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Abstract There are significant differences in the immune re-
sponse and in the susceptibility to autoimmune diseases among
rodent strains. It would thus be expected that the contribution of
the immune response to cerebral ischemic injury would also
differ among rodent strains. More importantly, there are
significant differences between the immune responses of
rodents and humans. All of these factors are likely to impact
the successful translation of immunomodulatory therapies from
experimental rodent models to patients with stroke.
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There is a variability among infarct size and stroke outcome in
different strains of mice and rats subjected to similar ischemic
insults [1–6]. Much of the literature suggests that there are
differences in cerebrovascular anatomy/cerebral blood flow
among these strains that leads to the variability in infarct size
[2, 7–10]. Little attention has been given to systemic factors
that might influence infarct development and functional re-
covery. Increasing data show that the immune system plays
a critical role in the response to cerebral ischemic injury.
Following the onset of cerebral ischemia, neutrophils, mono-
cytes, and lymphocytes infiltrate the brain [11, 12]. There is
also a marked systemic inflammatory response immediately
after stroke, which is paradoxically accompanied by a depres-
sion in cellular immune responses that predispose to infection

[13, 14]. Despite the defect in lymphocyte responses, humoral
and cellular immune responses to central nervous system
(CNS) antigens can be detected in the weeks to months after
stroke [15–24]. Understanding how the immune response af-
fects stroke outcome and how it can be manipulated to im-
prove outcome is an active area of research, and the results
from this line of research would seemingly be dependent upon
the immunologic background in which these phenomena are
studied. This review will highlight differences in the immune
response among rodent strains and discuss the implications for
stroke research and its translation into the clinical arena.

Strain Differences—Lessons from EAE

Rats

Susceptibility to experimental allergic encephalomyelitis
(EAE) by active immunization with myelin basic protein
(MBP) differs significantly among rodent strains (Table 1).
Lewis rats and Dark Agouti (DA) rats are highly susceptible
to EAE while strains such as Fischer (F344), Brown Norway
(BN), Wistar-Kyoto (WKY), and Piebald Virol Glaxo (PVG)
are poorly susceptible [25–28]. Even among EAE-susceptible
Lewis rats, the relative ease of inducing EAE may differ be-
tween commercial vendors [29]. And while Wistar and
Sprague-Dawley rats are capable of developing EAE, they
are used less commonly than Lewis and DA rats to study this
autoimmune disease as well as other immunologically medi-
ated diseases [30–36]. The susceptibility of rats to autoim-
mune diseases of the peripheral nervous system parallels that
of EAE, with Lewis rats being relatively susceptible to exper-
imental allergic neuritis (EAN) and BN rats being relatively
resistant [37, 38]. Wistar and Sprague-Dawley rats are also
susceptible to EAN but develop less severe disease than
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Lewis rats [37]. Because Lewis and DA rats are more prone to
develop EAE and EAN, as well as autoimmune diseases that
do not affect the nervous system, it suggests that the mecha-
nisms predisposing these strains to autoimmunity are systemic
and not unique to the nervous system [39–42].

There appear to be fundamental differences in the immune
response among rat strains that contribute to the differing sus-
ceptibilities to EAE. For instance, susceptible Lewis rats ex-
press more major histocompatibility complex (MHC) II on
their astrocytes than resistant strains like BN [27, 43]. The
relative numbers of leukocyte subsets also varies among
strains; in comparison to BN rats, Lewis rats have more mast
cells in the CNS (and PNS) [44]. And EAE-resistant F344 rats
have increased numbers of MBP specific CD8+ regulatory T
cells compared to EAE-susceptible Lewis rats [45]. Further,
cytokine profiles differ among strains and correlate with the
ability to induce EAE. Within astrocytes, gene expression for
pro-inflammatory cytokines like tumor necrosis factor
(TNF)-α is associated with increased susceptibility to EAE,
while production of immunomodulatory cytokines like
transforming growth factor (TGF)-β1 is associated with pro-
tection from EAE [46, 47]. EAE-resistant and EAE-
susceptible rats also differ in the production of TH1 and
TH17 cytokines, with susceptible rats expressing more inter-
feron (IFN)-γ, IL-17, and IL-12 in the draining lymph nodes
following immunization [48, 49]. Other factors may also con-
tribute to the susceptibility or resistance to EAE, including IL-
2 production (lower levels are protective) [50] and endoge-
nous nitric oxide (higher levels are protective) [51].

Given the interplay between the brain, the immune system,
and the endocrine system, it is not surprising that there are
differences in the neuroendocrine response to stress that influ-
ence the susceptibility to EAE. Among wild-type rats, behav-
ioral characteristics like aggression (Battack latency time^)
predict susceptibility to EAE [52]. And among inbred rats,
EAE resistant strains (PVG, F344, and BN) exhibit higher
levels of endogenous steroid hormones, including corticoste-
rone, than EAE-susceptible strains [27, 53–55]. As might be
expected, hormonal manipulations affect susceptibility to

EAE, with adrenalectomy rendering the normally EAE-
resistant PVG rats susceptible to severe disease [55].
Further, blockade of endogenous glucocorticoids with RU-
486 leads to worsened severity of EAE in strains that are
already susceptible (i.e., Lewis rats) [56].

EAE-susceptible rat strains also differ with regards to the
relative antigenicity of different myelin epitopes [57], and
strains resistant to active induction of EAE (i.e., by immuni-
zation) may be susceptible to EAE induction by adoptive
transfer of lymphocytes [58]. Both of these factors (the
antigen/epitope used to induce EAE and whether the disease
was induced by active immunization or adoptive transfer) af-
fect the clinical presentation and the neuropathology of the
disease [58–60].

Mice

The SJL/J and C3H/He strains of mice are highly susceptible
to EAE following immunization with MBP, while the DBA/2,
B10.S, and BALB/c strains are relatively resistant (Table 1)
[61–63]. Like Lewis rats, SJL mice express more MHC II on
their astrocytes than EAE-resistant strains (BALB/c) [43].
That the differences in susceptibility are due (at least in part)
to inherent differences in the immune response is demonstrat-
ed by the fact that the normally resistant BALB/c mice can be
rendered susceptible to active induction of EAE by inhibition
of cytotoxic T lymphocyte antigen-4 (CTLA-4), which pre-
vents an inhibitory signal from being delivered to the T cell
[64]. The cytokine profiles of mouse strains, like rat strains,
also predict the susceptibility to EAE. In general, EAE-
susceptible mouse strains tend to have a TH1-type phenotype,
while EAE resistant strains have a TH2/TREG phenotype
[65–67]. And again, paralleling the situation in rats, neuroen-
docrine responses play a role in determining the susceptibility
of mice to EAE. For example, EAE susceptible SJL/J mice,
similar to Lewis rats, have a blunted response of the
hypothalamic-pituitary-adrenal axis to stress, contributing to
EAE susceptibility [68].

C57BL/6 mice are resistant to the active induction of EAE
following immunization withMBP but are susceptible to EAE
induced by the myelin oligodendrocyte glycoprotein 35–55
peptide (MOG35–55); CD1 mice, on the other hand, are resis-
tant to EAE induced with MOG35–55 [69]. The difference in
susceptibility to EAE following immunization with MOG35–

55 in these strains appears to be related, in part, to the fact that
C57BL/6 mice have a higher percentage of CD4+ T cells that
produce IFN-γ and IL-17, as well as increased systemic IL-17
[69]. Increased numbers of regulatory B and T cells may also
contribute to the resistance of CD1 mice to EAE [69].

EAE is a model of multiple sclerosis (MS). It is an imper-
fect model, but it has provided insights into both the systemic
and CNS immune responses in rodents. Another rodent model
of MS results from injection of Theiler ’s murine

Table. 1 Relative propensities for developing inflammatory/
autoimmune disease among commonly used rodent strains

Mouse strains Rat strains

High susceptibility SJL/J
C3H/He

Lewis
Dark Agouti (DA)

Intermediate susceptibility C57BL/6
CBA

Sprague-Dawley (SD)
Wistar
Buffalo

Poor susceptibility DBA/2
B10.S
BALB/c
CD1

Fischer (F344)
Brown Norway (BN)
Wistar-Kyoto (WKY)
Piebald Virol Glaxo (PVG)
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encephalomyelitis virus (TMEV) into the brains of susceptible
mouse strains. Resistant strains are able to clear the virus
while susceptible strains become persistently infected. The
persistent infection leads to a chronic demyelinating disease
that is used as a surrogate of MS [70]. The susceptibility to
TMEVamong mouse strains resembles that of the susceptibil-
ity to EAE. The disease is most severe in SJL mice, of inter-
mediate severity in CBA and C3H/He strains, and least severe
in C57BL/6 mice [71]. BALB/c mice are resistant to the neu-
ropathology of TMEV [72]. During CNS infection with
TMEV, there are increases in TREG and CD45r(+) B cells,
delays in viral elimination and increases in IL-10 messenger
RNA (mRNA) in susceptible SJL mice compared to C57BL/6
mice [73]. Further, the astrocytes of susceptible strains appear
to produce more IL-1α than the astrocytes of resistant strains
[74]. And as is the case with EAE, the susceptibility to TMEV
correlates with the ease of induction of MHC II on astrocytes
[75].

Age and Gender Considerations in EAE

The susceptibility to both EAE and TMEV decreases with age
[76–81]. The age-related decline in susceptibility to EAE and
TMEV is related to the senescence of the immune response
that occurs with aging [80, 82]. Sex and sex hormones also
affect the susceptibility to EAE, TMEV, and other autoim-
mune diseases [83–88]. These facts highlight the need for
using age- and sex-appropriate models when studying the im-
mune response and also suggest that the relative benefits of
immunomodulatory therapies are likely to vary depending on
age and sex.

Psychiatric Disorders: Immune and Strain-Related
Issues

Numerous psychiatric disorders are posited to have an immu-
nologic basis. Chief among these disorders is depression [89].
Given strain-related differences in the immune response, it is
reasonable to assume that there would be strain related differ-
ences in the modeling of psychiatric disorders. For instance,
administration of LPS leads to long-term depressive-like be-
havior in C57BL/6 mice but not in CD1 mice [90]. And in
comparison to C57BL/6 mice, BALB/c mice have increased
immune activation following LPS injection with an increase
in depressive behavior [91]. And following an LPS challenge,
the microglia of high-anxiety inbred mice (DBA/2J and
129S2/Sv) are polarized to an M1 phenotype relative to mice
without anxiety [92]. We also showed that there were strain-
related differences in Bfatigue^ and Bdepression^ after stroke
with Lewis rats displayed depressive-like behavior while
Wistar and SD rats displayed fatigue-like behavior [93].
These examples just skim the surface of a robust literature

showing an association between the immune response and
psychiatric disease, and thus, the relationship between animal
strains and the modeling of psychiatric disorders.

The Immunology of Stroke: Strain-Related Issues

Based on the literature that shows fundamental differences in
the immune response among rodent strains, one would expect
that the immune response following ischemic brain injury
would also differ among strains. The relative benefit of immu-
nomodulatory interventions for the treatment of stroke would
thus be expected to differ as well. When studying immune
mechanisms in stroke, one should ideally evaluate both
EAE-susceptible and EAE-resistant strains to best understand
the true contribution of the immune response to stroke out-
come and the likelihood that modulating that response would
be of benefit. For instance, we showed that the long-term
behavioral outcomes among Lewis, Sprague-Dawley, and
Wistar rats were quite different despite similar infarct volumes
at 24 h after middle cerebral artery occlusion (MCAO) [94].
At 1 month after MCAO, the cytokine profiles among these
three strains differed with less circulating IL-1α in Sprague-
Dawley rats and more circulating IL-10 in Lewis rats [93];
many of the behaviors assessed at this time point correlated
significantly with these cytokine levels.

Wistar and Sprague-Dawley rats, strains with intermediate
susceptibility to EAE, are arguably the most common rat
strains used in stroke research. Very few stroke studies are
done in EAE-resistant F344 rats (with some authors reporting
that the strain is unsuitable for the filament model of MCAO)
[95]. Our group has used EAE-susceptible Lewis rats almost
exclusively for studies that address the post-ischemic immune
response. Upon noticing variation in stroke outcomes after
switching vendors, we began to take note of differences in
what is supposed to be an inbred rat strain. For instance, there
were significant differences in baseline temperatures as well
as differences in the magnitude of temperature changes fol-
lowing MCAO (Fig. 1). At least one plausible explanation for
such differences among inbred animals between vendors is
that of differences in the gut microbiome [96]. Given that
the gut microbiome plays an important role in driving the
immune response and triggering autoimmune disease
[97–101], vendor differences in diet and the microbiological
milieu may significantly affect the post-ischemic immune re-
sponse as well as responses to immunomodulatory therapy.

With limited exceptions, virtually all of the studies exam-
ining immunologic changes after stroke in mice, as well as the
response to immunologic therapies, have been done in the
C57BL/6 strain, which has intermediate susceptibility to
EAE. One of the obvious reasons for using C57BL/6 mice is
the ability to create transgenic animals from this genetic back-
ground. What this means practically, however, is that almost
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all of what we know about the role of the immune system in
stroke is derived from a single line of inbred mice. And a
recent study showed that despite similar infarct volumes after
MCAO in C57BL/6 and FVB mice (in which EAE can be
reproducibly induced [102]), there were significant differ-
ences in neurological outcome and the immune response be-
tween these strains [103]. That the infarct volumes were sim-
ilar between these strains is important, given that the volume
of ischemic tissue injury will undoubtedly affect the nature
and strength of the immune response. Relative to FVB mice,
C57BL/6 mice had a more robust increase in leukocytes with-
in the brain at 24 h after MCAO. And within C57BL/6 mice
the post-ischemic leukocyte infiltration of the brain was com-
posed mostly of lymphocytes, while in FVBmice it was com-
posed mostly of neutrophils and myeloid cells. In addition, the
systemic effects of stroke differed by strain, with a decrease in
splenic T cells in FVBmice, but not C57BL/6 mice, 24 h after
MCAO. These data again highlight the need to evaluate dif-
ferent strains of mice when studying the contribution of the
immune response to ischemic brain injury.

Susceptibility to Infection

In a mouse model of stroke, sympathetically mediated sup-
pression of TH1-type immune responses was associated with a
predisposition to infection [104]. These data were generated in
SV129/J and C57BL/6 J mice. Subsequent studies showed
that SV129 mice are much more susceptible to infection fol-
lowing MCAO than either C57BL/6 or BALB/C mice [105].
As it turns out, mouse strains differ markedly in their resis-
tance and response to infection in general, independent of
stroke. For instance, given identical pneumococcal infections
of the respiratory tract, BALB/c mice demonstrate no bacter-
emia or death, CBA/Ca, C3H/He, and SJL mice develop se-
vere bacteremia with 100 % mortality, and C57BL/6 and

DBA/2 strains develop only modest bacteremia with approx-
imately 50 % mortality [106]. One would thus expect that not
only the susceptibility to infection following stroke would
differ among different strains, but that the clinical manifesta-
tion of those infections might differ as well.

As mentioned, the increased risk of infection following
stroke appears to be, at least in part, mediated by the sympa-
thetic nervous system (SNS) [104, 107]. That the SNS can
affect the immune response has been appreciated for some
time [108, 109]. The effect of sympathetic activation on the
immune response also appears to be strain dependent in that
chemical sympathectomy increases mitogen-induced lympho-
cyte proliferation in EAE resistant DBA/2 mice but not in
EAE susceptible C57BL/6 mice [110]. Further, systemic epi-
nephrine levels differ with the strain as well as the age of rat,
suggesting that modulation of the sympathetic response may
affect the immune response, the susceptibility to infection, and
the chance of developing autoimmunity/sustained inflamma-
tion after stroke in a strain- and age-dependent fashion [111,
112].

Of Mice and Men

Highly conserved molecular motifs in pathogens, termed
pathogen-associated molecular patterns (PAMPs), activate
the innate immune response through toll-like receptors
(TLRs). TLR-4, for example, is activated by endotoxin/
lipopolysaccharide (LPS), a component of the Gram-
negative bacterial cell wall. The sensitivity of TLR4 to
endotoxin/LPS is vastly different among rodents and humans,
with the immune system of rodents favoring Btolerance^ to
immunologic threats while that of humans favors Bresistance^
to similar threats [113, 114]. For example, administration of
endotoxin intravenously at doses of 15 μg/kg leads to a severe

‡
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*

Fig. 1 Temperatures after MCAO. Data are plotted as the mean (±
standard deviation). Differences in temperature between vendors is
assessed by ANOVA and noted by ‡ (p < 0.001). Differences from

baseline temperatures after MCAO among animals from a single
vendor is assessed by paired t test and noted by *p< 0.05) and **p< 0.01
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systemic response with shock in humans [115, 116]. In mice,
on the other hand, the median lethal dose of endotoxin/LPS is
in the range of 10–12 mg/kg [117, 118]. And the dose
endotoxin/LPS needed to elicit similar systemic levels of IL-
6 is about 200-fold higher in mice than in humans [119]. Not
surprisingly, the response to endotoxin in rodents is also strain
dependent [120]. Similarly, genetic variations in humans (like
single nucleotide polymorphisms [SNPs]) modulate the re-
sponsiveness of TLR4 to endotoxin and the course of
infection/sepsis [121–124].

TLRs are also activated by danger-associated molecular
patterns (DAMPs) released from injured cells. The post-
ischemic inflammatory response is a sterile response that is
undoubtedly set in motion by DAMPs from necrotic tissue.
These DAMPs include high-mobility group box (HMGB)-1,
adenosine, ATP, uric acid, heat-shock proteins, heparin sul-
fate, hyaluronan fragments, and DNA [125, 126]. Based on
what is known about the differences in the responsiveness to
PAMPs, it would not be surprising if there were similar dif-
ferences in the relative responsiveness to DAMPs between
rodents and humans as well as among rodent strains.
Additionally, genetic variation among humans would likely
influence the responsiveness of the innate immune system to
these endogenous DAMPs.

The dissimilarity in the response to sterile injury between
rodents and humans is highlighted by the fact there is essen-
tially no correlation between the genomic profiles of mice and
humans subjected to blunt force trauma or burn injury [127].
Likewise, the correlation between gene expression in human
volunteers treated with LPS and mice treated with LPS is
essentially random [127]. These observations highlight the
fact that the response to both PAMPs and DAMPs differ sig-
nificantly between humans and rodents.

Another important difference between the immune system
ofHomo sapiens and rodents is illustrated by the difference in
the composition of circulating leukocytes. In C57BL/6 mice,
for instance, the majority of circulating cells are lymphocytes
(75–90 %) while only 20–40 % of circulating leukocytes in
humans are lymphocytes [128, 129]. In humans, most WBCs
in circulation are neutrophils (50–70%), and these neutrophils
are not only more numerous that in rodents but also have
different properties than rodent neutrophils [114].

Inhibition of α-4 for the Treatment of Stroke

Lymphocytes and monocytes express the integrins α4β1
(CD49d/CD29) and α4β7 (CD49d/CD103), both of which
are important for cell trafficking [130]. CD49d/CD29 is also
known as very late activation antigen-4 (VLA-4), and CD49d/
CD103 is also known as lymphocyte-Peyer’s patch adhesion
molecule-1 (LPAM-1). Binding of lymphocytes and mono-
cytes to the endothelium occurs through the interaction of

the α4 integrins with either vascular cell adhesion molecule-
1 (VCAM-1) or mucosal addressin cell adhesion molecule-1
(MAdCAM-1). In 2001, we showed that inhibition of the α4
integrin with blocking antibodies (TA-2) decreased infarct
volume and improved outcome at 48 h after MCAO in
Lewis rats [131]. Treatment with the same antibody was
shown to decrease infarct volume at 24 h after MCAO in both
Sprague-Dawley and spontaneously hypertensive rats (SHR)
[132]. Subsequent studies showed that inhibition of VLA-4
(with a different antibody) in C57BL/6 J mice improved out-
come in moderately severe stroke [133], although subsequent
studies in C57BL/6 mice with the same antibody showed no
benefit [134]. While the difference in outcomes in these stud-
ies may have been due to chance alone, it is also clear that not
all C57BL/6 mice are the same and there may be important
genetic and behavioral differences between substrains
[135–137]. In a recent Bmulti-center study^ using young male
C57BL/6 mice, inhibition of CD49d was found to decrease
infarct volume and improve outcome in mild stroke (perma-
nent cortical ischemia induced by electrocoagulation) but not
in severe stroke (transient MCAO induced by an intraluminal
filament) [138]. Based on inherent differences in the immune
response within a species (not to mention between species),
the outcomes of this study may have been different if the
strokes were performed in different mouse strains (ones more
predisposed to inflammation/autoimmune disease), mice with
a different gut microbiome, older mice, or female mice. In
particular, female mice are noted to express less VLA-4 in
the spleen and brain afterMCAO compared tomale rats [139].

Of note, rodents are known to express VLA-4 on neutro-
phils as well as on monocytes and lymphocytes; inhibition of
α4 thus blocks the migration of all of these cell types in ro-
dents [140, 141]. The influx of PMNs (as well as lymphocytes
and monocytes) into the rodent brain following stroke would
thus inhibited by antibodies that block VLA-4 [142]. In con-
trast to rodents, there are relatively more circulating PMNs in
humans, yet these PMNs do not express appreciable α4 [143,
144]. Inhibition ofα4 may, therefore, not prevent the influx of
PMNs into the human brain after stroke, suggesting that the
effect/benefit of VLA-4 inhibition might differ in rodents and
humans.

Summary

Characterizing the immunology of ischemic stroke in a single
rodent strain provides information only about the immunolog-
ic consequences of stroke in that rodent strain. Predicting the
clinical response of patients to an immunological intervention
from studies done in a single strain of inbred mice or rats
would, therefore, seem destined to fail. Not only are there
critical differences between the immune responses of different
rodent strains, there are even larger differences between the
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immune response of rodents and Homo sapiens [114,
145–147]. And as opposed to inbred rodent strains, humans
are genetically distinct from each other and have a wide range
of genetic polymorphisms that influence the immune re-
sponse, which suggests that the efficacy of a given interven-
tion might differ from person to person. In summary, these
observations suggest that the use of animal models for under-
standing the development of the post-ischemic inflammatory
response has serious limitations and that translation of effec-
tive immunomodulatory therapies from rodents to humans is
likely to be unreliable. While rodent models of stroke may
never adequately address what happens in humans, it would
seem that, at a minimum, studies of immunologic therapies for
stroke be conducted in strains with different propensities for
the development of inflammatory/immunologic diseases.
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