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Abstract
Chronic white matter structural injury is a risk factor for poor long-term outcomes after acute ischemic stroke (AIS). However, it
is unclear how white matter structural injury predisposes to poor outcomes after AIS. To explore this question, in 42 AIS patients
with moderate to severe white matter hyperintensity (WMH) burden, we characterizedWMH and normal-appearing white matter
(NAWM) diffusivity anisotropy metrics in the hemisphere contralateral to acute ischemia in relation to ischemic tissue and early
functional outcomes. All patients underwent brain MRI with dynamic susceptibility contrast perfusion and diffusion tensor
imaging within 12 h and at day 3–5 post stroke. Early neurological outcomes were measured as the change in NIH Stroke
Scale score from admission to day 3–5 post stroke. Target mismatch profile, percent mismatch lost, infarct growth, and rates of
good perfusion were measured to assess ischemic tissue outcomes. NAWMmean diffusivity was significantly lower in the group
with early neurological improvement (ENI, 0.79 vs. 0.82 × 10−3, mm2/s; P = 0.02). In multivariable logistic regression, NAWM
mean diffusivity was an independent radiographic predictor of ENI (β = − 17.6, P = 0.037). Median infarct growth was 118%
(IQR 26.8–221.9%) despite good reperfusion being observed in 65.6% of the cohort. NAWMandWMH diffusivity metrics were
not associated with target mismatch profile, percent mismatch lost, or infarct growth. Our results suggest that, in AIS patients,
white matter structural integrity is associated with poor early neurological outcomes independent of ischemic tissue outcomes.
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Introduction

White matter hyperintensity (WMH), or leukoaraiosis on T2
MRI, is thought to represent end-stage white matter disease
and loss of structural integrity [1]. Importantly, patients with
increased white matter structural injury have a greater risk of
poor long-term functional outcomes after acute ischemic
stroke (AIS) [2, 3]. Specifically, increasing WMH burden is
predictive of poor long-term functional outcomes after AIS [2,
4]. At the microvascular level, decreased structural integrity
and increased blood-brain barrier permeability (BBB-P) of

normal-appearing white matter (NAWM) are also associated
with poor long-term post-stroke outcomes [5, 6]. An unre-
solved question, however, is how white matter structural inju-
ry contributes to poor stroke outcomes.

There is some evidence to suggest that patients with in-
creased WMH burden are at risk of infarct growth in the acute
setting [7]. In select patient populations, WMH burden is also
associated with early neurologic deterioration after AIS [8, 9].
These data suggest that patients with increasingWMH burden
are at risk for infarct growth and poor early neurologic out-
comes. An important consideration of these findings, howev-
er, is that visible WMH represents radiographic injury to only
a small fraction of total brain white matter [10]. As a result, it
is not known whether characterization of microstructural in-
tegrity of NAWM, representing the large majority of total
white matter, will provide additional information on ischemic
tissue and early clinical outcomes after AIS. Addressing this
question could advance knowledge on the influence of
NAWM structural integrity on the early trajectory after stroke,
which has been shown to be a significant predictor of long-
term outcomes [11], and provide insight into the mechanisms
of white matter injury in post-stroke outcomes.
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We hypothesize that decreased white matter structural in-
tegrity contributes to worse ischemic tissue and early clinical
outcomes post stroke. In a population of AIS patients with
moderate to severe WMH, at risk for infarct growth [7] and
poor early neurologic outcomes, [8] we set out to characterize
the clinical and radiographic variables associated with ische-
mic tissue and early clinical outcomes. Analysis of white mat-
ter structural integrity in the hemisphere contralateral to the
acute infarct was performed to minimize any influence from
acute cerebral ischemia and to investigate the effects of chron-
ic white matter injury on early clinical outcomes. We used a
prespecified definition of early neurological improvement
(ENI) as part of a retrospective analysis of an ongoing pro-
spective study of AIS patients with serialMRIs obtained in the
acute (< 12 h from stroke onset) and subacute phases (3–5 days
post stroke). Utilizing this radiographic approach, in the hemi-
sphere contralateral to the acute infarct, we measured NAWM
and WMH diffusivity anisotropy metrics in relation to ische-
mic tissue outcomes and ENI.

Methods

All aspects of this study have been approved by our
Institutional Review Board. Informed consent was obtained
from all individual participants included in the study or their
surrogates.

The current study was a retrospective analysis of an ongo-
ing, prospective study, the Statins Augment smalL Vessel
function and improve stroke Outcomes (SALVO, NIH
5R01NS082285) study of the effect of statin pretreatment in
patients with AIS and moderate to severe WMH.

Participants, Inclusion/Exclusion Criteria

Between April 2014 and February 2017, all AIS subjects >
18 years presenting to our Emergency Department within 12 h
from symptom onset were screened for eligibility and
underwent a brain MRI. AIS was defined as (a) acute onset
of focal neurological symptoms consistent with cerebrovascu-
lar syndrome, (b) MRI findings consistent with acute cerebral
ischemia, and (c) no evidence of other neurological disorders
to explain the symptoms. Subjects with moderate to severe
WMH, as defined by Fazekas grade ≥ 2 in either category,
[12] were eligible for enrollment in this study. Participants
unable to obtain gadolinium-based contrast because of medi-
cal contraindications were excluded. Participants with
premorbid functional status deemed by the investigator likely
to interfere with study participation or follow-up were also
excluded. All enrolled subjects had a repeat MRI at day 3–5
post stroke contemporaneous with clinical outcome
assessment.

Clinical Variables

All participants were evaluated by a neurologist on admission
and at day 3–5 post stroke, and the NIHSS score, as a measure
of stroke severity, was determined. Age and past medical his-
tory (including atrial fibrillation, prior myocardial infarction,
diabetes mellitus, hypertension, hyperlipidemia, and prior is-
chemic stroke) were obtained on admission from the patient or
their surrogate, or abstracted from the medical record.
Tobacco use was defined as patient reported current or any
prior cigarette smoking. Admission systolic and diastolic
blood pressures were abstracted from the first documented
vital signs in the medical record. Treatment with intravenous
thrombolysis was also recorded. Large-vessel occlusion of the
anterior circulation was defined as occlusion of the internal
carotid artery or proximal middle cerebral artery, M1 segment.
AIS subtypes were categorized by a trained neurologist
(M.R.E, N.S.R.) according to the criteria established by the
Trial of Org 10172 in Acute Stroke Treatment [13]. ENI was
defined as a reduction in the NIHSS of ≥ 2 points from the
admission to day 3–5 assessment post stroke or a NIHSS score
of 0 on follow-up assessment (ENI+).

Imaging Analysis

MRI Data Acquisition

Each participant underwent two separate brain MRIs with
perfusion-weighted imaging (PWI): one (acute) within 12 h
from stroke onset and the second (follow-up) at day 3–5 post
stroke. Except for one participant, all acute MRIs were per-
formed on a 1.5-T General Electric scanner. The follow-up
MRI was performed using a 3-T Siemens Skyra scanner in
all but five participants that could not undergo a dedicated 3-T
MRI due to medical contraindications.

For the acute MRI, axial T2-weighted Fluid Attenuated
Inversion Recovery (FLAIR) sequences were acquired, in
most subjects, on a 1.5-T General Electric MRI system with
TR/TE/TI = 9002/133/2200 ms, 220-mm field-of-view
(FOV), 5-mm slice thickness with 1-mm gap, and in-plane
resolution of 0.86 × 0.86 mm2. Diffusion-weighted (DWI)/
diffusion tensor imaging (DTI) was obtained on the acute
MRI with echo-planar imaging using the following acquisi-
tion parameters for most cases: TR/TE = 5000/92 ms, 240-
mm FOV, 5-mm slice thickness with 1-mm gap, in-plane res-
olution of 0.94 × 0.94 mm2 (128 × 128 acquisition matrix up-
sampled to 256 × 256), three 0 s/mm2 (b-zero) and 25 direc-
tions (1000 s/mm2 b-value). Eddy current distortion and mo-
tion correction was performed on DTI datasets as described
previously [14]. Dynamic susceptibility contrast (DSC) PWI
was acquired using gradient echo echo-planar imaging read-
out with the following parameters: TR/TE = 1500/40 ms,
220–240 ms FOV, 5 mm slice thickness with 1 mm gap, and

Transl. Stroke Res. (2019) 10:630–638 631



1.72 × 1.72 mm2 in-plane resolution and 80 time points. The
time-to-maximum (Tmax, s) maps were calculated as described
previously [6, 15, 16].

Follow-up FLAIR sequences were acquired with TR/TE/
TI = 9000/119/2500 ms, 220-mm FOV, 5-mm slice thickness
with 1-mm gap, and in-plane resolution of 0.86 × 0.86 mm2.
The follow-up DSC PWI imaging protocol consisted of 80
acquisitions at a TR/TE = 1500/35 ms, 220 ms FOV, 5 mm
slice thickness with 1 mm gap and 1.72 × 1.72 mm2 for most
cases.

Volumetric Analysis

WMH and chronic strokes were outlined on the acute FLAIR
sequence using a validated, semiautomated method utilizing
MRIcro software (www.mricro.com) as described previously
[5, 17]. Briefly, supratentorialWMHmaps were derived in the
ipsi- and contralesional hemispheres using automated signal
intensity thresholding with subsequent manual editing to fi-
nalize the WMHmaps. The acute DWI sequence was used for
comparison to exclude any confounding due to acute cerebral
ischemia. Total WMH volume (WMHv) was normalized to
intracranial area [18]. Volumes of the acute infarct on DWI
(DWIv), acute Tmax with a threshold > 6 s on DSC perfusion,
and final infarct volume (FIV), defined as infarct volume on
the follow-up FLAIR sequence, were determined. The PWI-
DWImismatch ratio was defined as acute Tmax/DWIv. Percent
infarct growth was calculated as (FIV − DWIv)/FIV × 100.
Good reperfusion was defined based on the criteria of a greater
than 50% reduction in Tmax lesion volume between the base-
line and day 3–5 follow-up MRI [19]. Percent mismatch lost
was calculated as (FIV − DWIv)/(acute Tmax − DWIv) × 100
[7]. Target mismatch profile was defined as PWI-DWI mis-
match ratio > 1.8 and mismatch volume ≥ 15 cm3 [19].

DTI Analysis

The DWI and FLAIR data were coregistered to one another in
a semiautomated manner [20] to the ICBM-152 T1 Atlas [21].
Probabilistic NAWM masks were determined as described
previously [6]. In brief, NAWM in the hemisphere contralat-
eral to the acute infarct was segmented using the ICBM prob-
abilistic atlas [22] with 95% WM probability and subtracting
the WMH and chronic stroke masks. NAWM masks were
further restricted by dilating the WMH masks three times
(mincmorph, [23]) prior to subtraction and setting an ADC
value threshold of less than 1500 × 10−6 mm2/s. Mean diffu-
sivity (MD), radial diffusivity (RD), axial diffusivity (AD),
and fractional anisotropy (FA) were subsequently measured
in WMH and NAWM contralateral to the acute infarct. One
participant was excluded from analysis because the 95% prob-
ability NAWM volume was less than 0.1 cm3.

Statistical Analysis

For statistical comparison of the ENI+ versus ENI− groups,
Wilcoxon rank sum and Fisher’s exact test were used, as ap-
propriate (RStudio version 1.0.153). Effect size was deter-
mined for statistically significant (P < 0.05) and selected ad-
ditional variables. Univariable logistic regression was per-
formed to assess the association of ENI with clinical and ra-
diographic variables. Stepwise, backward elimination logistic
regression analysis was performed using minimization of
Akaike information criterion to determine predictors of ENI.
To avoid the influence of collinearity between the diffusivity
anisotropy metrics on the regression analysis [24], three
models were run including (1) AD and RD, (2) MD, and (3)
FA. Statistical significance was set at P < 0.05.

Results

Clinical and Radiographic Variables Associated
with Early Neurological Outcomes

Forty-two participants were enrolled in our study. The acute and
follow-up MRIs were obtained at a mean time ± standard devi-
ation of 6.15 ± 2.78 h and 65.03 ± 26.5 h from last known well
time, respectively. 52.3% of participants met criteria for ENI and
eight (19.1%) had a worsening of NIHSS by 2 or more points
from admission to day 3–5. We observed no difference in age,
sex, pre-stroke disability, history of ischemic stroke, stroke sec-
ondary to large-vessel occlusion, or administration of intrave-
nous tPA between the groups with and without ENI (Table 1).
The ENI+ group, however, had decreased rates of diabetes, hy-
perlipidemia, hypertension, and strokes attributed to a small-
vessel occlusive etiology (Table 1). Admission NIHSS scores
were higher in the ENI+ group than the ENI− group; however,
the ENI− group had higher follow-up NIHSS scores (Table 1).

No difference in total WMHv was observed between
groups; however, the ENI+ group had a lower burden of
periventricular WMH compared with the ENI− group
(Table 2). There was no difference in the amount of deep
WMH between groups. The PWI-DWImismatch ratio, percent
infarct growth, percent mismatch lost, and FIV were also not
different between groups (Table 2). A large, but nonsignificant,
difference in the rate of good reperfusionwas observed between
groups (ENI+, 77.8%; ENI−, 46.7%; P = 0.08).

NAWMRD andMD values were lower in the ENI+ group,
as compared with the ENI− group (Table 3). Furthermore,
effect size calculations suggested a medium practical signifi-
cance for RD (r = 0.29) and MD (r = 0.31). No difference in
WMH diffusivity anisotropy metrics was observed between
ENI groups (Table 3).

In univariate regression analysis for predictors of ENI, hy-
pertension, hyperlipidemia, diabetes, and increased admission
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NIHSS score were all predictors of ENI (Table 4). Increasing
periventricular, but not deep,WMH burdenwas also negative-
ly associated with ENI in univariable analysis. In addition,
analysis of NAWM and WMH diffusivity anisotropy metrics
showed that increasing NAWM RD (β = − 17.64, P = 0.037)
and MD (β = − 16.17, P = 0.037) decreased the likelihood of
ENI (Table 4). In multivariable, backward elimination step-
wise logistic regression, diabetes and admission NIHSS score
were associated with decreased and increased likelihood of
ENI, respectively.

In backward elimination, stepwise logistic regression anal-
yses for radiographic markers of ENI, NAWM MD (β = −
17.64, P = 0.037) was an independent predictor of ENI
(Table 5).

Clinical Variables Associated with Ischemic Tissue
Outcomes

Fifteen patients (34.0%) had a target mismatch profile present.
Admission systolic blood pressure (β = − 0.035, P = 0.023)

was negatively associated with presence of target mismatch
profile on univariable logistic regression. On multivariable
logistic regression analysis adjusting for WMHv, admission
systolic blood pressure was an independent predictor for pres-
ence of a target mismatch profile (β = − 0.16, P = 0.04).

The median percent infarct growth in our cohort was 118%
(IQR 26.8–221.9) excluding patients with strokes attributed to
small-vessel occlusive disease. WMHv, age, sex, and WMH
and NAWMdiffusivity anisotropymetrics were not predictive
of percent infarct growth (data not shown). In our population,
65.6% achieved good reperfusion on follow-up imaging.
There was no association between WMHv or NAWM diffu-
sivity anisotropy metrics and reperfusion status.

Discussion

In this study, we report that in individuals with moderate to
severe WMH, preserved NAWM microstructural integrity is
associated with ENI. We also demonstrate that clinical

Table 1 Comparison of clinical
characteristics in 42 AIS patients
with moderate to severe WMH
burden

Early neurologic improvement

Variables Entire cohort
(n = 42)

Yes (n = 22) No (n = 20) P
value

Age, y, mean (SD) 70.2 (9.2) 70.0 (10.3) 70.4 (8.5) 0.91

Male, n (%) 24 (57.1) 14 (63.6) 10 (50.0) 0.58

No pre-stroke disability†, n (%) 34 (81.0) 20 (90.9) 14 (70.0) 0.12

Past medical history, n (%)

Atrial fibrillation 16 (38.1) 11 (50.0) 5 (25.0) 0.12

Myocardial infarction 7 (16.7) 3 (14.3) 4 (21.1) 0.68

Diabetes mellitus 9 (21.4) 1 (4.5) 8 (40.0) 0.008

Hyperlipidemia 23 (54.8) 8 (36.4) 15 (75.0) 0.016

Hypertension 29 (69.0) 12 (54.5) 17 (85.0) 0.048

Prior stroke 7 (16.7) 3 (13.6) 4 (20.0) 0.69

Any tobacco use 26 (61.9) 13 (59.1) 13 (68.4) 0.75

Admission and clinical data

Systolic blood pressure, mmHg,
mean (SD)

166.8 (29.1) 163.9 (34.3) 168.8 (22.8) 0.59

Diastolic blood pressure, mmHg,
mean (SD)

83.8 (15.6) 83.2 (15.0) 84.7 (16.9) 0.77

Admission NIHSS, median (IQR) 8.0 (3.5–11.5) 10.5 (7.3–13.8) 3.5 (2.0–7.25) 0.0006

Day 3–5 NIHSS, median (IQR) 3.0 (2.0–7.5) 2.0 (1.3–4.0) 6.0 (2.0–10.0) 0.059

Intravenous alteplase, n (%) 19 (45.2) 12 (54.5) 7 (35.0) 0.23

Large-vessel occlusion0 6 (14.3) 3 (13.6) 3 (15.0) 1

Stroke subtype, TOAST criteria, n (%)

Small-vessel occlusive 5 (11.9) 0 (0.0) 5 (25.0) 0.043

Definite cardioembolic 19 (45.2) 11 (50.0) 8 (40.0) 0.73

IQR, interquartile range; SD, standard deviation; TOAST, Trial of ORG 10172 in Acute Stroke Treatment
† Pre-stroke modified Rankin Scale score of 0
0Defined as occlusion of the intracranial internal carotid artery or proximal middle cerebral artery (M1 segment)
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variables suspected as inciting factors for intrinsic small-
vessel disease, namely diabetes, hypertension, and hyperlip-
idemia, [1] diminish the odds of ENI. Lastly, we show that in
patients with moderate to severe WMH, target mismatch pro-
file and infarct growth are common in the early stage of AIS.
As the early trajectory of the NIHSS has been shown to predict
long-term outcomes, [11] our observations that infarct growth
and the lack of ENI are common in patients with severeWMH
burden emphasize the vulnerabilities of this population for
poor outcomes and advance our understanding of how white
matter structural integrity contributes to poor long-term post-
stroke outcomes.

In comparison with the ENI+ group, we observed that
NAWM diffusivity, specifically RD and MD, was significant-
ly increased in the ENI− group. Decreased NAWM structural
integrity, reflected by higher NAWMRD andMD values, was
also associated with decreased odds of ENI. These observa-
tions were further supported in the multivariable logistic

regression analysis for radiographic predictors of ENI which
demonstrated that NAWMMD was an independent predictor
of ENI in models including DWIv, PWI-DWI mismatch ratio,
and periventricular WMH burden. The multivariable model
suggests that decreased NAWM structural integrity, reflected
as increased MD, is an independent radiographic predictor of
ENI. This observation suggests a role of white matter micro-
structural integrity in early clinical recovery after AIS.
Furthermore, by restricting our DTI analysis to the
contralesional hemisphere, we minimized any contribution
of acute cerebral ischemia and were able to investigate the
effects of chronic white matter injury on ENI.

The observation that diffusivity anisotropy values inWMH
did not correlate with ENI is likely due to WMH, as a reflec-
tion of end-stage white matter disease, imparting a relative
ceiling/floor effect on the respective diffusivity anisotropy
analyses within these regions [25]. Accordingly, we observed
no significant difference in the WMH diffusivity anisotropy

Table 2 Comparison of radiographic characteristics in 42 AIS patients with moderate to severe WMH burden

Early neurologic improvement

Variable Entire cohort (n = 42) Yes (n = 22) No (n = 20) P value

WMH volume, cm3, median (IQR) 5.3 (2.3–9.3) 3.8 (2.0–8.8) 5.3 (2.9–9.6) 0.39

Periventricular WMH, Fazekas score, median (IQR) 2 (2–3) 2 (2–2) 2 (2–3) 0.04

Deep WMH, Fazekas score, median (IQR) 1 (1–2) 1 (1–2) 1 (1–2) 0.63

DWI volume, cm3, median (IQR) 4.1 (0.8–18.1) 4.4 (0.9–15.3) 2.9 (0.6–20.7) 0.72

Final infarct volume, cm3, median (IQR) 8.3 (1.3–45.1) 8.4 (1.4–44.9) 7.7 (1.2–39.7) 0.81

Acute Tmax volume, cm
3, median (IQR) 8.0 (0–51.9) 17.3 (0.8–60.3) 3.3 (0.0–43.5) 0.23

PWI-DWI mismatch ratio, median (IQR) 1.2 (0–4.4) 1.5 (0.5–5.6) 0.4 (0–2.8) 0.20

Infarct growth (%), median (IQR) 111.4 (20.7–221.9) 104.7 (19.0–230.7) 121.5 (57.7–209.9) 0.81

Good reperfusion, n (%) 21 (50.0) 14 (77.8) 7 (46.7) 0.08

Percent mismatch lost (%), median (IQR) 11.4 (−62.6–77.0) 15.7 (−19.0–47.3) 4.6 (−111.5–109.6) 0.65

DWI, diffusion-weighted imaging; IQR, interquartile range; PWI, perfusion-weighted Imaging; TOAST, Trial of ORG 10172 in Acute Stroke Treatment;
WMH, white matter hyperintensity

Table 3 Comparison of NAWM
and WMH diffusivity anisotropy
metrics in patients with and
without ENI

Early neurologic improvement

Entire cohort (n = 42) Yes (n = 22) No (n = 20) P value

NAWM, median (IQR)

FA 0.37 (0.35–0.41) 0.38 (0.35–0.42) 0.36 (0.35–0.38) 0.36

MD (× 10−3), mm2/s 0.82 (0.77–0.83) 0.79 (0.77–0.82) 0.82 (0.77–0.84) 0.02

RD (× 10−3), mm2/s 0.64 (0.61–0.67) 0.62 (0.61–0.64) 0.66 (0.62–0.69) 0.03

AD (× 10−3), mm2/s 1.15 (1.1–1.2) 1.15 (1.1–1.2) 1.15 (1.1–1.2) 0.54

WMH, median (IQR)

FA 0.27 (0.24–0.29) 0.27 (0.25–0.29) 0.28 (0.23–0.30) 0.95

MD (× 10−3), mm2/s 1.22 (1.14–1.31) 1.21 (1.14–1.26) 1.25 (1.18–1.33) 0.40

RD (× 10−3), mm2/s 1.04 (0.98–1.12) 1.02 (0.98–1.08) 1.06 (1.0–1.15) 0.56

AD (× 10−3), mm2/s 1.58 (1.46–1.66) 1.56 (1.45–1.63) 1.59 (1.51–1.67) 0.34

AD, axial diffusivity; FA, fractional anisotropy; IQR, interquartile range;MD, mean diffusivity; NAWM, normal-
appearing white matter; RD, radial diffusivity; WMH, white matter hyperintensity
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values between ENI groups. Based on this reasoning, the DTI
analysis of contralesional NAWM represents a broader spec-
trum of chronic white matter pathology, which we have pre-
viously shown influences long-term stroke outcomes [5].

We also show that patients with moderate to severe WMH
burden are at high risk for poor early clinical outcomes. In
part, this is likely due to the association between increased
WMH burden and infarct growth [7]. In our population, the
median percent infarct growth was 118%. We also observed
that 34% of our population had a target mismatch profile pres-
ent despite only 14.3% with a confirmed large-vessel

occlusion. An explanation for this discrepancy could be that
patients with severe WMH have hemodynamic impairment of
the distal arteries/terminal arterioles and that this produces a
tendency for poor ischemic tissue outcomes. This hypothesis
is supported by prior work showing region-specific differ-
ences in cerebral blood flow in patients with WMH [26] and
reduced cerebrovascular reactivity contributing to WMH pro-
gression [27].

Collectively, our findings confirm that individuals with ad-
vanced WMH burden are at high risk of poor ischemic tissue
and early functional outcomes and that decreased NAWM

Table 4 Association with early
neurologic improvement in 42
patients with acute ischemic
stroke

Univariable Multivariable

Variables Estimate P value Estimate P value

Age − 0.004 0.91

Sex − 0.56 0.37

No pre-stroke disability† 1.46 0.10

Atrial fibrillation 1.10 0.10

Diabetes mellitus − 2.64 0.019 − 6.35 0.007

Hypertension − 1.55 0.041

Hyperlipidemia − 1.66 0.015

Prior stroke − 0.46 0.58

Any tobacco use − 0.41 0.54

Admission systolic blood pressure − 0.006 0.58

Admission diastolic blood pressure − 0.006 0.76

Admission NIHSS 0.26 0.003 0.49 0.002

Intravenous alteplase 0.80 0.21

WMHv − 0.02 0.51

Periventricular WMH, Fazekas score − 1.48 0.047

Deep WMH, Fazekas score − 0.18 0.63

Small-vessel occlusive stroke − 17.95 0.99

Definite cardioembolic stroke 0.41 0.52

Final infarct volume − 0.002 0.80

Mismatch ratio 0.004 0.71

Acute Tmax volume 7.5 × 10−6 0.27

Percent infarct growth − 0.0002 0.46

Percent mismatch lost − 0.0001 0.65

NAWM

FA 6.7 0.36

AD − 4.39 0.25

RD − 17.64 0.037

MD − 16.17 0.037

WMH

FA − 1.65 0.82

AD − 1.89 0.42

RD − 1.05 0.74

MD − 1.30 0.66

AD, axial diffusivity; FA, fractional anisotropy; IQR, interquartile range; MD, mean diffusivity; NAWM, normal-
appearing white matter; RD, radial diffusivity; WMH, white matter hyperintensity
† Pre-stroke modified Rankin scale score of 0
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microstructural integrity is associated with poor early post-
stroke recovery. This is of clinical importance because the
early trajectory of neurological improvement, as defined by
the 2-day longitudinal NIHSS, has been shown to be a predic-
tor of 90-day outcomes [11]. These observations highlight the
influence of white matter structural integrity on stroke out-
comes and agree with prior reports demonstrating a negative
relationship between WMH burden and both early [8, 9] and
long-term functional outcomes after AIS [2, 4, 28].

The design and patient population of this study offer sev-
eral strengths including (1) a study of thoroughly ascertained,
AIS patients including standardized measures of functional
outcomes; (2) sequential MRIs obtained in the acute and sub-
acute setting with PWI and DTI; (3) a standardized approach
toMRI processing and analysis; and (4) utilizing acute clinical
imaging sequences to identify early markers of ENI.

There are several limitations of this study that are important
to consider in the overall interpretation and generalizability of
our findings. First, while our sample size was large enough to
detect significant differences in diffusivity anisotropy metrics
relative to ENI with medium effect size (r = 0.3), the small
study size could contribute to the lack of statistical power to
detect smaller influences from other clinical or radiographic
variables. Secondly, this was a study of patients with severe
WMH and relatively small strokes (median DWIv 4.1 cm3),
which could limit the overall generalizability. How our results
translate to patients with different clinical demographics such as
ethnicity or prevalence of vascular risk factors, large infarcts, or
different stroke subtypes is unclear. We maintain, however, that
this focused study of AIS patients at risk for poor outcomes
demonstrates the added utility of characterizing NAWM struc-
tural integrity to inform on the clinical trajectory. The difference
in initial stroke severity between groups, with the ENI− group
having a lower admission NIHSS, could also suggest a floor
effect to the lack of improvement in this group. This seems
unlikely given that this group actually deteriorated from admis-
sion to day 3–5 as evidenced by the median NIHSS (ENI−

NIHSS, admission 3.5 versus day 3–5, 6.0). Specifically, 60%
(12 patients) of patients in the ENI− group had a worse NIHSS
score on follow-up and an additional 20% (4 patients) had no
change in NIHSS score. This observation suggests that the ENI
− group, despite the low admission NIHSS, was in fact at risk
for poor early neurologic outcomes. In addition, we have se-
lected an NIHSS score cut-off for detection of ENI at a conser-
vative, previously referenced margin (≥ 2) [8, 9] to capture
small variation in the neurological status. Therefore, our results
suggest that the clinical and radiographic characteristics of the
ENI− cohort are indicative of a vulnerable stroke population.
An additional limitation of our approach was the utilization of
the acute MRI scans for characterization of NAWM diffusivity
anisotropy metrics. As these were clinical scans, nonisotropic
voxels were used for diffusivity anisotropy analysis and thus
could have introduced some bias due to partial volume averag-
ing [29]. We would maintain, however, that utilizing clinical
scans to identify predictors of ENI functions is a clinically
pragmatic approach for translation to patient care.

In summary, we report the association of NAWM diffusivity
anisotropy metrics with ENI after acute cerebral ischemia. Our
findings strengthen the line of evidence for a relationship be-
tween white matter structural integrity and post-stroke out-
comes with new evidence for a role in the early trajectory of
recovery after AIS. Furthermore, these findings suggest that
characterizing white matter structural integrity in the acute
stages of ischemic stroke is feasible and can potentially
identify susceptible populations at risk for early clinical
improvement or deterioration. Overall, these findings
merit a prospective, large-scale investigation of the im-
pact of NAWM diffusivity anisotropy metrics on early
neurologic outcomes after AIS.
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