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Dear Editor,
Aneurysmal subarachnoid hemorrhage (aSAH) is a type of

hemorrhagic stroke, which is associated with significant mor-
bidity, and a case fatality of nearly 50% [6, 13, 17, 18]. Early
brain injury (EBI) and delayed cerebral ischemia (DCI) are the
twomain determinants for functional outcome after aSAH. EBI
refers to direct mechanical damage to the brain tissue and early
pathophysiological changes, including increased intracranial
pressure (ICP) and reduced cerebral perfusion. DCI describes
a complex of reaction occurring thereafter [20]. Various mech-
anisms contribute to DCI, including angiographic cerebral va-
sospasms, microvascular spasm, microthrombosis, cortical
spreading depolarization, failure of cerebral autoregulation,
and inflammatory responses [20]. The individual importance
of each of these pathomechanisms remains to be elucidated
and it has been suggested that the etiology of EBI and DCI
are linked. However, a unifying theory of these pathophysio-
logical changes has not yet been described. Study of these
pathophysiological mechanisms in humans is problematic and
thus experimental animal studies have focused on investigating
the mechanisms of EBI and potential therapies to either limit or
reverse the extent of EBI, to reduce the incidence of DCI and
improve functional outcome after aSAH.

Over a period of 15 years until 2014, more than 765 in vivo
animal studies analyzed the pathophysiology of experimental
aSAH and the effects of (new) therapeutic approaches on pre-
vention of DCI [16]. Various pharmaceutics showed promis-
ing results in in vivo animal studies. However, despite the high
number of animal studies, different therapeutic approaches,
and numerous analyzed pharmaceutics, standard therapies of
DCI have barely changed and oral nimodipine remains the

only drug to improve neurological outcome in aSAH patients.
All other initially promising drugs and approaches have failed
to show a benefit in prospective randomized and controlled
phase II or III trials. Clazosentan and the CONSCIOUS-1
trails are probably the most prominent examples for a failed
translation from bench to bedside. Interestingly, clinical stud-
ies frequently showed a positive influence of a drug on vaso-
spasms of large arteries, but did not translate into improved
morbidity or mortality [3, 4].

As a consequence of the failed translation from bench to
bedside, standards for planning, conducting, and reporting of
aSAH animal experiments were proposed in order to align
experimental and clinical research. Guidelines for a standard-
ized reporting of animal experiments have successfully been
implemented almost a decade ago [8, 9]. These standards in-
cluded selecting animal models with clinical relevance, accu-
rately calculating sample sizes, and using suitable statistics,
standardizing animal treatments, and assessment of blinded
outcome parameters [10–12, 14–16, 19]. Comprehensive
meta-analysis and systematic reviews of existing animal data
have also been proposed in order to detect effects sizes of
treatment, biases, and methodological inadequacies in animal
studies [15, 19]. Indeed, new developments and initiatives to
improve the quality of systematic reviews of animal studies
are likely to improve the translational value of animal research
[5].

However, we are not convinced that a standardization and
systematic analysis of existing data alone can clarify the failed
translation from bench to bedside in aSAH research. Existing
experimental aSAH models only partially simulate human
conditions for several reasons: intracranial anatomy (e.g., the
circle of Willis in rodents) and (patho-) physiology vary sig-
nificantly between species. Moreover, intrinsic factors such as
weight, age, genetic background, metabolism, and hemody-
namics contribute to the already existing discrepancy between
animal models and human physiology [1, 2]. Even in highly
standardized mouse models, DCI-related responses signifi-
cantly rely on the genetic background of the analyzed mice
[1]. Also, pathophysiological responses and mortality rates in
mice are significantly affected by the type of model which is
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used (perforation vs. injection). Mortality rates in most mouse
models of DCI after experimental aSAH are significantly low-
er than human case fatality following aSAH [7].

Furthermore, DCI and EBI are well defined for clinical use
but both lack a matching definition which is applicable for
experimental aSAH. The clinical definition of DCI: DCI was
clinically defined for aSAH patients by a neurological impair-
ment lasting more than one hour which cannot be attributed to
other causes [21], is useless for experimental aSAH.
Determination of the Glasgow Coma Scale (GCS) to assess
neurological deterioration as well as exclusion of other causes
of neurological impairment by means of clinical assessment,
laboratory testing, and CT or MRI scanning of the brain can-
not realistically be performed in experimental aSAH.
Moreover, DCI in humans only occurs from the 3rd day after
the initial insult, has the highest incidence and severity after 6–
8 days, and usually resolves after 12–14 days [4, 22]. In con-
trast, DCI in experimental animal models is frequently ob-
served before the 3rd day after SAH, e.g., in mice six hours
after SAH induction [7]. Therefore, consensus definitions of
DCI and EBI, which can be applied to experimental aSAH in
animal models, are required.

In summary, future efforts should systematically investi-
gate to what extent aSAH animal models resemble the human
condition and how parameters such as the experimental mod-
el, animal species, or the genetic background affect EBI- and
DCI-related pathophysiological responses. Additionally, con-
sensus definitions of DCI, EBI, and standard outcome mea-
sures suitable for experimental aSAH in different species are
required.
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