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Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by progressive stenosis of large intracranial arteries
and a hazy network of basal collaterals called moyamoya vessels. A polymorphism (R4810K) in the Ring Finger Protein 213
(RNF213) gene, at chromosome 17q25.3, is the strongest genetic susceptibility factor for MMD in East Asian populations.MMD
was regarded prevalent in childhood and in East Asian populations. However, the so-called MMD could represent only the tip of
the iceberg. MMD is increasingly reported in adult patients and in Western populations. Moreover, the RNF213 variant was
recently reported to be associated with non-MMD disorders, such as intracranial atherosclerosis and systemic vasculopathy (e.g.,
peripheral pulmonary artery stenosis and renal artery stenosis). In this review, we summarize the spectrums of RNF213 vascu-
lopathy in terms of clinical and genetic phenotypes. Continuous efforts are required for pathophysiology-based diagnoses and
treatment, which will benefit from collaboration between clinicians and researchers, and between stroke and vascular physicians.
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Introduction

Moyamoya disease (MMD) is a rare cerebrovascular disease
characterized by progressive stenosis of large intracranial ar-
teries (including the distal internal carotid artery) and a hazy
network of basal collaterals called moyamoya vessels. The
etiology of MMD is unknown. As a result, criteria for the
diagnosis of MMD are based on characteristic angiographic
findings. Most research on angiographic features, diagnostic
criteria, and treatment guidelines has been limited to pediatric
MMD [1].

The preva lence of adul t -onse t MMD may be
underestimated. Unlike in childhood-onset MMD, typical an-
giographic features might not be observed in the early phase
of adult-onset MMD [2, 3]. One regional, all-inclusive data set
of newly registered patients with MMD in Hokkaido, Japan,
showed that the age of onset is rising and ischemic presenta-
tion is increasing [4]. The annual incidence of MMD has re-
portedly increased in Japan, China, Taiwan, and Korea [5].
Such changes in the epidemiology of MMD may be derived
from the increasing number of adult patients diagnosed with
MMD, rather than the actual changes in epidemiology or char-
acteristics of MMD [5].
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A polymorphism, R4810K (p.Arg4810Lys), in the Ring
Finger Protein 213 (RNF213) gene at chromosome 17q25.3
was identified as the strongest genetic susceptibility factor for
MMD in East Asian populations, using genome-wide linkage
and exome analysis [6, 7]. RNF213 R4810K-related vascu-
lopathy is not well characterized, except in MMD. However,
RNF213 variants may not be the only determinants of MMD.
Very recent clinical studies showed that RNF213 variants are
associated not only with MMD but also with intracranial ath-
erosclerosis [8] and systemic vascular diseases, such as pe-
ripheral pulmonary artery stenosis and renal artery stenosis
[9, 10]. Moreover, not all the patients with MMD have this
genetic variant.

Therefore, the so-called MMD may represent only the tip
of the iceberg. These results call for the redefinition of MMD
as a spectrum, considering the heterogeneity of innate
angiogenetic capacity, genetic, and environmental factors.
The purpose of this review is to summarize the spectrum of
RNF213 vasculopathy, in terms of clinical and genetic pheno-
types. In addition, the clinical implications of the RNF213
spectrum on the evaluation and management of MMD pa-
tients are discussed.

Search Strategy and Selection Criteria

Articles for inclusion in this review were identified using
PubMed and ClinicalTrials.gov, with the search terms
“moyamoya disease ,” “s t roke,” “RNF213 ,” and
“cerebrovascular disease,” and were published in English,
up until March 2019. We also considered other relevant
articles and reviews. The final reference list was generated
on the basis of originality and relevance to this topic.
Because of space limitations, we were not able to discuss
individual pathophysiologies of MMD in depth or with
critical analyses.

Spectrums Related to MMD

Phenotypic variation of MMD and related RNF213 vasculop-
athies may be caused by the complex interaction of the fol-
lowing factors (Fig. 1).

Age Spectrum

In children, ischemic symptoms, especially transient ischemic
attack, are predominant, whereas adult patients present with
intracranial hemorrhage more often than pediatric patients. In
addition, moyamoya collaterals, which are the clinical hall-
mark of MMD, are more prominent in childhood MMD than
in adult-onset MMD [3]. The differences in angiographic find-
ings between childhood and adult MMD could be caused by

either a more severe aberrant angiogenesis in childhoodMMD
or decreased angiogenetic capability in adult MMD. Aberrant
angiogenesis and proliferative vasculopathy of MMD are
prominent in childhood MMD. A long-term follow-up angio-
graphic study showed that the age at diagnosis was the only
independent predictor of contralateral progression [11]. The
disease progresses angiographically until adolescence [12],
and disease progression is relatively rare in adult MMD, es-
pecially in asymptomatic individuals. Conversely, angiogene-
sis is impaired with increasing age [13]. Aging causes rarefac-
tion and insufficient collateral circulation in multiple tissues,
resulting in more severe ischemic tissue injury, and vascular
risk factors are associated with poor collaterals in preclinical
and clinical studies [14]. Age-related angiogenetic capacity
does not only affect the angiographic findings of MMD but
also determines the mode of surgical treatment. Indirect revas-
cularization techniques are generally preferable in childhood
MMD, while direct bypass techniques are preferable in adult
MMD patients [1, 15].

Genetic Spectrum

RNF213 Gene and Inheritance Pattern

The R4810K variant was identified in 95% of patients with
familialMMD, 80%with sporadicMMD, and 1.8%of control
individuals in a Japanese population [6]. RNF213 encodes a
relatively large protein with a dual AAA+ ATPase and E3
ligase activities [16]. In vitro and in vivo experiments revealed
that RNF213 is related to angiogenesis and vascular inflam-
mation; however, the exact physiologic functions of RNF213
remain unknown [16]. The R4810K variant is an Asian foun-
der mutation and its prevalence is reported to be up to 2.5% in
East Asians [16, 17], although it has not been reported in
Western populations. Since the total number of carriers is es-
timated to be 15 million in Asian countries, the impact on
cardiovascular health is extremely significant [18].
Homozygosity for R4810K predicted an earlier onset and a
more severe form of MMD in both Japanese [19] and Korean
[20] patients with MMD. Prevalence of homozygotes is re-
ported as 7–8% of overall MMD patients. The penetrance rate
of MMD in heterozygotes is as low as one per 150–300 [18],
whereas the penetrance rate of MMD in homozygotes was
calculated to be over 78% [19].

RNF213 Variant Homozygosity and Systemic Vasculopathy

The reason behind the specific site of vascular system involve-
ment is one of the unanswered questions in MMD. Genetic
and related changes in circulating factors confer pathophysio-
logical effects on the systemic vessels, as well as major vessels
of the circle of Willis. Site specificity and sparing of systemic
vessels cannot be explained. There is a possibility that patients
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with RNF213 variants might present with phenotypes other
than MMD. RNF213 vasculopathy could be a systemic dis-
ease, with MMD as a central nervous system subtype, espe-
cially in homozygous individuals.

Extracranial involvement of MMD has been described in
case reports of coronary [21, 22], pulmonary [9], and renal
artery stenosis in 7.9% of pediatric MMD patients [23], al-
though genetic information was unavailable. Very recently,
Fukushima and colleagues reported two cases of MMD and
pulmonary artery stenosis, with homozygosity for R4810K
variant [9]. One of them also had renal artery stenosis. It has
been suggested that R4810K variant causes classical MMD
when present in a heterozygous state, but the same variant
results in MMD and systemic vascular diseases when present
in the homozygous state, in a gene dosage-dependent manner
[9]. We recently reported five index cases and their families
harboring homozygous and heterozygous R4810K variants
with various manifestations of vascular involvement [10].
Homozygous patients showed a very unique pattern of diffuse
narrowing of the aorta and iliofemoral arteries, together with
stenosis of renal, celiac, or peripheral pulmonary arteries, re-
gardless of the presence or absence of MMD. Heterozygous
patients were mostly asymptomatic or had isolated MMD.
Therefore, R4810K is associated with a high penetrance of
systemic vasculopathy in homozygous patients, and a low
penetrance of MMD in heterozygous patients, suggestive of
a gene-dosage effect.

It is possible that a significant proportion of homozygous
patients are being treated without consideration of the partic-
ular RNF213 variants present. R4810K-related vasculopathy
might be important from a therapeutic view point. For exam-
ple, stent insertion, which is an option for medically

intractable intracranial atherosclerotic stenosis, could be
harmful for MMD patients. There have been several case se-
ries of stent insertion in MMD that showed occlusion by in-
stent restenosis due to progressive intimal hyperplasia or seri-
ous adverse effects [24–27]. The same may be true for sys-
temic vasculopathy related to RNF213 variants. While arterial
stenosis in fibromuscular dysplasia responds well to balloon
angioplasty and atherosclerotic renal artery stenosis to
stenting, balloon angioplasty or stenting in R4810K-related
vasculopathy might result in immediate elastic recoil or pro-
gressive restenosis [10]. In this case, bypass surgery for renal
artery stenosis could be considered for R4810K variant–
related vascular stenosis, similar to that for MMD.

Genetic Factors Aside from the RNF213 R4810K Variant

RNF213 R4810K is not a susceptibility variant for MMD in
Western populations or South Asians. Several non-R4810K
variants (rs148731719 and rs397514563) were recently found
in Caucasian, and East and South Asian cases with MMD [7,
17, 28, 29]. In addition, clinical manifestations and possibly
angiographic findings may differ between Western popula-
tions and East Asians [30]. The R4810K variant is reportedly
related to ischemic-type MMD, whereas non-R4810K vari-
ants (especially A4399T) are associated with hemorrhagic-
type MMD [28]. Further genetic studies in these populations
are required.

Combinatorial interactions between RNF213 variants and
other gene variants must be considered. A recent case series of
European familial MMD showed rare candidate variants of
RNF213 and PALD1within the same families, suggesting that
variants in these two genes might act synergistically [31]. The

Fig. 1 Spectrum of RNF213
vasculopathies. MMD,
moyamoya disease
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penetrance of MMD in carriers was incomplete, at around
25%, suggesting that additional genetic or environmental fac-
tors, other than these rare RNF213 variants, are needed to
develop MMD [31]. In addition, the interaction of RNF213
variants with other genes or the environment may be the cause
of the heterogeneity in the RNF213 phenotype. Moreover,
owing to the cell/tissue-specific expression pattern of non-
coding RNAs and their remarkable stability in peripheral
blood, a number of studies have highlighted the role of circu-
lating non-coding RNAs in angiogenesis and atherogenesis
[32]. A prospective study (ClinicalTrials.gov Identifier
NCT02074111) is ongoing, to evaluate the levels of
circulating microRNAs with respect to RNF213 and
caveolin-1 gene polymorphisms in MMD.

Environmental Spectrum

Environmental Factors

Beside genetic influence, additional insult may be required to
induce MMD. First, from an epidemiological view point, the
incidence rate of MMD is lower than that of carriers of
RNF213 variants. Second, recent in vivo experiments using
genetically engineered Rnf213mice, such as Rnf213-deficient
mice [33] or Rnf213-knock-in mice [34], addressed the mech-
anism underlying RNF213 variation in the development of
MMD pathology. However, the mice did not develop MMD
under normal conditions. These negative results are consistent
with the low penetrance rate of RNF213 polymorphisms in
patients with MMD, and may indicate the importance of en-
vironmental factors in addition to genetic factors [35]. Ito and
colleagues subjected Rnf213-deficient mice to ischemic insult
and found that post-ischemic angiogenesis was significantly
enhanced in mice lacking Rnf213, after chronic hindlimb is-
chemia [36]. This suggests the potential role of defective
RNF213 in the development of abnormal vascular networks
in chronic ischemia. Third, clinical data has also shown that
environmental factors, such as an autoimmune response and
infection/inflammation, may be associated with the angio-
graphic features of MMD [35]. For example, autoimmune
thyroid disease has been reported in different MMD popula-
tions (i.e., pediatric and adult-onset MMD, East Asians, and
Western populations) and may be involved in MMD develop-
ment [37–39]. RNF213may be a downstream mediator of the
IFN-β signaling pathway in endothelial cells. Carriers of the
R4810K may be susceptible to cerebral hypoxia because of
insufficient angiogenesis, if inflammation and hypoxia occur
simultaneously [40]. Pro-inflammatory cytokines activate
RNF213 transcription, and RNF213 functions as a common
downstream effector of the PI3 kinase-AKT pathway, in en-
dothelial angiogenesis [41]. These in vitro experimental data
suggest that although MMD is not an inflammatory disease,
inflammation may play an important role in MMD

development, and that RNF213 plays a unique role in endo-
thelial cells with respect to gene expression in response to
inflammatory signals from the environment. These clinical
and preclinical observations may represent the “two-hit theo-
ry,” which is apparent in a variety of disorders [35]. RNF213
variation could lead to vascular fragility, which may increase
the vulnerability of vessels to hemodynamic stress and sec-
ondary insults [35].

Intracranial Atherosclerosis and RNF213 Variants

Both intracranial atherosclerosis and MMD are prevalent in
Asians. Although several studies have described the role of
RNF213 in vascular development [6, 7], there is limited data
on its role in atherosclerotic diseases, and no genetic factors
specific to intracranial atherosclerosis have been reported.
Patients with RNF213 variation may be prone to atherosclero-
sis. Miyawaki et al. and Kamimura et al. tested for R4810K in
patients with intracranial major artery stenosis without signs of
MMD. The variant was present in 21.9–24.3% of patients with
non-moyamoya intracranial stenosis [42–44]. Similarly,
Matsuda et al. performed RNF213 genotyping and vascular
studies in 59 relatives of MMD patients. Six of 34 individuals
with R4810K showed intracranial steno-occlusive lesions,
whereas none of 25 individuals without the variant showed
vascular lesions [45]. We recently tested whether RNF213 is
also a susceptibility gene for intracranial atherosclerosis in pa-
tients whose diagnosis had been confirmed by conventional
angiography (absence of basal collaterals) and high-resolution
magnetic resonance image (HR-MRI) (i.e., the presence of in-
tracranial plaque and absence of MMD features) [8]. The re-
sults confirmed that R4810K was present in a quarter of pa-
tients with intracranial atherosclerosis, suggesting that RNF213
is a susceptibility gene, not only for MMD but also for intra-
cranial atherosclerosis in East Asians [8]. Among patients with
intracranial atherosclerosis, R4810K carriers were younger,
more often women, and more likely to have a family history
of MMD and proximal anterior circulation stenosis than non-
carriers [8, 44]. A recent large population study in Japan, eval-
uating R4810K in various stroke subtypes, confirmed that only
large artery disease was associated with this variant. Patients
with both R4810K and large artery disease showed lower age
of stroke onset, female predominance, and anterior circulation
distribution, compared with non-carriers [46].

In addition, other studies and ours showed that R4810K is
associated with smaller sized intracranial arteries, suggesting
impaired vasculogenesis [47, 48]. Hongo et al. measured the
outer diameter of the middle cerebral artery (MCA) in a small
cohort and showed that the outer diameter of the MCA was
smaller in R4810K carriers [47]. Our HR-MRI study also
showed that negative remodeling involves all the intracranial
arteries measured not only the stenotic MCA segments but
also the contralateral MCA, distal internal carotid artery, and
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basilar artery in patients with this variant [48]. Hemodynamic
studies have shown that, in the presence of intracranial athero-
sclerosis, the R4810K variant predisposes the smaller intra-
cranial arteries to hemodynamic compromise [48].

Evaluation and Treatment in MMD Patients

The spectrums related to MMD may have clinical implica-
tions for diagnostic and therapeutic approaches in patients.
In addition to the current paradigm of luminographic evalua-
tion (cerebral angiography to identify moyamoya vessels) and
bypass surgery to enhance collateral flow, the following diag-
nostic and therapeutic strategies should be considered, based
on variations in RNF213-related vasculopathies.

Evaluation of MMD Patients and Their Families

Unlike in childhood MMD, genetic/molecular or dedicated im-
aging, rather than angiographic findings, could be particularly
helpful in diagnosing MMD in adult patients with presumed
MMD, in whom angiographic features of moyamoya vessels
are not prominent. Many etiologies can cause intracranial arte-
rial steno-occlusion in adults. For example, HR-MRI can show
the characteristic features of MMD (a small vessel diameter,
thin vessel wall, and diffuse concentric enhancement, which
are consistent with pathogenesis and pathologic features) [49]
and exclude other causes (e.g., plaque or dissection) [5, 49].
These features were observed not only with typical angiograph-
ic features of basal collaterals but also without them.

Systemic vascular evaluation of the pulmonary, renal, coro-
nary, mesenteric, and aortoiliac arteries should be considered in
family members of MMD patients when they present symp-
toms (i.e., shortness of breath, angina) or show signs of specific
systemic vascular involvement (i.e., hypertension at a young
age). Systemic evaluation should also be considered in
R4810K homozygotes because of the high penetrance rate of
systemic vascular involvement. In our institute, polyvascular
CT angiography is being used to screen for systemic involve-
ment, especially in R4810K homozygous MMD patients.

Practice guidelines for genetic testing and counseling in
MMD patients and family members have not yet been
established. Genetic testing in MMD should only occur in
the context of genetic counseling and be supported by exper-
tise in this area. A ≥ 3 generation family history should be
obtained, that focuses not only on stroke or MMD but also
systemic vascular involvement, such as peripheral pulmonary
artery stenosis and renal artery stenosis. Patients should be
informed that MMD is a familial disorder with low pene-
trance, and only one in 150–300 R4810K carriers will develop
MMD. Genetic testing should be considered in East Asian
patients with MMD and a family history of MMD, on both
the paternal and maternal sides, who are potentially

homozygous for R4810K. Genetic testing might be consid-
ered in patients with systemic vasculopathy, who have a fam-
ily history ofMMD.On the contrary, genetic testing in asymp-
tomatic adult MMD patients is not advisable. The benefits of
genetic testing in non-East Asian populations are settled. In
addition, blood tests for thyroid function and thyroid autoan-
tibodies could be considered in patients with presumedMMD.

Treatment of Underlying Pathophysiology

At present, surgical re-vascularization is the mainstay of MMD
treatment. However, surgical treatments pose a risk for periop-
erative ischemic complications and/or cerebral hyperperfusion
syndrome [50]. With a better understanding of MMD patho-
physiology, non-surgical approaches targeting MMD patho-
genesis may become available to halt or slow disease progres-
sion [51]. Possible non-surgical approaches may include the
application of certain trophic factors or chemicals that increase
angiogenesis [52], anti-cancer drugs to decrease smoothmuscle
cell proliferation [53], retinoid to attenuate growth factor–
stimulated smooth muscle cell migration and proliferation
[54, 55], microRNA-based therapies to inhibit microRNAs re-
lated to MMD, [56, 57], and stem cell therapy to replace or
restore function of endothelial or smooth muscle progenitor
cells which are impaired in MMD [58–60]. However, none of
these approaches has been tested in MMD patients.

In addition, strategies targeted at increasing caveolin-1
levels could be candidate therapies for MMD [61].
Caveolin-1, a scaffolding protein of the caveolae plasma
membrane, is involved in the pathogenesis of cancers and
vascular diseases [62]. Caveolin-1 overexpression enhances
caveolae generation and accelerates capillary tube formation
by nearly threefold, while caveolin-1 downregulation reduces
capillary formation in vitro and in vivo, and is associated with
pathological angiogenesis [62–64]. A decreased serum level
of caveolin-1 has been reported to be a novel biomarker for
MMD [65]. A recent HR-MRI study showed that serum levels
of caveolin-1 were correlated with the degree of negative re-
modeling of major intracranial vessels in MMD patients [66].

Antiplatelet agents are widely used in patients with MMD.
Although hemodynamic compromise is the major determinant
of stroke in MMD patients, a multimodal MRI study showed
that embolic phenomena played an important role in acute
ischemic stroke in MMD patients [67]. Given the role of an-
tiplatelet agents in microembolism, in patients with large in-
tracranial stenosis, the short-term use of appropriate anti-
thrombotic agents could be considered for MMD patients with
recurrent embolic strokes. Cilostazol, a PDE3 inhibitor, has
both antiplatelet and vasodilator action, activates bone
marrow–derived endothelial progenitor cells, and inhibits
smooth muscle cell proliferation [68, 69]. Statin treatment
was reported to decrease matrix metalloprotease-9 levels, to
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inhibit neointima formation, and to increase circulating endo-
thelial progenitor cells [70, 71].

The role of RNF213 in controlling vascular risk factors is
unknown. The R4810K variant might influence vascular risk
factors, such as hypertension [72], and could also lead to vas-
cular fragility, increasing vulnerability of vessels to

hemodynamic stress and secondary insults [35]. A long-term
follow-up of angiographic-confirmed MMD patients showed
that diabetes, an important vascular risk factor for intracranial
atherosclerosis, was the only independent predictor of ischemic
stroke recurrence in patients with MMD [73]. These features
suggest that vascular risk factor control may be important in

Fig. 3 a A typical case of
moyamoya disease (MMD). A 9-
year-old female with a family
history of MMD presented recur-
rent hemiparesis during hyper-
ventilation and crying.
Angiography shows occlusion of
major intracranial vessels and
prominent basal collateral circu-
lations. b A 35-year-old hetero-
zygote female with a healthy
vascular risk factor profile pre-
sented with transient hemiparesis.
Angiography showed no basal
collaterals and high-resolution
MRI showed eccentric enhancing
plaque and negative remodeling,
suggestive of RNF213-related
premature atherosclerosis

Fig. 2 Four spectrums of
RNF213 vasculopathy
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subjects with intracranial stenosis and RNF213 variant carrier
status.

Conclusions and Perspectives

Our literature review advocates that MMD requires redefini-
tion, from childhood and cerebral vasculopathy to a broader
spectrum vasculopathy affecting both cerebral and systemic
vessel systems. Figure 2 shows four spectrums of RNF213
vasculopathy and their examples are provided in Figs. 3 and
4. Both genetic and environmental factors may play important
roles in the development and phenotype of RNF213 vasculop-
athy, through complex mechanisms. Continuous efforts are
required for pathophysiology-based diagnoses and treatments,
which will benefit from collaboration between both stroke and
vascular physicians, and the cooperation of all those involved,
from the hospital bed through to the laboratory bench.
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