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Abstract Intracerebral hemorrhage (ICH) is a common and
severe neurological disorder, which is associated with high
rates of mortality and morbidity. Despite extensive research
into the pathology of ICH, there are still no clinically ap-
proved neuroprotective treatments. Currently, increasing evi-
dence has shown that inflammatory responses participate in
the pathophysiological processes of brain injury following
ICH. In this editorial, we summarized some promising ad-
vances in the field of inflammation and ICH, which contained
animal and human investigations; discussed the role of neu-
roinflammation, systemic inflammatory responses, and some
potential targets; and focused on the challenges of translation
between pre-clinical and clinical studies and potential anti-
inflammatory therapeutic approaches after ICH.
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Intracerebral hemorrhage (ICH) refers to the condition in
which weakened blood vessels in the brain suddenly rupture
and blood flows into the surrounding brain parenchyma [1, 2].
ICH accounts for 1015 % of all strokes in the USA, Europe,
and Australia, with high morbidity and mortality [3]. Clinical
management of ICH lacks a consensus-based standard strate-
gy and varies significantly along the spectrum of this illness
throughout the world.

Brain injury after ICH is broadly divided into primary brain
injury and secondary brain injury. After sudden rupture of the
cerebral blood vessels, hematoma rapidly forms in the brain
tissues and compresses surrounding brain tissues, leading to a
sharp increase in intracranial pressure, which causes primary
brain injury [4]. Acute resuscitation for ICH patients aimed at
removing mass effect, preventing hematoma growth (blood
pressure control and reversal of coagulopathy) and optimizing
brain perfusion (including control of high intracranial pres-
sure). At present, surgical removal of the hematoma treatment
targeting primary brain injury after ICH has shown only
minimal effects in neurological recovery. The Surgical Trial
in Intracerebral Haemorrhage (STICH) was unable to show an
overall benefit from “early surgery” compared with a policy of
“initial conservative treatment” [5]. Furthermore, the Surgical
Trial in Intracerebral Hemorrhage (STICH II) results con-
firmed that there was no significant difference in mortality
and prognosis between early surgery group and conservative
treatment group [6]. So far, some multicenter, randomized,
controlled trials targeting on the primary brain injury are still
ongoing, such as ICH ADAPT (NCT00963976), MISTIE 11
(NCT01827046), and SWITCH (NCT02258919). Secondary
brain injury following ICH is mediated by primary injury
(e.g., mass effect, high intracranial pressure, and mechanical
stress), as well as physiological response to the hematoma and
the products of hematoma degradation, such as inflammation.
Most of the past experimental studies focused on the preven-
tion and treatment of secondary brain injury after ICH.
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Neuroinflammation contributes to the pathophysiology of
diverse diseases, such as stroke, traumatic brain injury,
Alzheimer’s disease, and Parkinson’s disease [7, 8]. The evi-
dences from randomized controlled trials supported a benefi-
cial effect of inflammation inhibition in several central ner-
vous system diseases, including multiple sclerosis and trau-
matic brain injury [9, 10]. In ICH, inflammation begins im-
mediately after the formation of hematoma and increasing
evidence has shown that inflammation is one of the crucial
contributors of ICH-induced secondary brain injury. The
mechanisms of [CH-induced brain injury mediated by inflam-
mation are complex and involved multiple signaling path-
ways. Since the inflammatory response is an important factor
causing brain injury after ICH, resulting in loss of neurolog-
ical function, anti-inflammation might be a potential treatment
for the patients with ICH. Pre-clinical experiments have con-
firmed that inhibition of the inflammatory responses was an
effective approach to treat ICH. However, clinical trials of
those drugs are rarely successful, especially in prospective
randomized, controlled, double-blinded studies.

Early inflammatory reactions after ICH include accumula-
tion of the inflammatory substance released by inflammatory
cells. Under normal conditions, microglia exert a neuropro-
tective role in the brain. After ICH, microglia was rapidly
activated within minutes of the onset of bleeding. Microglia
represented the primary phagocytic system that promoted the
cleanup of hematoma with the assistance of Nrf2 or peroxi-
some proliferator-activated receptor (PPARg) pathways and
prevented other brain cells from ICH-induced damage [11,
12]. However, excessive microglia were activated by the
products of hematoma degradation, which initiated the cas-
cade of inflammatory signaling pathways and played a key
role in releasing cytokines, chemokines, free radicals, and
other toxic chemicals, eventually aggravated ICH-induced
brain injury. The inflammatory cytokines mainly include
interleukin-1 (IL-1), IL-6, and tumor necrosis factor-oc
(TNF-). The activation of nuclear factor-kB was enhanced,
and the production of IL-1{3, IL-6, and metalloproteinase-9
were increased at 1 and 3 days after ICH in rat’s brain [13, 14].
The anti-inflammatory agent prevented blood—brain barrier
disruption and perihematomal edema development via de-
creasing cytokines after ICH [15]. For the upstream of those
inflammatory molecules, inflammasomes are intracellular
protein complexes that play an important role in regulating
inflammation [16]. NLRP3 inflammasomes promote the mat-
uration and secretion of pro-inflammatory cytokines after
ICH, such as IL-1f3 and IL-18 [17]. Hence, inhibiting
inflammasome might be a promising therapeutic strategy for
treating ICH. In addition, the chemokines and their receptors
were associated with the pathophysiology of ICH. The anal-
ysis of brain tissue has indicated that chemokine receptors and
their downstream effector molecules were activated after ICH
[18]. In a collagenase injection ICH model, prominent

upregulation of mRNAs for CXCL1, CXCL2, and CCL3
was observed [19]. In 85 patients with ICH, higher CCL2
levels at 24 h were independently associated with poor func-
tional outcome at day 7 [20]. Similarly, after ICH, blood-
derived CCR2+Ly6C (hi) inflammatory monocytes trafticked
into the brain in larger quantity than other leukocytes in mice,
and increased TNF expression [20]. Ccr2 (—/—) mice exhibited
better motor function than wild-type mice after ICH. In a
swine model of ICH, CD47 expression was upregulated in
the perihematomal white and gray matter at 4 h to 14 days
after ICH, which was decreased by deferoxamine [21]. Hence,
better understanding of neuroinflammation could shed light
on the development of effective treatments for [CH.
Recruitment and infiltration of inflammatory cells, such as
monocytes, macrophages, neutrophils, and lymphocytes, into
brain parenchyma is the key step of inflammation initiation
and progression [22, 8]. After the lesion vessels rupture, red
blood cells, white blood cells (WBC), plasma proteins such as
thrombin, and other substances permeated into the surround-
ing brain parenchyma and activated inflammatory cells, such
as resident microglia [23-25]. Recently, two retrospective
clinical studies have shown that WBC count in the peripheral
blood independently reflected long-term functional outcome
of the patients with ICH, suggesting that activation of the
peripheral immune system aggravated brain damage after
ICH. Within 72 h after ictus of ICH, if WBC count in the
peripheral blood was more than 10,000/mL?, there was a
relatively high possibility of early neurological deterioration.
WBC counts increase was correlated with the midline shift
[26, 27]. A multicenter prospective study demonstrated that
the levels of IL-6, TNF-&, matrix metalloproteinase-9, and
cellular fibronectin in the serum of patients with ICH were
significantly higher than in controls and were highly associ-
ated with hematoma volume [28]. o4 integrin, as an important
cell adhesion molecule, was elevated on all leukocyte popu-
lations in a blood injection mouse model of ICH, which
suggested o4 integrin was involved in inflammation.
Blocking o4 decreased leukocyte transmigration and lessened
neurobehavioral disability after ICH [29]. More recently, T
cell immunoglobulin and mucin domain-3 (Tim-3) increased
in the early phage in mouse perihematomal brain tissue with a
peak at day 1, which was positively correlated with the con-
centrations of TNF-«, IL-1[3, and brain water content [30].
Fingolimod, a sphingosine 1-phosphate receptor analog, ame-
liorated cerebral inflammation, reduced perihematomal ede-
ma, and improved neurological outcome, by preventing brain
infiltration of T lymphocytes in experimental and clinical ICH
[31, 23]. In another retrospective study, the relatively higher
level of mononuclear cells in the peripheral blood of ICH
patients was closely associated with mortality within 3 months
[32]. In an experimental study, removal of the spleen was
beneficial in hemorrhagic stroke-induced brain injury by
targeting the peripheral inflammatory cells [33], but additional

@ Springer



Transl. Stroke Res. (2015) 6:4-8

studies are needed to translate these exciting findings into
clinical setting.

The components of hematomas, including red blood cells,
the products of their degradation (hemoglobin, heme, and iron
ions), and thrombin all promote inflammation [4]. Toll-like
receptors (TLRs) not only recognize the molecular signals of
different pathogens, but also receive death signals and activate
the immune responses, leading to tissue damage [34]. After
ICH, TLRs were activated by the components of hematomas,
which played a key role in innate immunity and inflammatory
responses after ICH. TLR2 and TLR4 are expressed on sev-
eral cells in the central nervous system, including microglia,
astrocytes, neurons, and endothelial cells. TLR2 and TLR4
signaling pathways were crucial to ICH-mediated inflamma-
tion, and TLR antagonists were used to attenuate brain injury
via inhibiting inflammatory response after ICH [35, 36].
TLR4 mRNA and protein expression levels started to increase
in the first few hours after ICH and reached a peak level within
3 days. Heme from blood activated TLR4 for activation of
microglia, which aggravated inflammatory injury. TLR4 inhi-
bition promoted hematoma absorption via increasing CD36
expression in microglia and significantly improved neurologic
deficits following ICH [37]. A recent clinical trial showed
overexpression of TLR2 and TLR4 on the peripheral mono-
nuclear cell membranes of patients with ICH at admission to
be closely associated with their prognosis [38]. TLR4 antag-
onists include TAK-242, curcumin, zingiberene phenol, and
isoliquiritigenin [35]. However, the clinical beneficial effects
of those drugs need to be further investigated [39]. Taken
together, the above evidence suggested inhibition of TLR
would be a potential therapeutic intervention. In addition, after
ICH, some intracellular molecules directly stimulated the
inflammatory reaction. For instance, high-mobility group pro-
tein box-1 (HMGBJ1) is a pro-inflammatory molecule released
from necrotic cells. A case—control study demonstrated that
HMGBI expression in the serum of acute phase ICH patients
was significantly upregulated, which were closely associated
with inflammatory brain injury after ICH and the severity of
the patients [40]. To reduce the toxicity of these products, pre-
clinical studies have used PPARg agonists to promote hema-
toma degradation, and haptoglobin and deferoxamine were
also used to combat the toxicity of hemoglobin/heme and iron
originated from extravascular hemolysis and heme
oxygenase-mediated catabolism [41, 12]. Currently, a pro-
spective, randomized, placebo-controlled, dose-dependent
clinical trial, called Safety of Pioglitazone for Hematoma
Resolution in Intracerebral Hemorrhage (SHRINC,
NCT00827892), is under way. Its purpose is to assess the
effectiveness and safety of PPARg agonist rosiglitazone in
clinical practice [42]. Another method for reducing the sever-
ity of inflammatory brain injury after ICH is to chelate iron
[43-45]. Phase I clinical trials have confirmed that
desferrioxamine as a treatment of ICH was feasible and safe.
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However, intravenous injection of deferoxamine mesylate at
62 mg/kg for Hi-DEF has been suspended due to increased
incidence of acute respiratory distress syndrome. Thus, Intra-
cerebral Hemorrhage Deferoxamine Trial—iDEF Trial
(NCT02175225), which aim to determine whether deferox-
amine mesylate treatment is sufficient to improve outcome
before pursuing a larger clinical trial to examine its effective-
ness as a treatment for ICH, is ongoing.

It is noteworthy that although anti-inflammatory may ame-
liorate the acute brain injury after ICH, one side effect with
this approach is the potentiation of the immune suppression,
which results in higher infection rates [33]. Besides, inflam-
mation and immune cells are crucial to the repair and regen-
eration of brain tissue during the late stage [46—48]. Long-
term suppression of inflammation may affect brain tissue
repair in the late stage of ICH, and this is worrisome. Unfor-
tunately, until now, there are no experiments investigating the
long-term effects of anti-inflammatory drugs during convales-
cence [4]. It may be predicted that, based on careful selection
of patients for enrollment in ongoing trials, combination ther-
apies including early administration of anti-inflammation
agents and surgical evacuation could also be pursued.

In summary, these timely studies revealed a critical role of
inflammation in the mechanism of ICH-induced brain injury.
Anti-inflammatory may be a potential strategy for drug design
and development for the patients with ICH. Therefore, further
investigation of inflammation after ICH is highly warranted.
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