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Abstract With increasing rates of survival throughout the
past several years, stroke remains one of the leading causes
of adult disability. Following the onset of stroke, spontaneous
mechanisms of recovery at the cellular, molecular, and sys-
tems levels ensue. The degree of spontaneous recovery is gen-
erally incomplete and variable among individuals. Typically,
the best recovery outcomes entail the restitution of function in
injured but surviving neural matter. An assortment of restor-
ative therapies exists or is under development with the goal of
potentiating restitution of function in damaged areas or in
nearby ipsilesional regions by fostering neuroplastic changes,
which often rely on mechanisms similar to those observed
during spontaneous recovery. Advancements in stroke reha-
bilitation depend on the elucidation of both spontaneous and
therapeutic-driven mechanisms of recovery. Further, the im-
plementation of neural biomarkers in research and clinical
settings will enable a multimodal approach to probing brain
state and predicting the extent of post-stroke functional recov-
ery. This review will discuss spontaneous and therapeutic-
induced mechanisms driving post-stroke functional recovery

while underscoring several potential restorative therapies and
biomarkers.
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Introduction

Stroke alters the landscape of the brain, compromising the
function of various systems and structures. In conjunction
with increasing survival rates over the past several years,
stroke remains one of the leading causes of long-term disabil-
ity in the USA and other developed countries [1]. The finan-
cial repercussion associated with stroke and subsequent dis-
ability is substantial, totaling over 30 billion dollars annually
[2]. Behavioral deficits following stroke span domains of cog-
nition, sensation, vision, and language with motor-related im-
pairments most abundant [3]. Most patients experience some
degree of spontaneous recovery, defined by Kwakkel et al. [4]
as the amount of improvement in body function and activity
determined solely by time.

Spontaneous recovery, however, is often incomplete and
the recovery rates of neurological function vary. Impairments
of the motor system are most frequently diagnosed and, conse-
quently, most studied in the literature [3]. Themajority of motor
function gains occur within the first 3 months post-stroke [4–7].
Whereas, recovery of visuospatial neglect and orientation fol-
low 5–6months after stroke [8–10], and gains in cognition [11],
memory [12], and language function [13, 14] may extend over
a period of months to years post-stroke. Individual factors such
as genetics [15–17], previous medical comorbidities, initial se-
verity of deficits, age [18], stroke mechanism, neuroanatomical
details such as lesion size and location, and areas spared injury
[19–22] impact recovery.
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To address the underlying complexity of recovery and
stroke heterogeneity, a wide spectrum of restorative treatments
encompassing drugs, stem cells, behavioral therapies,
robotics, and non-invasive brain stimulation exists [23].
Accompanying this vast array of restorative therapies is a
growing list of potential therapeutic targets. One viable thera-
peutic target rich in recovery potential is the penumbra, or the
peri-infarct region. In astronomy, the penumbra is a region of
half light and shadow [24]. In acute stroke, it has been defined
as a region of electrical failure but preserved energy metabo-
lism that holds recovery potential [25]. The conceptualization
of the penumbra, in the context of stroke rehabilitation, is a
region that survived the initial insult and is galvanized for
reorganization in support of recovery. Other therapeutic tar-
gets include both local and remote non-injured areas. The aim
of the above treatment approaches is to boost restitution of
function in the penumbra and in functionally related targets
by fostering neuroplastic change [26]. Often, the underlying
mechanisms of these therapies rely on similar mechanisms
observed during spontaneous recovery. Both spontaneous
and therapeutic-induced mechanisms of plasticity that pro-
mote the resumption of activity and function in stroke-
damaged areas can positively impact post-stroke recovery.
However, as discussed below, not all plasticity mechanisms
support restitution of function in stroke-damaged areas and
structures.

The proceeding discussion will review both spontaneous
and therapeutically induced mechanisms of post-stroke recov-
ery while highlighting the growing assortment of restorative
therapies and promising biomarkers of functional recovery in
stroke.

Spontaneous Mechanisms of Functional Recovery

Stroke triggers a cascade of cellular and molecular events that
facilitates neural protection and spontaneous recovery [27].
Animal studies have enhanced our understanding of these
mechanisms and in-depth reviews are provided elsewhere
[28, 29]. In short, experimental stroke models depict subse-
quent growth of synapses and dendrites [30–32], axonal re-
modeling and angiogenesis [33–35], increased expression of
growth-related genes and proteins [36], and enhanced brain
excitability mediated by alterations in N-methyl-D-aspartate
(NMDA) and gamma-aminobutyric acid (GABA) receptor
subtypes [37] and upregulation of NMDA receptors [38].
These events are not confined exclusively to the peri-
lesioned region. Stroke-induced modulations in synaptic effi-
cacy arise in homologous regions in the contralesional hemi-
sphere [30], in ipsilesional areas functionally and/or structur-
ally connected to the lesioned area [39], and even downstream
in the spinal cord [40].

These brain changes, driven by discrete physiological and
pathological events, can be organized into three recovery
epochs. The first epoch occurs during the initial hours after
stroke onset and represents an opportunity to salvage threat-
ened tissue, e.g., via reperfusion or neuroprotection. The sec-
ond epoch commences days to weeks following stroke and
corresponds to an initiation of brain repair. Mechanisms of
spontaneous recovery are most robust during this time. The
third epoch denotes a chronic phase of brain repair when the
brain is relatively stable with regards to endogenous repair-
related events but modifications in brain structure and func-
tion are still possible. Because these epochs delineate periods
of neuroprotection and repair, they pose important clinical
implication related to the delivery of restorative therapies.

The application of restorative therapies (discussed below)
in humans further elucidates the above-described cellular and
molecular underpinnings of post-stroke functional recovery,
but obtaining precise molecular measurements similar to those
in animals proves difficult. Neuroimaging and brain mapping
approaches comprising functional magnetic resonance imag-
ing (fMRI), positron emission tomography (PET), single pho-
ton emission computed tomography (SPECT), electroenceph-
alography (EEG), magnetoencephalography (MEG), transcra-
nial magnetic stimulation (TMS), and near-infrared spectros-
copy (NIRS), for example, provide a systems-level perspec-
tive of brain repair. The primary focus of this review entails
fMRI, TMS, and EEG application to examine spontaneous
and treatment-induced mechanisms of post-stroke functional
recovery.

Studies employing fMRI, TMS, and EEG show modula-
tions in local and distant cortical and subcortical activity,
changes in interactions between hemispheres, shifts in
cortical representational maps, and alterations in functional
and effective brain connectivity. Many of these events
contributing to spontaneous recovery are compensatory.
In other words, areas and/or structures distinct from the
injured area assume function of the injured area. These
compensatory events may provide some benefit to individuals
with considerable stroke-related injury and severe functional
deficits [41–43]. However, compensatory events may also
have the opposite effect on individuals with less severe
post-stroke injury and deficits similar to how a crutch may
simultaneously improve gait function for more impaired
individuals and hinder gait function in less impaired indi-
viduals. Typically, mechanisms of stroke recovery that
promote restitution of function to injured areas yield better
rehabilitation outcomes [44].

One particular event that has received limited attention to
date but may be important in stroke recovery is diaschisis. As
one of several theories of functional recovery originally pos-
tulated by Von Monakow in the early twentieth century,
diaschisis entails a decline in function in brain areas spatially
discrete but functionally connected to the site of injury [45].
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Both animals [37, 46, 47] and humans [48] demonstrate
diaschisis with changes in cerebral blood flow, metabolism,
and neurotransmitter activity in areas distant from the lesion.
A reversal of diaschisis is suggestive of recovery, but addi-
tional work is needed to better understand the timing of
diaschisis and the process of diaschisis reversal relative to time
post-stroke.

Modulation of Local Cortical Structure and Function

Stroke injury to the cortex and underlying white matter results
in reduced cortical activity and cortical thickness [49, 50].
Over time, a resurgence of activity occurs in conjunction with
functional motor recovery [42, 44, 49, 51, 52]. Similar time-
dependent shifts in cortical activity for language [53, 54] and
spatial attention [55] also arise and correlate with positive
functional recovery in these domains. Schaechter et al. [49]
compared functional activation and cortical thickness between
individuals with chronic stroke and healthy controls following
a unilateral tactile stimulation activity during fMRI.
Compared to control subjects, individuals with stroke demon-
strated significantly greater activation in areas along the ven-
tral postcentral gyrus and significantly greater cortical thick-
ness within these same areas. These results depict area-
specific functional and structural plasticity following stroke.

TMS is another modality used to examine local cortical
function. TMS involves non-invasive brain stimulation, oper-
ating through electromagnetic induction [56], and enables in-
dividuals the ability to probe motor pathway physiology and
cortical network excitability [57]. When a TMS pulse of suf-
ficient intensity is delivered to the motor cortex region, a
downstream muscle response, referred to as a motor-evoked
potential (MEP), occurs. Examination of various properties of
the MEP such as size, area, and latency provide valuable in-
formation about cortical and corticospinal tract excitation.
Studies utilizing TMS in stroke demonstrate an initial down-
regulation in ipsilesional hemisphere excitability often with an
absent MEP, elevated motor thresholds [58–61], diminished
MEP size [62, 63], and/or prolonged MEP conduction time
[64]. In instances of profound corticospinal tract damage,
stimulation of the contralesional hemisphere elicits MEPs in
the ipsilateral (i.e., stroke-affected) hand [65], suggestive of
uncrossed contralesional corticospinal tract fibers contributing
to stroke-affected (i.e., ipsilateral) extremity movement.

Shifts in motor threshold and MEP properties over time,
consistent with increased cortical excitability in the
ipsilesional hemisphere, are associated with positive recovery
[66, 67].Mangonotti et al. [66] observed a significant decrease
in ipsilesional motor threshold during a timeframe spanning
5–7 days to 30 days post-stroke in individuals that exhibited
improvements across several activities of daily living (i.e.,
feeding, grooming, dressing, etc.).

Modulation of Brain Regions Distant From Injury

In addition to diminished activity in the ipsilesional hemi-
sphere, increased activation in sites distant from the infarct
occurs resulting in the formation of distributed motor, lan-
guage, and attention networks, sometimes bilaterally
[68–74]. The utility of these distributed networks in post-
stroke recovery is dependent on the amount of clinical impair-
ment, the extent of injury, and the complexity of the functional
task. The contralesional hemisphere is a particularly contro-
versial area under study [75] especially in the context of
upper-extremity motor recovery (detailed review by
Buetefisch, 2015) [76]. Numerous studies support the role of
the contralesional hemisphere in recovery of the stroke-
affected upper-extremity [41, 43, 77–80]. However, other
studies view the contralesional hemisphere as a hindrance
[81–83]. For example, in an exploratory study that examined
cortical activity during an fMRI hand squeezing task in indi-
viduals with chronic, subcortical stroke, investigators found
increased activation in the contralesional primary motor and
premotor cortices that negatively correlated to stroke-affected
arm use [84]. As another example that recruitment of
contralesional sensorimotor areas is not always a favorable
event in the context of motor performance after stroke, signif-
icant correlations have been reported between increased
contralesional primary sensorimotor cortex activation and
poorer performance on a fine motor task [85]. The role of
the contralesional hemisphere in functional recovery is com-
plex and requires further investigation.

Changes in Ipsilesional and Contralesional Hemisphere
Interaction

Stroke affects the interactions between hemispheres as
evidenced by changes in the distribution of the blood-
oxygen-level-dependent (BOLD) signal activation (i.e.,
laterality index) and by changes in the amount cortical
inhibition imparted by one hemisphere onto the other (i.e.,
interhemispheric inhibition, IHI). The BOLD signal is an
indirect measure of neural activity based on changes in blood
flow and deoxyhemoglobin concentration [86]. IHI is a type
of GABAergic-driven cortical inhibition [87–89] measured by
applying a single TMS pulse to one hemisphere and a second
TMS pulse to the homologous region on the other hemisphere
several milliseconds later [90]. A decrease in MEP amplitude
and/or area following the delivery of two TMS pulses (paired-
pulse TMS) compared to the delivery of a single TMS pulse is
indicative of IHI.

Individuals with stroke often exhibit a negative laterality
index [68], a measure that reflects increased recruitment of the
contralesional hemisphere, relative to the ipsilesional hemi-
sphere, when performing various motor tasks using their
stroke-affected extremity. Indeed, brain mapping studies show
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increased recruitment of contralesional motor, supplementary,
and premotor cortical areas with voluntary movement from
the stroke-affected extremity [70, 74, 85, 91–96]. The extent
of contralesional hemisphere activation is typically predicated
on the integrity of the corticospinal tract, with greater
contralesional hemisphere activation associated with greater
ipsilesional corticospinal tract injury [97–99]. Better motor
outcomes are generally associated with progressive reductions
in contralesional hemisphere recruitment and/or increased re-
cruitment in the ipsilesional hemisphere, comparable to a pre-
stroke contralateral motor organization scheme [44, 51, 52,
68, 85, 93, 100–103], although the extent to which this finding
generalizes likely varies according to severity of impairment.

Imbalances in transcallosal-mediated [90, 104, 105] IHI
also emerge after stroke. Compared to healthy controls, indi-
viduals with stroke often demonstrate greater inhibition in the
contralesional to ipsilesional primary motor cortex direction
[105–108] and/or less inhibition in the ipsilesional to
contralesional primary motor cortex direction [105, 109].
Murase et al. [106] measured the amount of IHI during a
simple reaction time paradigm using paired-pulse TMS.
Subjects with stroke did not demonstrate significant differ-
ences in IHI at rest compared to controls. However, just prior
tomovement initiation of the stroke-affected hand, individuals
demonstrated an increase in IHI in the contralesional to
ipsilesional primary motor cortex direction that correlated to
reduced finger-tapping speed and overall motor performance.
In contrast, control subjects demonstrated a decrease in IHI,
indicative of facilitation, prior to movement onset. Future re-
search is required to better understand the relationship be-
tween cortical vs. subcortical lesion involvement and IHI as
current work is inconclusive [104, 105, 109, 110].

Shifting of Cortical Representational Maps

Another compensatory response to stroke is reorganization or
remapping of somatotopic representation. Somatotopic order-
ing, or maps, exist in the cortex, white matter, and subcortical
structures such as the basal ganglia [111–113]. Thesemaps are
found in numerous neural systems including auditory and vi-
sion, with much of the map reorganization literature focused
on the sensorimotor cortex. The most striking illustrations of
cortical re-mapping following ischemic injury are in non-
human primates that depict changes in map size and location
occurring in conjunction with underlying axonal sprouting
and the formation of new neuronal connections [39, 114,
115]. Lesion size influences the extent of cortical re-
mapping [116], and subsequent rehabilitation/behavioral
training alters map size and location [114, 115, 117].

In humans, studies employing fMRI [100, 101, 118, 119]
and TMS [64, 119–121] depict stroke-driven alterations in
map representation. Several studies reported shifts in the
motor cortex hand representation in dorsal [122], ventral

[100, 101, 120, 123–125], and posterior [101, 102, 119, 126,
127] directions that may represent the extent of corticospinal
tract injury [128–131]. Previous work has also shown that the
side and extent of injury and degree of behavioral impairment
likely influence the reorganizational pattern [100, 101].
Available data suggests that while the relative position of
certain map fine features shift when stroke injures these maps,
key features of map organization, such as the arm motor map
being dorsal to the face motor map, do not [101]. More
positive motor outcomes are significantly associated with the
preservation of ipsilesional motor map area [118].

Alterations in Functional and Effective Connectivity

An emerging area of study in post-stroke recovery centers on
brain network connectivity (reviewed by Friston, 2011) [132].
Resting-state fMRI and EEG are attractive tools to measure
functional connectivity, defined as low-frequency temporal
correlations in the BOLD signal or synchronization of electri-
cal oscillations, respectively, between distinct brain regions
[132–135]. In contrast to task-oriented fMRI that requires
subjects to complete a physical task during scanning, during
resting-state fMRI, the subject maintains a relaxed but awake
state. One important advantage of resting-state fMRI is that
subjects’ physical impairments do not confound BOLD signal
interpretation as they may in task-oriented fMRI. However, as
with task-oriented fMRI, interpretation of functional connec-
tivity is complicated whenever the stroke injures the very
areas under study, as one must then disentangle injury effects
from plasticity effects within the same zone. One strategy to
address this issue is to exclude damaged regions of interest
[136] or exclude subjects with a pre-specified percentage of
damage to those region(s) of interest under study from
analyses [137].

Research demonstrated disruptions in resting-state
functional connectivity involving regions of motor [136,
138, 139], sensory, attention, and language [140] early
after stroke. These disruptions often relate to the extent
of white matter damage [141, 142]. Akin to previous animal
work [143], functional recovery positively correlates to
resting-state connectivity between interhemispheric networks.
Indeed, our laboratory found that resting-state connectivity
between contra- and ipsilesional primary motor cortex
correlated with treatment-induced gains in motor function
(r=0.45, p=0.01) [137].

EEG measures of coherence or phase and amplitude con-
sistency of neural oscillations between two brain regions may
function as additional probes of those processes evaluated
with resting-state fMRI functional connectivity analyses as
above [144, 145]. Dubovik et al. [146] found greater disrup-
tion of functional connectivity in the alpha frequency band in
individuals with stroke relative to healthy controls. Further,
diminished coherence in the alpha frequency band related to
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the severity of motor and cognitive deficits. Similar to post-
stroke IHI imbalances favoring the contralesional hemisphere
[105–108], Gerloff and colleagues [147] discovered greater
cortico-cortical coherence in the contralesional hemisphere
and reduced coherence in the ipsilesional hemisphere in indi-
viduals with chronic stroke. These results further demonstrate
a compensatory functional shift in the contralesional hemi-
sphere direction.

Effective connectivity studies extend functional connectiv-
ity studies by utilizing sophisticated modeling techniques on
task-based and resting-state fMRI and EEG to explain the
direction and causal relationship between two remote brain
regions [134, 148, 149]. Rehme et al. [150] applied dynamic
causal modeling to task-based fMRI data to examine effective
connectivity between ipsilesional primary and secondary mo-
tor regions. The group found reduced positive couplings be-
tween supplementary motor area and ventral premotor corti-
ces with ipsilesional primary motor cortex immediately after
stroke that eventually increased (i.e., strengthened) over time
and related to positive functional recovery. Collectively, func-
tional and effective connectivity provide insight to the intri-
cate brain circuitry comprising brain networks. This informa-
tion may prove especially valuable when considering post-
stroke therapies and corresponding therapeutic targets.

Treatment-Driven Functional Recovery Mechanisms

There are many types of restorative therapies and com-
binations of restorative therapies currently under study
(Table 1): activity and cognitive-based training [93, 98,
151–155], robotics and brain-computer interface systems
[156–158], non-invasive brain stimulation [159–161],
pharmacological compounds [162–165], stem cells [166,
167], and growth factors [168]. Several meta-analyses
provide treatment effect sizes for arm motor impairment
following therapy: 0.34 (constraint-induced movement
therapy, CIMT) [169], 0.55 (repetitive TMS) [161],
0.65 (robotic arm training) [170], and 0.92 (selective
serotonin reuptake inhibitors) [171]. The implementation
of these therapies to clinical practice may be hindered in
part by the overall quality of evidence available. Many
studies are underpowered and issues of heterogeneity be-
tween studies and inconsistent data reporting exist.

Comprehensive reviews of restorative therapies and
their purported mechanisms are available [172, 173].
Briefly, several of the above therapies manipulate the
peripheral nervous system while others directly stimulate
brain matter. The mechanisms of action of various
pharmacological-based restorative therapies may also elu-
cidate those mechanisms asserting neuroplastic change
post-stroke. For instance, the Fluoxetine for Motor
Recovery After Acute Ischemic Stroke (FLAME) study

investigated motor recovery in non-depressed patients
randomly assigned to oral fluoxetine (20 mg/day) or pla-
cebo pill for 3 months [164]. Patients receiving fluoxe-
tine displayed significantly greater gains in arm/leg Fugl-
Meyer motor score at day 90 than the placebo group (a
9.7 point difference between groups on a 100-point scale,
p = 0.003). In this study, the underlying interaction of

Table 1 Examples of restorative therapies under study

Activity-based therapies
Occupational therapy
Physical therapy
Speech therapy
Constraint-induced movement therapy (CIMT)
Gait training

Cognitive-based therapies
Motor imagery
Mirror therapy
Virtual reality
Augmented reality
Mental rehearsal

Device-based therapies
Robotics*
Telerehabilitation*
Brain-computer interface
Vagal nerve stimulation

Sensory stimulation
Passive limb movement
Electrical stimulation

Brain stimulation
Repetitive transcranial magnetic stimulation
Transcranial direct current stimulation
Epidural cortical stimulation

Pharmacologic therapies
Amphetamine
Methylphenidate
Amantadine
Memantine
Carbidopa/levodopa
Fluoxetine, Escitalopram, and other selective serotonin reuptake inhibitors
Inosine
Ropinirole
Sildenafil
Niacin
Atorvastatin
Donepezil

Biologicals
Basic fibroblastic growth factor
Brain-derived neurotrophic factor
Vascular endothelial growth factor
Erythropoietin
Granulocyte-colony stimulating factor
Monoclonal antibodies

Stem cells
Endogenous stem cells
Exogenous stem cells
Xenografts
Transformed tumor cells
Umbilical cord cells
Embryonic and fetal stem cells
Induced pluripotent stem cells
Adult stem cells such as mesenchymal stromal cells

*These device-based therapies might also be classified as activity-based
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fluoxetine and neurotransmitters resulted in enhanced
motor recovery outcomes. In general, treatment-driven
and spontaneous mechanisms of recovery overlap.

Carey et al. [93] observed activation of contralesional brain
regions when subjects with chronic stroke performed a finger
tracking exercise using their stroke-affected hand. Following a
series of training sessions, subjects demonstrated significant
changes in brain laterality consistent with increased utilization
of the ipsilesional hemisphere. Importantly, improvement in
finger tracking accuracy and shifts in brain activation translat-
ed to gains in functional activity with significant increases in
Box and Block scores. Results from this seminal study dem-
onstrated a resumption of ipsilesional hemisphere activity and
an improvement in stroke-affected hand function resulting
from task-specific training. Other work has shown similar
shifts in cortical activation and an enlargement of ipsilesional
motor map representation following various motor rehabilita-
tion programs including CIMT that involves forced-use of the
hemiparetic arm [103, 154, 155, 174, 175]. Recent work
employing robotic upper-extremity training exhibited changes
in EEG coherence between ipsilesional primary motor,
premotor [176], and bilateral primary sensory areas [156].
Specifically, heightened coherence in the high frequency beta
band (defined as 20–30 Hz by Wu et al. [176] and 24–33 Hz
by Pellegrino et al. [156]) correlated with upper-extremity
motor function improvement. Together, these results reinforce
previous work showing associations between motor system
function and the beta frequency band [135, 177].
Additionally, enhanced resting-state fMRI network connectiv-
ity involving supplementary and bilateral motor cortices and
visuospatial areas with the cerebellum and association areas
also correlated with gains in upper-extremity function follow-
ing robotic and brain-computer interface-led upper-extremity
training [158].

Due to the high frequency of motor-related impair-
ments after stroke and their impact on overall post-
stroke disability, a large portion of rehabilitation literature
focuses on treatment of motor deficit. Nonetheless, repet-
itive TMS [178] and behavioral training [179] in
individuals with post-stroke hemineglect resulted in
improvements in spatial attention and neglect tasks.
Accompanying these behavioral improvements were
increases in bilateral white matter integrity and cortical
activation in structures and areas associated with visual
attention. Pilot work in patients with aphasia also
demonstrated comparable increases in cortical activity in
language-specific areas following a 2-week language
rehabilitation program [153]. Collectively, these findings
illustrate domain-specific structural and functional chang-
es following targeted interventions. The ability of restor-
ative therapies to exert both behavioral and neuroplastic
change strengthens the potential to translate these thera-
pies to clinical practice.

Brain Repair and Treatment Considerations

Timing of Treatment Delivery

Many studies examining therapeutic-induced mechanisms of
recovery occur during the chronic phase. In a rodent stroke
model, Clarkson and colleagues [180] found that administra-
tion of AMPA receptor agonists several days after stroke en-
hanced stroke-affected forelimb use, whereas earlier adminis-
tration adversely affected recovery. These findings provide
evidence that neural targets relevant to repair at one timepoint
may not be relevant at a later timepoint.

Biernaskie et al. [181] provided a similar message. They
found that introducing enriched rehabilitation 5 days after
experimental stroke in rodents improved behavioral out-
comes, possibly on the basis of enhanced dendritic growth
within undamaged motor cortex. However, the same interven-
tion introduced 30 days after stroke had no effect; introduction
14 days after stroke had an intermediate effect.

Because treatment effects vary based on their timeframe of
delivery, one cannot simply extrapolate intervention findings
from a chronic stroke population to an acute stroke popula-
tion. Relatedly, great debate surrounds the timing of therapy
initiation. Early commencement of CIMT in a rodent stroke
model led to an exacerbation of neural injury [182]. However,
others have found enhanced expression of growth-related pro-
teins and dendritic growth in the ipsilesional hemisphere and
improved behavioral outcomes following early vs. late CIMT
[183] and reaching training [181] in rodents.

Similar CIMT investigation in humans also demonstrates
variable findings. The Extremity Constraint-Induced Therapy
Evaluation (EXCITE) trial was a prospective, single-blind,
randomized, multisite clinical trial that compared a 2-week
CIMT program to customary care in 222 enrolled individuals
with moderate motor arm impairment resulting from stroke 3–
9 months earlier [184]. Subjects receiving CIMT demonstrat-
ed a significant improvement in both primary outcome mea-
sures: a 52 % reduction in time to complete tasks (Wolf Motor
Function Test) and a 76–77 % increase in quantity and quality
of stroke-affected armmovement (Motor Activity Log). These
improvements were significantly greater than those observed
for the control group receiving customary care and persisted
for 1 year. A related study from the EXCITE trial compared
two delivery timeframes of the same 2-week CIMT program
[185]. Subjects receiving early (3–9 months post-stroke) and
delayed (15–21 months post-stroke) CIMT demonstrated
improvements in the Wolf Motor Function Test and Motor
Activity Log from pretest to 12 months following CIMT
administration. However, the early CIMT group exhibited a
significantly greater amount of improvement than the delayed
CIMT group. These group differences were not significant at
long-term follow-up (24 months after study enrollment). In a
smaller-scale comparison of early vs. late CIMT, individuals
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receiving early (<9 months post-stroke) CIMT demonstrated
greater behavioral improvement of the stroke-affected upper-
extremity compared to those receiving late (>12 months post-
stroke) CIMT. Yet, those receiving late CIMT showed greater
changes in cortical reorganization as assessed by positional
shifts in TMS motor maps [186]. The consensus from these
studies is that early rehabilitation is safe and preferable to late
onset therapy.

Treatment Dosage

Treatment dosage (i.e., frequency, duration, and intensity) also
influences functional recovery. The relationship between
treatment dosage and functional improvement is not straight-
forward. Restated, more does not always equate to better, and
research in post-stroke motor [187] and language [188] func-
tion confirm this assertion. The VECTORS study randomized
subjects with acute stroke to traditional upper-extremity ther-
apy, dose-matched CIMT, or high-intensity CIMT [187]. All
groups demonstrated positive recovery and, importantly, no
anatomical MRI evidence of lesion enlargement. However,
participants randomized to the high-intensity CIMT demon-
strated less motor improvement at 3 months post-stroke com-
pared to the other groups. In a related study examining treat-
ment dosage, participants receiving aphasia rehabilitation in a
distributed (6 h per week for 8 weeks) vs. intensive (16 h per
week for 3 weeks) schedule demonstrated significantly greater
improvements immediately after therapy and at 1 month fol-
low-up. Additional work is necessary to examine associated
structural and functional brain changes with varying therapeu-
tic dosages.

Severity of Baseline Impairment

Differences in baseline functional status among subjects can
impact the informative value of brain mapping in discerning
underlying, therapeutic-induced recovery mechanisms.
Könönen et al. [155] observed greater increases in sensorimo-
tor cortex activation following CIMT among subjects
possessing poorer hand motor behavior at baseline. These
findings parallel previous work [98] illustrating greater
supplementary motor cortex activation following CIMT in
participants with diminished corticospinal tract integrity.
Differences in baseline functional status may therefore influ-
ence subsequent patterns of therapeutic-driven neurological
reorganization and may account for discrepancies in the liter-
ature regarding the efficacy of certain therapies and/or drugs.
An overwhelming amount of post-stroke intervention studies
include fairly well-recovered individuals. However, as the
above studies indicate, expanding interventional studies to
include participants with severe impairment or poor functional
recovery is necessary toward our understanding of therapy-
induced mechanisms of recovery.

The Role of Biomarkers

Biomarkers are measurements that demonstrate strong associ-
ations to disease state and progression [189]. For example,
HIV RNA levels serve as a marker for AIDS and thyroid
stimulating hormone concentration acts a marker for hyper/
hypothyroidism. A biomarker might also be conceptualized as
providing correlative behavior in a cross-sectional manner, as
predicting future behavioral course, or as being measured
serially in parallel with behavioral observations. A stroke
biomarker, therefore, signifies an underlying brain state event
linked to behavioral status or to recovery and behavioral
change [190]. Examples of stroke biomarkers include mea-
sures of structure and function and genetic measures
(Table 2). Past work has shown corticospinal tract injury to
be predictive of spontaneous motor recovery [191] and
treatment-induced motor recovery [22]. The implementation
of biomarkers in stroke rehabilitation would address several
existing challenges in the field of stroke. One challenge is to
understand and control the amount of heterogeneity between
patients with regards to functional recovery and its response to
therapeutic intervention. A second challenge is that
behavioral-based stroke measures commonly used in the hos-
pital and clinic settings likely do not fully capture post-stroke

Table 2 Potential stroke biomarkers under study

Structural

Infarct volume

Extent of cortical injury

Extent of white matter injury

Extent of injury to specific sites of gray or white matter

White matter integrity

Percent corticospinal tract injury (tract-specific lesion load)

Functional

Activation within ipsilesional hemisphere sites (intensity or volume;
peri-lesional or remote)

Activation within contralesional hemisphere sites (intensity or volume)

Laterality index, expressing hemispheric balance in activation between
homologous sites

Resting-state functional connectivity

Event-related synchronization and desynchronization

Cortical excitability, facilitation, and inhibition

Motor-evoked potentials (presence, threshold, latency, and magnitude)

Genetic

BDNF val66met polymorphism

ApoE4 allele

Dopamine polygene score

Note that numerous techniques are available for functional assessments,
depending on biomarker, such as fMRI, PET, SPECT, EEG, MEG, and
TMS

ApoE apolipoprotein E, BDNF brain-derived neurotrophic factor
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neurological change and functional improvement [137].
Biomarkers combined with well-established behavioral mea-
surements provide a more complete account of post-stroke
brain change.

Though there are no established biomarkers in stroke re-
covery, there are several potential examples in domains of
language and motor function. For instance, Marchina and col-
leagues [192] found that the volume of stroke-related damage
(i.e., lesion load) to the left arcuate fasciculus predicted speech
impairment. Additional work has also shown right arcuate
fasciculus volume predictive of language recovery following
left hemisphere stroke [193]. Blicher et al. [151] found signif-
icant correlations between behavioral improvement of the
stroke-affected hand and changes in the GABA:creatine ratio
in primary motor cortex of individuals 3–12 months post-
stroke participating in a CIMT program. Decreases in the
GABA:creatine ratio were associated with greater gains in
motor function. Additional work is warranted to substantiate
these findings. Other examples of potential stroke biomarkers
include total infarct volume [194], white matter tract injury
[20–22, 137, 195], cortical activation [42, 52, 91, 137, 174,
196, 197] and connectivity [136–138, 144, 146, 176, 198],
and genetic polymorphisms derived from simple blood tests
[15, 16, 199]. These measures may serve an important role in
guiding treatment, stratifying subjects in intervention studies,
and ultimately predicting functional outcome and response to
therapy. Future research is necessary to confirm the reliability
and validity of potential stroke biomarkers.

Difficulty associated with distinguishing cellular and mo-
lecular mechanisms of spontaneous stroke recovery in
humans is an additional challenge that may limit the identifi-
cation and accessibility of stroke biomarkers in humans. Brain
mapping and blood analysis will continue to guide the devel-
opment of human stroke biomarkers; however, future ad-
vancements in the capability of probing the human brain will
likely uncover additional potential biomarkers.

Summary and Conclusions

Destruction of the neural environment following stroke pro-
pels a series of spontaneous recovery mechanisms at the cel-
lular, molecular, and systems levels. These mechanisms are
often compensatory and incomplete since many individuals
continue to endure persistent disability years following their
stroke. The heterogeneity of stroke has spurred the develop-
ment of numerous restorative therapies that harness
neuroplasticity [26] to reinstate activity in injured but surviv-
ing areas to ultimately improve motor, sensory, language, and
cognitive impairments. Often, the mechanisms underlying
these therapies rely on similar mechanisms as observed in
spontaneous recovery. Several factors such as time of delivery,
dosage, and severity of baseline impairment likely influence

the effects of restorative therapies. Finally, identifying human
stroke biomarkers will enhance clinical and research practices
and result in greater insight into functional recovery
mechanisms.
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