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Abstract Motor impairment is the most common complica-
tion after stroke, and recovery of motor function has been
shown to be dependent on the extent of lesion in the
ipsilesional corticospinal tract (iCST) and activity within
ipsilesional primary and secondary motor cortices. However,
work from neuroimaging research has suggested a role of the
contralesional hemisphere in promoting recovery after stroke
potentially through the ipsilateral uncrossed CST fibers de-
scending to ipsilateral spinal segments. These ipsilateral fi-
bers, sometimes referred to as Blatent^ projections, are thought
to contribute to motor recovery independent of the crossed
CST. The aim of this paper is to evaluate using cumulative
evidence from animal models and human patients on whether
an uncrossed CSTcomponent is present in mammals and con-
served through primates and humans, and whether iCST fibers
have a functional role in hemiparetic/hemiplegic human con-
ditions. This review highlights that an ipsilateral uncrossed
CST exists in human during development, but the evidence
on a functionally relevant iCST component in adult humans is
still elusive. In addition, this review argues that whereas

activity within the ipsilesional cortex is essential for enhanc-
ing motor recovery after stroke, the role of iCST projections
specifically is still controversial. Finally, conclusions from
current literature emphasize the importance of activity in the
ipsilesional cortex and the integrity of crossed CST fibers as
major determinants of motor recovery after brain injury.
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Introduction

The outflow of the motor cortex to the spinal cord—the
corticospinal tract (CST)—drives voluntary motor function
predominantly through contralateral projections. Fibers from
the primary motor cortex descend through the posterior limb
of the internal capsule into the cerebral peduncles forming the
pyramidal tract (PT), decussate at the level of the caudal me-
dulla, and descend primarily in the dorsolateral funiculi of the
spinal cord (Fig. 1a). Anatomical studies mapping CST con-
nectivity in mammals provided evidence of ipsilateral CST
(iCST) projections that descend in the lateral or ventral funic-
uli of the spinal cord of cats [1, 2] and monkeys [3, 4] (Fig.
1b–d), or that are components of re-crossed contralateral fi-
bers [4] (Fig. 1e). iCST projections are sometimes referred to
as Blatent^ projections with the implicit hypothesis that these
projections do not contribute to motor function in the presence
of intact contralateral projections, but their role in cortical
motor control may arise after a lesion to the crossed CST
projections [5]. In fact, unilateral lesions of the CST are asso-
ciated with significant motor recovery which may suggest the
existence or emergence of iCST projections in mammalian
models [1–4] and human patients [6, 7]. However, this con-
cept is challenged by evidence implicating subcortical
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brainstem descending pathways in the restoration of function
after CST lesion especially in the event of bilateral
pyramidotomy in monkeys [8, 9]. A potential role of iCST
in recovery from injury would provide a rationale for targeting
these fibers to modulate the recovery process.

Using a variety of neuroanatomical and neurophysiological
techniques, studies in rodents, cats, monkeys, and humans
have significantly advanced our understanding of the neuro-
anatomical trajectory of the CST. However, no recent studies
have reviewed and evaluated both the preclinical and clinical
evidence for the presence and functional relevance of iCST
projections. The aim of this manuscript is to review the neu-
roanatomical trajectory and functional relevance of iCST

fibers in mammalian species, including human, and how these
findings are implicated in neurorehabilitation after brain inju-
ry, mainly in the context of cerebral palsy and stroke. It is
necessary to emphasize that discussing the role of the ipsilat-
eral hemisphere in recovery from stroke is beyond the scope
of this review and has been extensively reviewed [10, 11].

Major Theories on iCST

A common concept in neurodevelopment is that spinal neu-
rons are innervated by bilateral CST projections that get re-
fined during motor development creating a dominant contra-
lateral system [12, 13]. A remnant of ipsilateral projections
persists during adulthood and may still contribute to motor
functions [3, 14–17]. In children with congenital hemiplegia,
the leading hypothesis is that the developmental machinery is
adaptively altered to favor bilateral innervation of spinal neu-
rons from the intact hemisphere and a functional contribution
of iCST fibers [18]. Similarly, after brain injury in adults, it is
possible that the loss of contralateral CST fibers results in the
strengthening of existing iCST fibers or emergence of new
iCST collaterals that may contribute to recovery [19–21].
However, this possibility is still controversial with the
counter-argument suggesting minimal or no role of iCST fi-
bers in normal or compensatory motor activity after brain
injury [7, 22–28].

iCST in non-primates

Preclinical studies provide a unique opportunity to use inva-
sive approaches such as lesion studies and fiber tracing, to
determine whether an iCST is evolutionary conserved, and
to closely investigate the adaptation of CST projections after
injury. Early studies by Armand et al. reported on subtotal
transection in the cat spinal cord that spared the lateral or
ventral funiculus from one side followed by HRP injection
at cortical or spinal levels to anterogradely and retrogradely
map motor cortical projections [1, 29]. Anterograde labeling
of sections at cervical and lumbar enlargements demonstrated
that regions within area 4 (M1) either projected contralaterally
through the lateral funiculus or bilaterally through both lateral
and ventral funiculi [1]. Around 92% of fibers in the dorsolat-
eral funiculus were derived from contralateral area 4 while the
remaining fibers were originating ipsilaterally [29].
Subsequent evidence usingWGA-conjugated HRP confirmed
that the sensorimotor cortex of cats projects to the bilateral
ventral and lateral funiculi [2, 30]. A similar pattern of dom-
inant contralateral CST and a minor iCST was also described
in guinea pigs and rats [31]. However, conclusive evidence
from these studies is challenged by several limitations. First,
HRP may bleed into un-intended spinal segments after

Fig. 1 Probable trajectories for contralateral ipsilateral corticospinal
projections into spinal interneurons. a Most of CST fibers cross at the
caudal medulla and descend through dorsolateral column. b A smaller
component of crossed CST fibers descend in the ventral column. c
Ipsilateral CST fibers uncrossed at the level of caudal medulla and
descend through ipsilateral anterior and dorsolateral columns. d Some
crossed CST projections may re-cross the midline and descend
ipsilaterally different spinal levels. e Ipsilateral axonal innervation from
crossed CST fibers through axonal collaterals that re-cross the midline
and innervate the opposite hemicord
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injection resulting in false positive findings. Additionally, the
use of WGA-HRP, a trans-synaptic tracer, does not eliminate
the possibility that the origin of ipsilateral labeling is subcor-
tical nuclei rather than an iCST or that ipsilateral projections
are Bre-crossed^ branching collaterals of initially crossed fi-
bers [2, 9]. Another major concern in animal studies is that the
separation of sensory and cortical motor components is diffi-
cult to establish [32].

In a thorough investigation of the iCST in adult rats, bio-
tinylated dextran amine (BDA) injection into the right senso-
rimotor cortex bilaterally labeled terminals in the thalamic,
mesencephalic, and pontine nuclei [33]. At the spinal level,
BDAwas predominantly present in the contralateral dorsolat-
eral funiculus with a smaller ipsilateral fraction in the dorso-
lateral funiculus, and, occasionally, in the ventral funiculus.
No bifurcating axons were detected on sagittal sections of the
medulla, suggesting that uncrossed components cannot be ex-
plained by bifurcation of crossed CST axons [33]. The major-
ity of iCST fibers terminated in Rexed lamina III-VI, covering
predominantly interneurons and sensory nuclei [34]; however,
this pattern is similar to that of contralateral CST in rodents
that do not terminate directly at motor neurons (lamina IX).

Neurophysiological techniques including intra-cortical mi-
cro-stimulation and transcranial magnetic stimulation (TMS)
were used to probe the physiological relevance of the iCST;
however, they fail to establish evidence of an anatomically
distinct iCST [35, 36] (Table 1).

iCST in non-human Primates

Non-human primates provide a valuable model to test
whether an iCST is conserved in the mammalian hierar-
chy. Early observations by Hoff et al. showed that unilat-
eral lesions to the PT resulted in extensive bouton degen-
eration in the contralateral spinal gray matter; however,
minor degeneration was observed within the dorsal and
ventral horns of ipsilateral gray suggesting the presence
of ipsilateral pyramidal projections [37].

Subsequent neuroanatomical and neurophysiological
studies characterized those ipsilateral projections regard-
ing quantity, trajectory, termination, and functional rele-
vance. Fiber tracing of spinal neurons in rhesus monkeys
mapped cortical projections from area 4 and indicated the
presence of iCST fibers that terminated predominantly at
spinal laminae VIII [4, 15, 38].

Studies in rhesus monkeys tracing fibers descending from
M1 showed that around 85–98% of CST fibers descended
contralaterally in the dorsolateral funiculus, <1% descended
contralaterally in the ventromedial funiculus, 2–15%
descended ipsilaterally in the dorsolateral funiculus, and 2%
descended ipsilaterally in the ventromedial funiculus (Table 2,
Fig. 2) [3, 14, 39–41]. Interestingly, evidence for the crossing

of ipsilateral fibers at spinal levels was also observed in mul-
tiple studies [3, 39, 40]; therefore, the presence of ipsilateral
fibers suggested by BDA only indicates that these fibers de-
scend ipsilaterally and there is a high likelihood that these
fibers will re-cross and end up innervating contralateral neu-
rons. When the termination patterns of these ipsilateral fibers
were assessed, they were found to cover spinal laminae V-IX,
with the highest density (~80%) of innervation in ipsilateral
lamina VIII, and very sparse termination in ipsilateral lamina
IX (Table 2, Fig. 2) [3, 14, 39–41]. The consistent finding
that the majority of iCST fibers terminate at lamina VIII
challenges the functional significance of iCST fibers
since lamina VIII mainly harbors commissural interneu-
rons that project through the midline to the contralateral
cord, thus largely contributing to contralateral movement
control [46]. In addition, few fibers labeled interneurons
that project to motor neurons controlling proximal mus-
cles (lamina VII), and only sparse labeling was found to
potentially label motor neurons (lamina IX).

Anterograde tracing of WGA-HRP from the supplementa-
ry motor cortex (SMA) in rhesus monkeys revealed that 23%
of descending fibers were ipsilateral, descended through the
dorsolateral funiculus, and terminated in similar patterns to
ipsilateral M1 projections (mainly laminae VII-VIII) [14].
Findings in rhesus monkeys were replicated in marmoset
monkeys where 11% of M1 CST fibers descended ipsilateral-
ly through the dorsolateral funiculus and terminated in lami-
nae VII-VIII [42]. These studies suggest that ipsilateral M1
may partake in the control of proximal and potentially distal
muscles. A major limitation of quantitative studies with la-
beled tracers is the inability to label all fibers at the injection
sites, whichmay result in variability of the relative proportions
of different CST components.

The functional relevance of iCST fibers was investigated
using in vivo micro-stimulation of the M1 cortex, SMA, and
pyramidal neurons. Stimulation of M1 or SMA cortices while
recording from both distal and proximal forearm muscles re-
vealed that the vast majority of M1 and SMA outputs were
contralateral [43–45]. However, a significant ipsilateral re-
sponse was predominantly recorded in proximal or truncal
muscles upon stimulation of SMA [44, 45], and, occasionally,
M1 [43]. In vivo cortical stimulation studies performed in
rhesus [24] and marmoset monkeys [42] showed that ipsilat-
eral M1 projections are not monosynaptic. Although the lack
of monosynaptic connection is not unanticipated given
that the majority of contralateral fibers also do not mono-
synaptically connect to motor neurons, the presence of
polysynaptic connections does not rule out the involve-
ment of the contralateral hemisphere or contralateral
brainstem nuclei upon stimulation of ipsilateral cortical
regions. In fact, stimulation of the PT in rhesus monkeys
elicited clear excitatory post-synaptic potentials in contra-
lateral forearm spinal motor neurons, but failed to induce
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any ipsilateral responses [24]. Similarly, EMG recordings
in forearm muscles demonstrated only contralateral MEPs
in response to PT stimulation prior to the decussation.
Stimulation of the forearm sites of M1 in awake monkeys
resulted in EMG responses and behavioral movements in

contralateral forearm muscles only [24]. These results
have emphasized that the physiological role of motor cor-
tical stimulation in eliciting responses in ipsilateral mus-
cles is predominantly mediated by polysynaptic connec-
tions that do not necessarily involve ipsilateral PT.

Table 1 Summary of neuroanatomical and neurophysiological approaches used in CST tracking studies

Technique Description Main limitations to demonstrate iCST

Neuroanatomical approaches

Fiber tracing Using chemicals, toxins, or viral particles that can
be anterogradely or retrogradely transported by
neurons to label the origins or projections of
target neurons.

• Limited preclinical application
• Tracers can be multisyanptic and thus

cannot exclude polysnaptic connections
• Does not rule out subcortical relays or

inter-hemispheric connections
• Difficult to separate sensory and motor cortices

Autoradiography a fiber tracing approach that uses tritiated (3H)
amines transported by neurons

• Similar to fiber tracing.

Histological reconstruction Using silver impregnation (silver stain) followed
by reconstruction of axonal paths through serial
sections

• Silver stain does not stain all neurons
• Low resolution to detect individual fibers
• May be difficult to follow low density fibers
• Very laborious procedure

Diffusion tensor imaging MRI-based imaging that measures the mean
diffusivity of water molecules in brain tissue
allowing for re-construction of major white
matter tracts

• Limited spatial resolution
• Less informative on crossing fibers especially

at brainstem or spinal locations

Lesion studies Mapping neuronal trajectories by following
locations of neuronal degeneration after a
specific lesion in the studied system. Lesion
studies can be also used for functional analyses
assessing deficits induced by lesions

• Degeneration of boutons ipsilateral to cortical
lesions does not mean does not exclude
re-crossing fibers

• Functional deficits after ipsilateral cortical lesions
implicate a role of ipsilateral cortex rather than
an iCST. This can be addressed by lesions to
pyramidal tract rather than cortex.

• Invasive procedure

Neurophysiological Approaches

Intracortical microstimulation Using intracerebral electrodes that specifically
stimulates neurons within a region of the cortex
(e.g. M1 or SMA) followed by recording of
motor-evoked potentials (MEPs) in target muscles

• Invasive procedure
• Cortical stimulation leading to ipsilateral MEPs

do not exclude a possible role of contralateral
hemisphere or subcortical pathways

• This limitation can be overcome in animal studies
by using pharmacogenomics or optogenomics
approaches to specifically stimulate neurons
with ipsilateral spinal projections

Transcranial magnetic stimulation Using a magnetic field generator, Bcoil^, to
stimulate the motor cortex and record MEPs
in interested muscles to assess the functional
connectivity of CST

• Cortical stimulation leading to ipsilateral MEPs
do not exclude the possible role of contralateral
hemisphere or subcortical pathways

• Cortical stimulation may also directly stimulate
subcortical regions in monkeys

• High individual variability in responses in healthy
subjects as well as subjects with brain injury

Electroencephalo-graphy (EEG) Monitoring of electrophysiological activity in
the brain using scalp electrodes. EEGs are
instrumental in the detection and monitoring
of epilepsy patients but can also be used to
study brain activity during tasks

• Cannot produce anatomical evidence
• Correlative data is obtained in absence of

experimental ability

Functional neuroimaging Using functional MRI or positron emission
tomography (PET) that allows the detection
of changes in pattern of cortical activation
during voluntary movement in normal subjects
and patients with brain injury

• Limited resolution beyond cortical levels what
allows studying the role of ipsilateral hemisphere
rather than iCST

• Correlative data is obtained in absence of
experimental ability
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Evidence of Reorganization of CST after Injury
in Animal Models

Following unilateral lesion to the motor cortex or the PT prox-
imal to decussation in rodents, sprouting axons from the
crossed contralateral fibers re-innervate denervated neurons
in a compensatory mechanism [47, 48]. This compensatory
mechanism is not due to originally uncrossed CST at the py-
ramidal level that remained unchanged after injury, but due to
re-crossing of contralateral fibers at the spinal level [47].
Supporting these findings, unilateral lesions proximal to the
CST decussation failed to induce deficit at the ipsilateral limb,
and iCST fibers failed to rescue limb function after contralat-
eral pyramidal lesions [49]. Simultaneously, electrical stimu-
lation of affected hemisphere after stroke in rodent model
demonstrated improved recovery of skilled functions through
promoting axonal sprouting at the subcortical (red nucleus)
and spinal levels [9, 50]. However, controversial findings still
suggest a role of iCST in recovery from injury. For instance,
damage to the motor cortex in rodents can cause deficits in
skilled movements ipsilaterally that was associated with in-
creased synaptic plasticity in the undamaged hemisphere [51].
In addition to the sprouting of crossed CST fibers from un-
damaged neurons in ipsilateral hemisphere, axonal sprouting
from the intact motor systems to cover denervated neurons
after injury has been described in rodents [52]. Recently,
Wahl et al. demonstrated that originally crossed CST fi-
bers from the undamaged hemisphere re-cross at the spi-
nal level to cover denervated neurons initially innervated
by the damaged hemisphere [53]. This study used a
unique pharmacogenomics approach to silence CST fibers
terminating ipsilaterally and demonstrated a significant

reduction in EMG response in the ipsilateral limbs and
reappearance of functional deficits originally ameliorated
by rehabilitation-induced plasticity [53]. Although these
findings support a role of the undamaged hemisphere in
plasticity after stroke that includes axonal sprouting to
cover the ipsilateral neuronal territory, it does not support
the presence of latent iCST that gets engaged after stroke.

Studies in primates have supported the contribution of axo-
nal sprouting to recovery after stroke and showed that inhibition
of neurite outgrowth inhibitor (NoGo) enhanced compensatory
sprouting and improvement motor recovery [54, 55].
Compensatory recovery mechanisms are most prominent in
brainstem circuitry. For example, after bilateral pyramidectomy,
monkeys were still able to carry out proximal and distal muscle
movement [8], pointing to the role of non-pyramidal projec-
tions in the recovery of motor performance after an injury to PT
in primates. These early findings were further supported by
recent work from Zaaimi et al. showing that after a unilateral
lesion to the PT, PT stimulation did not result in activity in
ipsilateral motor neurons indicating a negligible remodeling
in the iCST system 6 months after a unilateral PT lesion [56].
The study demonstrated a limited role for iCST fibers in recov-
ery after unilateral PT lesions and a significant compensatory
role of reticulospinal systems in recovery [56].

Evidence of iCST in Healthy Human Subjects

Similar to observations inmonkeys, Nathan et al. studied post-
mortem spinal cord sections from subjects with supra-spinal
lesions and examined the location of degenerating axons in
the spinal cord [57]. In one subject with large right middle

Fig. 2 Termination patterns of
CST fibers descending from the
left M1 cortex in monkeys
mapped using anterograde
tracing. The majority of
descending fibers descend
contralaterally through the
dorsolateral funiculus. Around 2–
16% of fibers descend
ipsilaterally and terminate
predominantly at lamina VII and
VIII of the spinal gray
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cerebral artery infarct, degenerating axons were observed both
in the left CST and in the right anterior CST, but barely ob-
served in the left anterior CST hinting that an anterior iCST
might be present in humans [57]. However, due to limitations
of the specificity of this approach, solid evidence supporting
the presence of iCST that do not decussate at the medulla in
humans was still lacking.

Beyond early neuroanatomical studies, studies investigat-
ing the presence of an iCST in healthy human subjects con-
sistently used transcranial magnetic stimulation (TMS) or
intra-cortical micro-stimulation (ICMS) to suggest the pres-
ence of these fibers. It was suggested that an iCST is more
likely to control proximal and truncal muscles rather than the
distal muscles since the latter tend to bemore severely affected
by stroke involving the motor systems and tend to recover last
[58]. However, both proximal and distal muscles have been
investigated using cortical stimulation and recording of MEP
to assess the presence, relative delay, and relative amplitude of
ipsilateral muscle responses compared to the contralateral re-
sponses (Table 3). Findings from these studies have shown
that after TMS stimulation of the dominant hemisphere, bilat-
eral MEPs were detected predominantly in proximal and
truncal muscles and were delayed (2–9 ms) and lower in am-
plitude (10–80%) when compared to contralateral responses
[23, 59–64, 66]. Similar findings were also reported after
ICMS of motor cortex during functional mapping in epileptic
patients [67] or intra-operative monitoring during spinal sur-
geries [68]. In one study, Muller et al. studied the development
of the CST innervation and demonstrated that children
≤9 years of age have bilateralMEPs in the FDI, biceps brachii,
and brachioradialis muscles after unilateral motor cortical
stimulation; however, adults showed only contralateral
MEPs in the same muscles [6].

Although this approach was most commonly adopted in
human studies of healthy subjects, several significant chal-
lenges limit the utility of this method to establish the presence
of an anatomically independent iCST. Studies using TMS to
detect ipsilateral MEPs in muscles are limited by the inability
to control focal stimulation of the motor cortex unilaterally
without influencing the contralateral hemisphere or subcorti-
cal structures. Although the use of small coils has provided
better resolution, this limitation is still of major concern, es-
pecially in studies that reported very short or absent latency
between ipsilateral and contralateral responses [59, 60]. In
contrast, a delay that reaches up to 9 ms in ipsilateral MEPs
indicates a polysynaptic innervation and may involve either
interhemispheric facilitation of the contralateral hemisphere or
recruitment of bilateral brainstem circuitry rather than a direct
projection of uncrossed ipsilateral fibers. This concern is par-
ticularly relevant after the finding that TMS stimulation ofM1
in monkeys was able to activate the brainstem directly and
independent of M1, a phenomenon that is likely to occur in
humans [69]. Thus, TMS studies provide little insight into the

neuroanatomical substrate of ipsilateral MEPs detected in
muscles. An interesting subject in Ziemann’s study showed
complete agenesis of the corpus callosum while still
exhibiting bilateral MEPs in his FDI after unilateral motor
cortical stimulation [64]. This finding indicates that these bi-
lateral MEPs are independent of inter-hemispheric connec-
tions despite that they may still relate to direct stimulation of
or bilateral cortical projections to brainstem nuclei. It is also
noteworthy that in studies reporting bilateral MEPs after cor-
tical stimulation, a subset of subjects showed only contralat-
eral responses, pointing to the presence of individual variation
in the laterality of cortical output [23, 59–64, 66].

Re-organization of Motor Cortical Projections
in Hemiplegic Human Conditions

Although the contribution of iCST to motor control is
controversial, disordered organization of CST connectivi-
ty, including abnormal decussation or bilateral projec-
tions, has been described in several pathological condi-
tions such as essential mirror movement syndrome,
Klippel-Feil disease, and progressive scoliosis [22]. In
this section, we review the evidence on whether iCST
projections play a functional role after brain injury.

One key determinant of motor cortical re-organization after
brain injury is the stage of maturation of CST projections
during development [70]. In contrast to adult stroke, children
with cerebral palsy (CP) show substantial evidence of bilateral
cortical innervation from the undamaged cortex to limb mus-
cles [71]. Stimulation of intact motor cortex in children
with CP resulted in bilateral contraction of hand muscles
with high synchrony on cross-correlograms that some-
times manifested as mirror movements, suggesting that
the two muscles may have received the same presynaptic
inputs [72, 73]. Based on studies in cats and monkeys [8,
74], this could potentially be explained by the mainte-
nance of dense bilateral CST projections that are other-
wise retracted during development, or by bilateral cortical
projections into brainstem nuclei [9, 12, 56, 75].

Studies on the neurodevelopment of the corticospinal in
neonates have shown that motor cortical stimulation is asso-
ciated with fast, short latency ipsilateral responses that occur
at a similar threshold to contralateral responses [13].
Ipsilateral responses become smaller and more delayed after
18 months of age; however, short latency ipsilateral responses
are only preserved in cerebral palsy (CP) patients who had
ischemic insults at various gestational stages [76], but not in
adults recovering from brain injury [12, 13, 77]. This points to
a developmental shift in CST innervation from bilateral to
contralateral innervation during early neonatal developmental
window that may be inhibited in neonates with CP, but not in
adult subjects with ischemic stroke [13, 77]. Thus, it is
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hypothesized that ipsilateral innervation after CP is likely due
to persistent ipsilaterally descending fibers rather than
sprouting of contralateral CST. This hypothesis is supported
by findings in animals showing preferential withdrawal of
iCST fibers during development of the CST [13, 78]. In addi-
tion, neuroanatomical data from post-mortem analysis of chil-
dren showed significantly faster growth of contralateral com-
pared to iCST [12, 79], and a larger number of iCST fibers
with larger axons at the pyramidal level of subjects with CP
but not those with unilateral lesions that occur during child-
hood or adulthood [12, 79]. This data indicates that in CP
patients, ipsilaterally projecting fibers are not likely due to
spinal collaterals of contralateral fibers, but rather from ipsi-
lateral cortico-fugal projections originating from the ipsilateral
motor and supplementary motor cortices. The functional

relevance of ipsilaterally projecting motor fibers in CP pa-
tients was further investigated in subjects with intractable ep-
ilepsy who undergo hemispherectomy (HS) to disconnect the
damaged hemisphere (extensively reviewed in [80]). Cortical
stimulation of the undamaged hemisphere in CP patients con-
tinues to elicit bilateral responses in forearm muscles post-HS
similar to pre-surgical responses indicating that these re-
sponses are independent of the damaged hemisphere [81,
82]. In a large trial of children undergoing HS, Kupper et al.
demonstrated that grasping ability in the ipsilesional hand is
only preserved in patients with prenatal or perinatal unilateral
brain injury (or CP) and is associated with asymmetric struc-
tural connectivity of CST projections. This data suggests the
reinforcement of developmentally preserved iCST fibers in
these patients [83].

Table 3 Summary of TMS studies investigating bilateral CST projections in humans

Ref Stimulation Muscle Response Ipsilateral Delay I/C ratio

[59] M1 unilaterally Sternomastoid Bilateral 1–2 ms 0.3–0.8

Trapezius Contralateral

Splenius Bilateral 0–1 ms ~0.8

[60] Dominant M1 Rectus Abdominis Bilateral 3–5 ms ~0.4–0.5

Diaphragm Bilateral 2–3 ms ~0.4–0.5

Masseter Bilateral 0–1 ms ~0.4–0.5

Biceps Contralateral

Forearm Extensors Contralateral

FDI Contralateral

Deltoid Contralateral

[61] Dominant M1 Internal oblique Bilateral 3–6 ms 0.7

1st dorsal interosseous Bilateral 3–6 ms 0.14

Deltoid Bilateral 3–6 ms 0.08

[62] Dominant M1 pectoralis major Bilateral 4–9 ms

[63] Right M1 Rectus abdominis Bilateral 2 ms

[64] Right M1 1st dorsal interosseous Bilateral ~5.7 ms ~0.8

Abductor digiti minimi Bilateral ~5.7 ms

Opponens pollicis Contralateral ~5.7 ms

Wrist extensors Bilateral ~5.7 ms

Wrist flexors Contralateral ~5.7 ms

Biceps brachii Bilateral ~5.7 ms

Triceps brachii Contralateral ~5.7 ms

[23] Right M1 1st dorsal interosseous Bilateral 3–8 ms

[65] M1 Thenar Muscles Contralateral

Extensor digitorum communis Contralateral

[6] M1 (children <9 years) 1st dorsal interosseous Bilateral ~14 ms ~0.44

Brachioradialis Bilateral ~12 ms ~0.57

Biceps brachii Bilateral ~12 ms ~0.5

[6] M1 (adults) 1st dorsal interosseous Contralateral

Brachioradialis Contralateral

Biceps brachii Contralateral

[66] Right M1 Transversus abdominis Bilateral 3–4 ms 0.17
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Although cortical re-organization involving abnormal
iCST projections is infrequently seen in adult stroke, a margin
of neuroplastic changes in both hemispheres may still occur
and contribute to recovery [7, 13]. In fact, using functional
magnetic resonance imaging (fMRI) during task-related
movements of the paretic hand in chronic stroke patients, sev-
eral studies have reported increased activation in the ipsilateral
sensorimotor cortex, premotor cortex, SMA, and occipito-
parietal cortex compared to the healthy controls [7, 27, 84].
This functional pattern was also associated with microstruc-
tural changes bilaterally in the CSTof stroke patients, revealed
by structural brain imaging (DTI) [85]. Longitudinal studies in
patients recovering from stroke have confirmed a shift in task-
related cortical activation from ipsilateral (contralesional) to
contralateral (ipsilesional) activation, suggesting the impor-
tance of ipsilesional M1 activity in mediating recovery pro-
cesses [7, 25–28]. Interestingly, bilateral cortical activity was
also negatively correlated with the integrity of the affected
CST, a finding that was not always associated with the recov-
ery mechanisms [27, 28, 86]. Temporal analysis using elec-
troencephalography (EEG) has also shown patterns of in-
creased activity ipsilateral to the lesion in stroke patients dur-
ing voluntary movement [5]. However, the timing of ipsilat-
eral activation on EEG occurred after the onset of movement,
discounting its role in the activity of the paretic limb [87].

Cortical functional re-organization and connectivity
networks involved in stroke recovery do not appear to
be uniform. Indeed, a heterogeneous pattern of cortical
reorganization seen in fMRI studies reflected the hetero-
geneity of ischemic stroke populations [28]. It was further
confirmed by positron emission tomography studies in
patients with internal capsule infarct where the lesion lo-
cation and the involvement of striatal structures dictated
different patterns of re-organization [88]. The heterogene-
ity of cortical re-organization seen on brain imaging was
also consistent with incongruous findings in neurophysi-
ological experiments using TMS or transcranial direct cur-
rent stimulation of motor cortices of stroke patients. TMS
stimulation over the ipsilateral dorsal premotor cortex,
M1, and the superior parietal lobe in patients with recov-
ered motor performance after stroke resulted in significant
interference with performance that was not observed in
healthy controls [84]. However, TMS stimulation elicited
ipsilateral MEPs in proximal muscles of stroke patients
but more prevalent in stroke patients with poor recovery
suggesting the emergence of the contralesional motor
drive [89].

Collectively, studies in patients with CP and stroke have
supported the role of ipsilesional primary and secondary mo-
tor cortices in rapid and better recovery after stroke.
Furthermore, despite that contralateral CST projections are
the major determinant for motor recovery [90], the functional
contribution of iCST projections is still debatable.

Conclusions and Future Directions

Conclusive anatomical evidence that an iCST is present
in adult humans is absent; however, animal studies dem-
onstrate that iCST fibers are conserved from rodents to
non-human primates supporting the existence of iCST in
humans. Neurophysiological studies in humans fail to
characterize an independent iCST in healthy adults. The
functional relevance of iCST in healthy and stroke adult
patients is still controversial, but evidence on the impor-
tant contribution of iCST projections was demonstrated
in pediatric patients with congenital hemiplegia. This
supports the hypothesis that CST development exhibits
a critical period for lateralization of projections, and that
only early cortical insults may promote compensatory
neurodevelopmental changes that will protect ipsilateral
projections. This raises critical questions whether we can
reset the developmental clock of the CST and tune up the
damaged tract after brain injury in adults and poses chal-
lenges to studies that attempt to stimulate iCST fibers in
stroke patients to enhance recovery. In addition, clinical
studies investigating the role of undamaged motor corti-
cal activity in stroke recovery should carefully interpret
the neuroanatomical substrate of this role taking into ac-
count the possibility of involvement of inter-hemispheric
commissural connections and bilateral connections to
brainstem nuclei in addition to potential iCST fibers.

Moving forward, it is important that work in non-human
primates replicates the approach used by Wahl et al. to use
optogenetics or pharmacogenomics to specifically inhibit
iCST projections in the undamaged cortex and identify the
role of these fibers in sub-acute and chronic recovery after
stroke. Specifically, the use of viral vectors to encode inhibi-
tory optogenetic channels in cortical neurons with direct ipsi-
lateral projections (not through brainstem nuclei) followed by
optogenetic stimulation to specifically inhibit motor or sup-
plementary motor neurons will allow a definite assessment of
the presence and role of cortically projecting ipsilateral
corticospinal connections both in normal function and after
stroke. Additionally, the use of novel neuropathological ap-
proaches like CLARITY on post-mortem tissue from stroke
patients as well as healthy adults allows high-resolution track-
ing of projecting fibers to identify whether an anatomically
distinct iCSTexists at pyramidal levels and to clarify the iden-
tity of neurons at the termination of these fibers. Recent
proof-of-concept studies in non-human primates demon-
strated feasibility of clearing spinal cord tissue with sub-
sequent fluorescent imaging and 3D reconstruction [91].
Finally, more robust evidence on the iCST is anticipated
to arise from the advancement of imaging method, like
DTI, and non-invasive fiber tracking techniques, and neu-
rophysiological techniques including virtual lesions and
plasticity protocols.
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