsewhere as well (thin arrows, top left). In humans, 
the SVZ does not contribute many new neurons to the OB (thin 
arrow, top right) but does contribute to new neurons in the nearby 
striatum (thick arrows, top right).
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neurogenesis is relatively rare under basal conditions for 
adult humans, but glial and other cell types are regularly 
replaced in the brain. Some glia are likely generated from 
multipotent stem cells capable of giving rise to neurons, 
glia, and other cells in the brain [70, 71]. Regardless of the 
true nature of neurogenesis in adult humans, neuroplastic 
processes aside from neurogenesis, such as gliogenesis, 
axonogenesis, and synaptogenesis, are implicated in stroke 
recovery [72]. Outside of the murine SGZ and SVZ, adult 
neurogenesis has been proposed to occur and, in some cases, 
extensively demonstrated in regions, such as the hypothala-
mus. There is disagreement in the field about how exten-
sively other niches contribute to adult neurogenesis due to 
a lack of consistent markers for NSC detection, but neural 
stem and progenitor cells have been located in the mouse 
cortex, striatum, cerebellum, and elsewhere [70].

Cortical Neurogenesis in Response to Stroke 
and Other Injury

In normal conditions, the SGZ and SVZ are the most sig-
nificant sites of neurogenesis in the adult mouse and human 
brain, but injury induces neurogenesis in other regions, like 
the cortex, to varying degrees and according to severity of 
injury [73–75]. While in basal conditions mouse neuroblasts 
normally differentiate from NSCs in the SVZ and migrate 
along the RMS to the OB, in response to cerebral ischemia 
the neuroblasts display increased presence in the RMS and 
stray from the traditional route to the surrounding paren-
chyma and striatal ischemic penumbra [76–79]. The same is 
true in human brains after cerebral ischemia [57, 73, 80–83], 
indicating that this niche may be significant for post-stroke 
neurorecovery in humans.

Proliferating cells in the mouse SGZ can be found after 
ischemia, and they migrate to the granule cell layer of the 
DG as in normal conditions, but do not migrate outside of 
the hippocampus [76]. Since SGZ neuroblast migration 
is regionally restricted in this manner, the SVZ is a more 
prominent source of the neuronal precursors that migrate 
to injured brain areas after focal cerebral ischemia. While 
hippocampal neurogenesis does not contribute new neurons 
or glia to sites of ischemia outside of the hippocampus, it 
has been associated with post-stroke cognitive impairment 
and recovery as new neurons contribute to remodeling in 
the hippocampus that may preserve short-term, but impair 
long-term memory [80].

Very few new cortical neurons are created in adult-
hood under normal conditions. Previous reports have 
demonstrated that newborn cortical neurons make up 
0.005–0.03% of the existing neurons in the cerebral cor-
tex [81–85]. However, brain injury increases that figure 
by 0.06–1% of total cortical neurons [79, 86–89]. Data 

indicate that the newborn neurons that are generated in 
the cortex do not derive solely from precursor cells of the 
SVZ [79]. NSCs capable of giving rise to cortical neurons 
and glia have also been detected within the cortex itself 
upon induction of neurogenesis, and we have described 
a novel adult quiescent stem cell in the brain, marked by 
telomerase reverse transcriptase (TERT), which we also 
observe in small numbers in the adult mouse cortex [70]. 
Below we will discuss cortical NSCs which have been 
detected after induction by various techniques aside from 
just ischemia. These data are worth considering in the 
stroke context, because stroke may induce neurogenesis 
from cortical NSCs in a similar manner to their induction 
by other lesions.

In the cortical white matter of humans suffering from 
epilepsy, arterial aneurysm, or traumatic injury, NSCs have 
been isolated and demonstrated to make neurospheres that 
can give rise to fully differentiated neurons and glia, even 
when transplanted to fetal rat brains [90]. NSCs and neural 
progenitor cells (NPCs) of adult rat cortical white matter 
were also induced by laser lesions to the brain [91].

In cortical gray matter, there are cells expressing NG2, 
an integral membrane proteoglycan expressed by glial 
precursor cells, that are reported to generate new cortical 
GABAergic interneurons [82]. While NG2+ cells have been 
shown to give rise to neurons and glia in other neurogenic 
niches [92–99], it will be necessary to figure out whether 
NG2+ cells of the cortex are progenitors capable of gen-
erating neurons and glia, or glia alone. NSCs and NPCs 
distributed in the first and most superficial cortical layer of 
rats were discovered upon focal laser-lesion of the visual 
cortex. These NSCs were defined as nestin+ or vimentin+ 
cells since many NSCs express these markers, but direct 
evidence of neurogenesis from these cells was not shown 
[91]. However, separate studies were able to directly label 
putative proliferating NPCs with a GFP-expressing retroviral 
vector in the first cortical layer of adult rodents and show 
they were capable of producing subclasses of GABAergic 
interneurons [79].

In the perivascular regions of the cerebral cortex, NSCs 
were located after stroke and were positive for nestin and 
some pericyte markers [100], indicating that stem/progenitor 
cells may be using the vasculature as guides for migration. 
Nestin+ NSCs were also discovered in the leptomeninges 
surrounding the cerebral cortex where cortical inhibitory 
and pyramidal neurons were generated after electrical stimu-
lation of the amygdala [101]. Taken together, these studies 
favor the presence of distributed NSC populations in the 
cortical parenchyma, but do not adequately address the line-
age relationship these precursor cells might share with each 
other and to NSCs of the SVZ. It is also not clear if these 
NSCs are true multipotent stem cells or committed NPCs. 
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Lineage tracing experiments may help delineate whether 
some of these observed NSC/NPCs are tissue resident stem 
cells or migrating cells that share a common origin.

NSCs may give rise to cortical neurons in the cortex and 
appear to be differentially activated by injury according to 
type and severity. Minor injury (via 10 min of carotid artery 
occlusion) elicited the first cortical layer and leptomenin-
geal NSC/NPCs to generate new neurons. However, major 
injuries (focal cerebral ischemia from 90-min or 7–90-day 
permanent clamp, aspiration, laser-lesion, or chromophore 
targeted neuronal degeneration) caused neurogenesis specifi-
cally from the SVZ, perivascular regions, gray and white 
matter, and the first cortical layer [76, 79, 87, 89, 91, 102]. 
The widespread distribution of NSCs that can be differen-
tially activated according to severity and type of injury may 
be beneficial for achieving a tailored and robust neurogenic 
response to ischemic injury, and may be able to be exploited 
or “pushed” to promote regeneration in a clinical setting.

Novel Roles for the Meninges and Choroid Plexus 
as Adult Stem Cell Niches

The meninges are a novel niche for neural precursor cells, 
and this population is particularly attractive as a therapeutic 
target given the unique qualities of being widespread across 
the brain surfaces, closely associated with cortical tissue 
and vasculature, and amenable to cell trafficking and migra-
tion [103]. The meninges are composed of the dura mater, 
arachnoid mater, and pia mater (superficial to deep layers) 
with a CSF-filled subarachnoid space. The leptomeninges 
are the deeper two meningeal layers previously described to 
harbor nestin+ NSCs, some of which are proliferative in rat 
brains from development through adulthood [104]. Other 
studies have described stem cell-like populations in adult 
meninges that activate upon CNS injury by increasing pro-
liferation and migration to the lesion [101, 105–108]. Nak-
agomi and colleagues were able to show that nestin+ cells 
taken from meninges could differentiate to neurons and glia 
in vitro and in vivo after transplantation [106]. Meningeal 
NSCs reside in a widespread niche that encompasses the 
brain and spinal cord, possibly allowing this tissue to serve 
as a pathway for delivery of neural precursors generated in 
classical neurogenic niches to distant sites. Supporting this 
idea, the meningeal extracellular matrix (ECM) is known to 
have fractones, which are specialized structures that bind 
extracellular regulators of proliferation and migration and 
concentrate them to increase their potency [109, 110].

In both rodent and human brains, N-sulfated heparin 
sulfate structures play an important role in cell migration 
and proliferation. They are highly associated with the SVZ 
and hippocampal SGZ and form continuous connections 
between these two neurogenic niches and the OB, RMS, 
sub-callosum, subcapsule zones, and importantly, also the 

meninges [111]. Altogether, these characteristics of the 
meninges and their association with neurogenic niches indi-
cate that the meninges may be able to guide stem cell migra-
tion across various brain regions, an important process for 
injury response and regeneration. Recent work also indicates 
that the meninges are involved in stroke-induced local brain 
inflammation [112]. Further studies could trace the fate of 
meningeal NPCs and other regenerative cell types in order to 
clarify the functional significance of this niche, and to deter-
mine the potential role of meninges in brain neurogenesis 
and recovery after stroke. Data have shown that progenitors 
originating from the meninges can migrate into the cortex 
and give rise to neurons in neonatal mice, but this has not 
yet been demonstrated in adults [113]. More work will be 
required to confirm if there are resident stem/progenitor cells 
in the adult meninges that can migrate into parenchymal tis-
sues and contribute to neurogenesis, or if these detectable 
stem/progenitor cells are just migrating through the menin-
ges from other brain regions.

The choroid plexus (ChP), like the meninges, is also pro-
posed to be a stem cell niche in the adult brain. The ChP is 
a vascularized organ that is present within the ventricular 
cavity and serves to secrete CSF into all the interconnected 
ventricles of the brain. In mice and humans, CSF circulates 
unidirectionally from the lateral ventricles, to the third, 
and then fourth ventricle until it is reabsorbed into circula-
tion. Reports show the ChP contains putative neural stem 
cells capable of giving rise to neural cells in vitro and after 
transplantation into injured spinal cords [114–116]. We also 
observe TERT+ adult stem cells in the meninges and ChP, 
both regions of significant cell proliferation and differentia-
tion following lineage tracing of these progenitor cells [70]. 
Some in vivo evidence shows that ChP cells are potential 
neural precursor cells in the adult mammalian brain, due to 
their potential to proliferate and generate cells expressing 
neuronal nuclear antigen (NeuN), a mature neuronal cell 
marker, and glial fibrillary acidic protein (GFAP), a glial/
astrocytic cell marker [117]. Beyond their potential roles 
as stem cell niches, the ChP and meninges are vital for pro-
cesses that greatly impact post-stroke neurogenesis, includ-
ing neuroinflammation, immune trafficking, glial activation, 
and glymphatic circulation. The ChP also secretes factors 
that can promote neural recovery and regeneration, such as 
nerve growth factors [118].

Neuroinflammation and Astrocyte Involvement 
After Stroke Impacts Neuroplasticity

Astrocytes are critical players in carrying out adaptive 
responses to neuroinflammation after acute stage stroke 
by restricting extensive tissue damage and helping return 
cells to homeostasis [119–121]. Reactive astrocytes sur-
round ischemic stroke lesions and upregulate intermediate 
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filament proteins GFAP or nestin, which serve as platforms 
for signaling in cell stress responses [122, 123]. Astrocytes 
in the penumbra proliferate and some migrate toward the 
infarct border to form a glial scar. This is important in acute 
phase stroke because reactive astrocytes secrete ECM mol-
ecules to form a scar, which closes off the area of damage 
and prevents infiltrating leukocytes from leaving the infarct 
to invade healthy tissue, where neuroinflammation would 
be damaging. Unfortunately, reactive astrocytes also limit 
the ability of new neurons to migrate or regenerate in dam-
aged tissue. For instance, ephrin-A5 produced by reactive 
astrocytes is known to limit axonal sprouting and func-
tional recovery after injury [124]. Since reactive gliosis 
may become detrimental at later stages of injury, inhibi-
tion of growth-inhibiting chondroitin sulfate proteoglycans 
produced by astrocytes and oligodendrocyte precursors can 
improve sprouting of axons after trauma [125–131]. Reactive 
astrocytes can also disrupt neurogenesis purely by mechan-
ical means rather than through signaling mechanisms. In 
the SVZ after ischemic stroke, reactive astrocytes disrupt 
neuroblast migration scaffolding with their processes that 
cause aberrant reorganization of the niche [132]. In response 
to neuroinflammation, reactive astrogliosis is beneficial for 
immediately restricting the site of damage but may be det-
rimental if it persists beyond the acute phase by blocking 
endogenous repair via neuroplasticity and neurogenesis.

The complement system may be a good target for 
modulating astrocyte response to ischemic injury. Mice 
deficient in C3 and subjected to focal cerebral ischemia 
showed smaller infarcts and reduced neurological impair-
ment 1 to 7 days after transient ischemia, likely resulting 
from decreased neutrophil chemotaxis and oxidative stress 
brought on by C3a, one of the cleavage products of C3 
[133, 134]. Furthermore, mice treated with antagonism of 
C3aR, the receptor through which the anaphylatoxin C3a 
activates endothelial cells and recruits leukocytes to the 
brain, displayed enhanced endogenous neurogenesis [135]. 
While this suggests that C3aR signaling is deleterious in 
the acute phase after stroke for its inflammatory effect, 
there are some positive effects of C3a and C3aR signaling 
specifically in astrocytes.

After permanent focal cerebral ischemia in adult mice, 
the number of newborn neurons around the infarct was 
decreased due to C3aR deficiency, but increased from C3a 
overexpression [136]. In response to C3a, astrocytes with 
increased C3aR expression after ischemia alter their intracel-
lular signaling [137], express cytokines IL-6, IL-8, and nerve 
growth factor [138–140], and promote their own survival 
by inhibiting apoptosis [141]. Astrocytes are demonstrably 
required for C3a to promote neurorecovery in the context 
of excitotoxicity, which is similar to the stroke environment 
[142], and C3aR signaling can activate NSCs to undergo 
neuronal differentiation and contribute to neurogenesis in 

adult mice [143, 144]. Together, these data suggest that 
C3aR signaling in astrocytes can improve neurological out-
come after stroke. Thus, targeting this complement pathway 
to promote post-stroke neurorecovery will have to balance 
the neuroprotective effects of C3a/C3aR mediated by astro-
cytes, NSCs, and possibly other cells with the inflammatory 
effect of C3a/C3aR signaling in the classical complement 
pathway.

Targeting the Meninges and Choroid Plexus 
for Modulating Neuroinflammation

Traditionally, the meninges and ChP are studied less for 
their potential roles as NSC niches than for their regulatory 
power over post-stroke neurogenesis. After stroke, protective 
inflammatory processes are initiated in response to damage-
associated molecular patterns, or markers of cellular damage 
generated from necrotic or apoptotic cells and cell debris. 
Activation of resident microglia and astrocytes gives way to 
expression of cytokine and adhesion molecules in the cer-
ebrum to recruit peripheral leukocytes, such as neutrophils 
and other granulocytes, monocyte-derived macrophages, 
and eventually lymphocytes. Leukocyte infiltration peaks 3 
days after permanent and transient ischemia but continues 
for about 1 week [145, 146]. Hypoxia causes damage to the 
capillary endothelium, allowing neutrophils to be among the 
first to infiltrate through the blood-brain barrier (BBB) and 
generate free radicals that are neurotoxic if over-generated 
[147, 148]. Acute neuroinflammation can be beneficial by 
facilitating phagocytosis and clearance of cellular damage, 
but if it persists too long or is inadequately controlled, it 
inhibits neurogenesis and recovery [149]. Accordingly, 
blocked lymphocyte trafficking causes infarct volume in 
cerebral ischemia models to decrease while improving out-
come [150].

Highly significant routes of immune cell entry to the 
cerebrum include the meningeal compartment and the ChP. 
Proinflammatory T-cells accumulate in the meninges early 
after stroke, and lymphocytes from the ChP are recruited 
to peri-infarct brain tissue in response to cerebral ischemia 
[151]. Cortical stroke is also accompanied by elevated 
macrophages in the ChP and CSF [152] and by elevated 
expression of adhesion molecules, chemokines, and other 
mediators of monocyte-derived macrophage chemotaxis in 
the ChP [152]. Macrophages migrate to the ischemic hemi-
sphere when administered into the CSF, and when primed 
toward an anti-inflammatory phenotype before administra-
tion they improved recovery of motor and cognitive function 
after stroke with no effect on infarct volume [152]. A better 
understanding of peripheral immune access to the CNS via 
meninges, ChP, and brain vasculature and glymphatics will 
advise strategies for modulating inflammation to optimize 
neurogenesis in the recovery of stroke victims.
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In addition to regulating immune trafficking, the ChP 
regulates processes of neuroplasticity. The ChP actively 
secretes factors into the CSF that when sensed by cells, serve 
as migratory cues for newly generated neurons [153]. CSF 
factors are also implicated in actively maintaining stem cell 
quiescence [154]. Other ChP-secreted factors support prolif-
eration of SVZ cells in vitro to form neurospheres consisting 
of multipotent cells [155]. The ChP is highly important in its 
secretory role because it makes up the blood-CSF barrier, 
which determines what soluble factors from the blood may 

enter the CSF. The stringency of the blood-CSF gateway is 
influenced by whole body signals where the ChP acts as a 
sensor integrating and responding to physiological signals 
from the circulation, nervous system, and immune system 
[156–158]. The ChP serves as an important secretory tis-
sue that regulates aspects of both neuroinflammation and 
neuroplasticity. Thus, potentially altering ChP secretory 
behavior and gene expression to control neuroinflammation 
and promote neurogenesis could be a useful therapy for the 
stroke patient.

Fig. 3   Impacts of ischemic stroke on adult brain plasticity. Acute 
ischemic stroke (AIS) initiates neurogenesis, neuroinflammation, gli-
osis, and disrupts glymphatic perfusion. Coronal section of a mouse 
(left) and human (right) brain illustrate how ischemia in the cerebral 
cortex causes tissue damage that activates astrocytes and other glial 
cells, and also recruits immune cells to the site of tissue damage. 
Neurogenesis is induced in mice and humans and NSCs give rise 
to new neurons in the penumbra. Glymphatic perfusion is dysfunc-

tional, causing accumulation of toxic metabolites in the interstitial 
fluid, which is associated with larger infarct size (white metabolites, 
white infarct). Improved glymphatic perfusion in AIS is associated 
with smaller infarct size (gray metabolites, gray infarct). In mice, tar-
geting glial cells to modulate gliosis decreases infarct size (white to 
gray infarct), as does enhancing neurogenesis and modulating neuro-
inflammation
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Targeting the Meninges and Choroid Plexus 
to Restore Glymphatic Perfusion and Improve 
Stroke Recovery

Astrocytes are particularly crucial for their role in the glym-
phatic system (GS) and in maintaining the BBB. Here, the 
most salient points pertaining to the glymphatic system as 
a target for stroke treatment will be discussed. For more 
depth, the reader is referred to Lv et al. which provides novel 
insights into the roles of GS impairment in stroke [159], but 
we will specifically cover its relevance to post-stroke neu-
rogenesis and neuroplasticity. In brief, the glymphatic sys-
tem begins at the ChP which produces CSF by setting up an 
osmotic gradient that facilitates the movement of water from 
blood, across the choroid plexus epithelium, and into the ven-
tricles. CSF flows through the four interconnected ventricles 
of the brain and permeates the subarachnoid space of the 
meninges [160–163]. The middle and anterior cerebral arter-
ies run through the subarachnoid space and their arterioles 
penetrate the parenchyma. These arterioles are surrounded 
by CSF-filled perivascular spaces that narrow and disappear 
as arterioles give way to capillaries thinly covered by astro-
cytic endfeet, which help maintain the BBB. The perivascular 
space CSF is separated from the brain parenchyma by the 
leptomeninges, a basal lamina, and astrocytic endfeet through 
which CSF may flow out with little resistance. Postcapillary 
venules have perivenous spaces into which interstitial fluid 
(ISF) may flow, carrying metabolites or other wastes to be 
drained out of the brain toward the cervical lymphatic system 
[164, 165]. A more comprehensive description of the glym-
phatic system can be found in Jessen et al. [166].

Impaired glymphatic perfusion in the acute phase of 
ischemic stroke in mice has been demonstrated by contrast-
enhanced MRI [167]. Furthermore, embolic ischemic stroke 
has been shown to transiently inhibit glymphatic flow [167], 
which could exacerbate tissue injury due to accumulation 
of metabolic waste and debris from the injury. In stroke, the 
innate inflammatory response and edema formation initiates 
in the perivascular spaces [168], but it is unclear whether 
impaired glymphatic perfusion results from increased CSF 
influx, a backlog of ISF, or both [169].

Astrocytes are critical to the exchange of CSF and ISF 
because their endfeet have aquaporin AQP4 channels and 
other ion transporters that facilitate the movement of water 
between the CSF and the parenchymal ISF. The lack of 
AQP4 polarization in astrocytic cell membranes after stroke 
disrupts glymphatic functioning, which relies on the proper 
transport of water [170]. More recent data highlights the 
controversy over the role of AQP4 in ischemic stroke with 
some showing knockout, siRNA knockdown, or inhibition 
of the channel reduces edema and occasionally infarct size 
[171–173], whereas others show the opposite role where 
AQP4 knockout aggravates injury and increases infarct size 

[174]. Proper CSF circulation and glymphatic perfusion 
is vital for post-ischemic stroke neurogenesis and neuro-
plasticity to be efficacious. For instance, neuronal survival 
was reduced due to microinfarcts in the parietal cortex of 
mice, but was ameliorated by overexpression of Slit2, which 
improves glymphatic clearance [175]. In order for therapies 
to improve neuroplasticity and neurogenesis after stroke, 
they must address impaired glymphatic perfusion to ensure 
survival of new or existing neurons and glia.

Conclusions

Over the past 30 years, the evidence of neuroplasticity 
and neurogenesis in humans under basal conditions and 
in response to injury has identified the exciting possibility 
of improving neurological recovery after ischemic stroke 
(Fig. 3). Over time, the focus has shifted from a neuron-
centric view of stroke treatment to a niche-centric view. 
Attention is increasingly focused on glial and other cell types 
that modify the environment of neurons to salvage them and 
promote plasticity. Furthermore, the goal of pharmacologi-
cally modifying a single step of a vastly complex ischemic 
stroke pathophysiology loses favor because this approach 
is not sufficient to restore a diseased niche to healthy con-
ditions for neurons and glia to survive. Thus, modulating 
astrocyte activity in the face of neuroinflammation has 
become paramount to creating an environment conducive to 
neurorecovery. Various immunomodulation strategies have 
also been explored to reduce the exacerbation of stroke by 
inflammatory mediators. More recently, addressing impaired 
glymphatic perfusion after ischemic stroke poses a way to 
clean up the environment by clearing out inflammatory 
mediators, neurotoxic metabolites, and other accumulated 
wastes. Importantly, the ChP and the meninges are vital 
brain niches for each of these functions, as they are integral 
sites for neuroimmune interactions, glymphatic perfusion, 
and niche signaling pertinent to NSCs and neurogenesis. 
Furthermore, they are niches for adult tissue stem cells in 
mice and possibly humans. Much more is known about 
the roles of meninges and ChP after stroke in mice than in 
humans, and thus more translational research is essential to 
fully appreciate the value of the meninges and ChP in post-
stroke therapy for human patients.
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