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Abstract Over the past 30 years, the rabbit subarachnoid
hemorrhage model (SAH) has been used for investigating
the post-hemorrhage pathology, especially with respect to
understanding of the mechanisms of cerebral vasospasm.
However, the molecular mechanisms of cerebral vasospasm
remain to be elucidated. Furthermore, it is not clear whether
the rabbit SAH model is suitable for the investigation of
pathological conditions other than cerebral vasospasm, such
as early brain injury. Therefore, the properties of the rabbit
SAHmodel need to be validated, and the reasons for using the
rabbit should be clarified. This review explores the settings
and technical issues of establishing a rabbit cisterna magna
single and double blood injection SAH model and discusses
the characteristics and feasibilities of the models.

Historical Background and Evolution

In 1969, Offerhaus and van Gool reported the first rabbit
subarachnoid hemorrhage (SAH) model using a blood shunt
method to investigate cardiac dysfunction after SAH [1]. In
1977, Svendgaard et al. reported an increased reactivity of the
isolated basilar artery in the rabbit SAH model using a single
blood injection method into the cisterna magna [2]. As far as
we know, this is the first report of a rabbit SAH model using
the cisterna magna blood injection method. In 1982,
Edvinsson et al. first reported rabbit cerebral vasospasms after
SAH using a single blood injectionmethod into the chiasmatic
cistern [3]. Since the early 1980s, the rabbit SAHmodel using
a single blood injection method into cisterna magna has been
used for the research of SAH or cerebral vasospasms (CVS)
[4–7]. Since the late 1980s, the double blood injection meth-
od, which induces a more severe and prolonged vasospasm
than the single blood injection method, and which is well
established in rat and dog models [8], has been used for
investigating CVS in rabbits [9, 10]. However, the double-
injection method is not popular in rabbits, possibly because
the enhancement of CVS is ineffective and carries a high
mortality rate [11, 12]. Recently, Zhou et al. reported a lower
mortality rate and significantly more pronounced CVS in the
double blood injection method in comparison to the single
blood injection method in the rabbit SAH model [13].

Rabbits Employed

The age of rabbit used for experimental SAH ranges from
80 days to 2 years, although few reports actually describe the
age with any precision [14–16]. Nakajima et al. investigated
the effect of aging on CVS in the rabbit single-injection model
by comparing the time course of CVS and the vasodilating
effect of papaverine among three groups: young (2–3months),
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noid hemorrhage.” Only papers published in English between
1969 and 2013 were included.



adult (6–9 months), and old (20–40 months) [17]. With ad-
vancing age, the degree of CVS was augmented, while both
the resolution of CVS after maximal constriction and the
vasodilating effect of papaverine were impaired [17]. The
weight of the rabbit used for the experimental SAH model
ranges from 1.5 to 5 kg (depending on the age of rabbits used)
[18–20], although most of the rabbits weigh about 2–4 kg
(Table 1). As for the strain, the most popular rabbits for the
SAH model are the New Zealand white rabbit and the Japa-
nese white rabbit. Fauve de Bourgogne rabbits [21–23] and
Burgundy rabbits [24, 25] have rarely been used for the rabbit
SAHmodel. Male rabbits are often preferred to female rabbits
[10, 26–28, 15] because of their general pathogenic suscepti-
bility compared with the biologically resilient female [29].
However, the rationale for choosing the gender is not clearly
described in the literature.

Anesthesia, Analgesia, Perioperative Care,
and Monitoring

Ketamine is the most preferred drug for anesthesia (20 mg/kg
[30, 31, 15], 25 mg/kg [32, 19, 33, 34, 13, 35], 30 mg/kg [20,
36–42], 35 mg/kg [43–47], 40 mg/kg [48–57], 50 mg/kg [58,
59, 14, 60, 61, 10, 62–67, 18, 68–71], 55 mg/kg [72, 73],
70 mg/kg [74], intramuscularly (i.m.); 3 mg/kg [75, 76],
intravenously (i.v.)). Ketamine is used alone or in combination
with xylazine (2.5mg/kg [77], 5 mg/kg [43, 44, 30, 45, 74, 46,
31, 39, 41], 6 mg/kg [49, 52, 36–38, 40, 55, 42], 8 mg/kg [50,
51, 62, 53, 63, 56, 57], 9 mg/kg [72, 73], 10mg/kg [58, 59, 61,
10, 66, 67, 18, 47, 69, 70], 15 mg/kg [19], i.m.), droperidol
(1.0 mg/kg [32–34, 78, 13, 35], i.m.) or pentobarbital
(20 mg/kg [65, 54, 68], 30 mg/kg [15], i.v.). Intravenous
injection of pentobarbital is often used for anesthesia
(20 mg/kg [4, 21, 12], 25 mg/kg [79–81], 30 mg/kg
[82–84], 45 mg/kg [85, 5]). Acepromazine [21, 22, 31, 23],
diazepam [75, 76], ethomidate [22], or alcuronium [24] are
occasionally used in combination with other anesthesia. In a
few cases, urethane has been used intraperitoneally [86] or
intravenously [16, 87]. In intubated and ventilated cases,
inhalation of isoflurane or halothane is often used for mainte-
nance anesthesia [9, 88–91, 24]. During anesthesia, rabbits are
often endotracheally intubated and ventilated, although spon-
taneous respiration without intubation has been achieved in
many studies. In some intubated cases, rabbits were mechan-
ically ventilated if necessary until spontaneous respiration
resumed [50, 57, 42]. Tracheostomy was performed in a few
cases [92, 93, 86]. Oxygen was supplied in some cases [79,
19, 24, 55]. In experiments requiring perfusion fixation, rab-
bits were often ventilated during anesthesia. The depth of
anesthesia is usually evaluated by the presence of body move-
ment during surgery, such as that following pain stimulation
by a periodical toe-pinch [37]. Postoperative pain relief is T
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managed by subcutaneous administration (0.1–0.2 mg/kg) or
intramuscular injection (0.04 mg/kg) of buprenorphine [20,
77, 37, 38].

After blood injection, the intracranial pressure (ICP) and
the blood pressure transiently increase before gradually recov-
ering. Using the ICP-controlled extra-intracranial blood shunt
model, Marbacher et al. reported that within 1–2 min after
SAH induction, the ICP rose to a peak (about 8-fold higher
than the baseline value), and within 5–10 min, the ICP
returned to a steady state that was significantly higher than
the baseline [94]. In the single blood injection model, a 2-fold
increase of ICP was seen after SAH, even following 1 mL of
autologous blood injection [25].Marbacher et al. also reported
that the mean arterial blood pressure (MABP) increased
steadily from 70 to 90 mmHg until reaching the ICP peak
and then slowly decreased toward the baseline under subcu-
taneous injection of ketamine (30 mg/kg), xylazine (6 mg/kg),
and continuous intravenous anesthesia [94]. Further, in the
single blood injection model, 4 mL of autologous blood
produced a 1.3-fold increase of the MABP (from 89 to
115 mmHg) within the first minute following SAH, which
returned to the baseline 15 min after SAH under anesthesia
(intramuscular injection of ketamine (50 mg/kg) and xylazine
(5 mg/kg)) [67]. In the samemodel, 1 mL of autologous blood
has been shown to induce a 1.3-fold increase of MABP (from
65 to 85 mmHg) after SAH while under intravenous anesthe-
sia using urethane (8 mg/kg) [87]. These results suggest that
the amount of clot influences ICP, but not MABP.

The mortality of the single blood injection model is com-
paratively low (0–8 %) [61, 43, 36, 37, 46, 84, 13], with very
few exceptions [53, 90] (Table 2). In the double blood injec-
tion model, the mortality is comparatively high (5.56 % [13],
16.7 % [78], 20 % [12], 25.8 % [9], and 30 % [95]) (Table 2).
In the triple blood injection model, Black et al. reported a
mortality rate of 46 % [85]. Rabbits often die owing to acute
respiratory distress after the subarachnoidal injection of blood
[12], angiographic procedure [12], or brain stem injury during
cisternal injection [85]. Above all, respiratory arrest after
blood injection is the most important cause of the death after
SAH. Zhou et al. reported that respiratory arrest occurred
immediately or within 5 min of blood injection with intervals
between 8 s to 1 min in 13 % of rabbits in the single blood
injection model and 22 % of rabbits in the double blood
injection model [13]. Spallone et al. reported that apnea was
observed in 50% of rabbits in the double-injectionmodel with
intervals between 8 and 30 s [12]. In the double blood injec-
tion model, death tends to occur immediately after the second
injection of blood [78, 13]. Therefore, the volume of blood in
the second injection has often been reduced to about 60 % of
the first injection [10, 52, 30, 64, 31, 39, 16].

Regardless of the presence or absence of respiratory sup-
port, PaCO2 and PaO2 are generally maintained around 35–45
and 90–150 mmHg, respectively [49, 60, 10, 36, 74, 67, 96,

90, 24, 56, 25, 87] (Table 1). In spontaneous respiration, body
temperature and pH are maintained between 38 and 40 °C and
between 7.3 and 7.5 [49, 60, 36, 74, 67, 96, 90, 38, 24, 56, 25],
respectively (Table 1). There is great variability in reported
heart rates: 140–300 beats per minute (bpm) [74, 67, 37, 24,
25].

The neurobehavior of the rabbit following SAH has been
evaluated using grading systems by Endo et al. [10, 53, 92,
70], Strong et al. [90, 76, 16, 97], and Zhou et al. [13]
(Table 2). A few reports have performed neurobehavioral
scoring of rabbits using a system commonly employed for
scoring dogs [61, 98, 99, 35]. Using the grading system by
Strong et al., Song et al. reported that the neurobehavioral
score gradually deteriorated after the second blood injection in
the double blood injection model, which peaked at day 5
postinjection [16]. After the first blood injection, rabbits pre-
sented with an apathetic mood, reduced locomotor activity
and sleepiness, decreased feeding and drinking, and occasion-
al neck stiffness [95]. These signs were significantly aggra-
vated after the second blood injection [95]. Spallone et al. and
Tang et al. reported that hemiparesis was observed in 5 and
40 % of SAH rabbits with the double blood injection model,
respectively [12, 70].

SAH Induction

The most commonly used site for blood injection is the
cisterna magna. The lateral prepontine cistern has rarely been
used as a blood injection site (using a silastic tube) [100, 71].
Typically in the prone position, cerebrospinal fluid (CSF) is
aspirated percutaneously or through a surgically opened
wound from the cisterna magna using a needle, and autolo-
gous arterial blood is injected into the cistern magna. For head
fixation, a stereotactic head frame has been used in some cases
[85, 63, 100, 5, 12, 42]. The occipital protuberance is com-
monly used as a palpable landmark to identify the injection
site [90]. Autologous blood from the central ear artery (auric-
ular artery) was used in most cases, while that from the
femoral artery was used in some cases [101, 27, 21, 44, 102,
66, 103, 15, 84, 104]. Rarely, venous autologous blood was
used for this model [91, 87]. Autologous blood is rarely
heparinized before injection [4, 23]. Usually, the blood injec-
tion is performed manually without using any pumping de-
vice. The injection pressure depends on the time period of the
blood injection. The most popular blood volumes have been
1.0 mL/kg in a weight-adapted volume injection and 1.0, 1.5,
2.0, 2.5, and 3.0 mL in a fixed volume injection, while a wide
range of weight-adapted (0.3 mL/kg [95], 0.5 mL/kg [82, 91],
0.9 mL/kg [19, 92], 1.25 mL/kg [4], 1.5 mL/kg [90, 76]) and
fixed (0.5 mL [101, 86], 4.0 mL [49, 36, 67], and 5.0 mL [48,
50, 62, 53, 36, 40, 55, 56, 69]) volumes of blood have been
used in the cisterna magna blood injection model. As
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discussed above, the blood volume in the second injection was
often reduced compared with the first injection volume
(2.5 mL+1.5 mL [10], 5 mL+3 mL [30, 31, 39], 1.5 mL/
kg+1.0 mL/kg [16], 0.8 mL/kg+0.5 mL/kg [64]). While the
most popular injection devices are 23- and 25-gauge butterfly
needles, others include 16-gauge [49, 60], 21-gauge [9, 85,
66], 22-gauge [101, 24], 24-gauge [68], and 27-gauge needles
[79, 19, 44, 12, 83]. Lumber puncture needles [34], silicone
tubes [26, 100, 71], polyethylene catheters [25], trocar needles
[16] are among the other devices used for injection. Blood
injection is performed over a period of time, which is com-
monly within several minutes, to avoid respiratory arrest (for
10 s [27, 70], 20 s [60, 34, 12], 30–45 s [77, 23], 30–90 s [22],
1 min [22], 2 min [74, 47], 2–3 min [21, 87], 3–5 min [90, 76],
and 4 h [71]; over 10 s [51, 40, 56, 57], 20 s [4, 91], 20–30 s
[62], 30 s [36], 1 min [101, 61, 82, 15, 78], 2 min [59, 64, 24,
42], and 30–45 min [77]). After blood injection, the rabbit is
kept in a prone position with the head tilted down (30° [79, 9,
59, 61, 33, 77, 82, 36, 54, 67, 90, 34, 95, 76, 15, 78, 83, 104,
13, 42], 45° [102, 88, 26, 25, 41], 65° [20, 37]) (Fig. 1) for
some time (3min [44], 5 min [21, 22, 102, 12], 10min [85, 19,
20, 95, 37, 91, 92, 23], 15 min [79, 48, 58, 27, 4, 43, 52, 45,
82, 72, 73, 55, 56, 83, 41, 42], 20 min [50, 51, 60, 66, 70],
30 min [59, 32, 77, 65, 88, 74, 54, 89, 18, 15, 68, 16, 13, 35],
40 min [84], 45 min [46], 60 min [105, 104]). To spread the
blood across the cranium, it is important to place the head in a
downward position. In the double blood injection model, the
second blood injection is usually performed following a 24- or
48-h interval [82, 12].

Technical Considerations

For accurate puncture, the neck should be flexed as much as
possible to maximize the craniocervical junction.

Furthermore, touching the inion and C2 spinous process is
important for the accurate puncturing of cisterna magna
(Fig. 2a). For improved visualization, the posterior neck of
the rabbit should be sprayed with alcohol (Fig. 2b), or the hair
of the posterior neck should be trimmed. To avoid puncture
failure, the following factors may be important: (1) having an
appropriate posture for injection, (2) not evacuating too much
CSF, and (3) directing the needle slightly rostrally and punc-
turing as the tip of a needle runs through under the foramen
magnum. During manual blood injection, the size of the
syringe is important, because the resistance of the ICP can
be felt through the appropriate-sized syringe, such as 2.5 cc.
After the injection of blood, the respiratory condition of the
rabbits should be observed for around 10 min, because respi-
ratory arrest mostly occurs in the first few minutes after blood
injection. Accidental movement of the needle tip induced by
body movement during puncture causes the erroneous injec-
tion of blood into a space other than the subarachnoid space.
To avoid body movement, appropriate control of the depth of
anesthesia is important. Immediate withdrawal of the needle
after injection causes leakage of injected blood with CSF from
a dural pinhole.

The most common method of sacrificing rabbits is by
perfusion fixation. In some cases, rabbits have been sacrificed
by bolus injection of sodium thiopenthal (40 mg/kg [37],
20 mg/kg [19]), intravenous injection of potassium chloride
[36, 46], intraperitoneal injection of sodium pentobarbital
(200 mg/kg) [18], intracardiac injection of 15 mL of alcohol
[44], exsanguination under intravenous injection of sodium
pentobarbital (120 mg/kg [54], 60 mg/kg [89], 25 mg/kg [81])
and decapitation [21]. Perfusion fixation is commenced with
200–500 mL of flushing solution (physiological saline solu-
tion [43, 45, 36, 66, 74, 31, 15, 47, 83] which is occasionally
heparinized [15, 83], Hank’s balanced salt solution [50, 58,
59, 67, 72, 39, 56, 41, 57], or physiological phosphate buffer
solution [78, 13]) under an appropriate perfusion pressure
(100 cm H2O [58, 59, 74, 39], 120 cm H2O [60, 32, 43, 33,
45, 78, 47, 55, 57, 13, 35], 75 mmHg [50, 56, 83, 41],
100 mmHg [85]) followed by 200–1000 mL of fixative

Fig. 1 Prone position with the head in downward. Tilting the head 30°
down on an adjustable bed with the feet of the rabbit strapped to the bed
frame using silicone tubes

Fig. 2 Improvement of visibility of rabbit neck and identifying the
landmark for puncturing. a Touching the inion and spinous process of
C2 for identifying the puncturing point. b For improved visualization, the
posterior neck of the rabbit was sprayed with alcohol
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solution (3 % [49, 60, 47] or 4 % [82, 66, 18, 15, 68, 83]
paraformaldehyde, 2.5 % glutaraldehyde [85, 5], 10 % form-
aldehyde [33, 74, 28, 34, 78, 13, 35, 42], or a mixture of
paraformaldehyde and glutaraldehyde (2 %+2.5 % [59, 36,
67, 72, 73, 31], 2 %+2 % [58], 2 %+1.5 % [39], 1 %+1.5 %
[50, 41]).

Discussion

Table 3 summarizes the advantages and disadvantages/
limitations of the rabbit cisterna magna blood injection
SAH model. Compared with large animals such as pigs,
dogs, and monkeys, the size of rabbit can be easily han-
dled in addition to its inexpensiveness and docile nature.
The size of rabbit is large enough to perform angiography
unlike small-size animals such as rat or mouse. Therefore,
rabbit SAH model allows us to evaluate the chronological
change of the arterial diameter by repetitive angiography
in the same animal. Furthermore, the size of rabbit basilar
artery is easy to handle, and the amount of the tissue of
basilar artery is sufficient for performing gene or protein
expression analysis. For these reasons, rabbit SAH model
seems to be appropriate for the study of delayed CVS. In
addition, rabbit has safe, less invasive, and highly reliable
vascular access in the ear, central auricular artery, and
marginal auricular vein. This is one of the most important
advantages in surgical procedure of SAH induction. On
the other hand, using rabbit for SAH model seems to have

limitation in the research using molecular biological ap-
proach because of the less availability of useful antibodies
or genetically modified animals in rabbit.

Currently, there is no evidence confirming the appro-
priateness of rabbit cisterna magna blood injection SAH
model in the study of early brain injury. In volume-
controlled blood injection method, ICP elevation seems
to be insufficient. Rapid increase in ICP followed by
decreased cerebral perfusion pressure (CPP) is one of
the most important factor causing early brain injury.
Therefore, pressure-controlled blood injection method,
such as endovascular perforation, appears to be more
appropriate than volume-controlled blood injection
method for the study of early brain injury. Recently,
Marbacher et al. demonstrated that the rabbit blood
shunt model can be used for the study of early brain
injury after SAH. In their rabbit ICP-controlled blood
shunt model, the bleeding provoked rapid ICP increase,
causing CPP decrease to almost zero, and consistent
early damage to the hippocampus, basal cortex, and
cerebral vasculature [94]. Therefore, the rabbit ICP-
controlled blood shunt model might be better than the
cisterna blood injection model to study early brain in-
jury. However, there is insufficient accumulation of re-
search knowledge regarding early brain injury using
rabbit single or double blood injection model. Further
study using rabbit blood injection method is needed to
evaluate the suitability of this model in the study of
early brain injury.

Table 3 Advantage and disad-
vantage of using rabbit for SAH
model

BA basilar artery, DCVS delayed
cerebral vasospasm, EBI early
brain injury

Advantage Disadvantage/limitation

-Inexpensiveness

-Appropriate body size for handling

Not too small compared to rat, mouse etc.

Not too large compared to dog, monkey, pig etc.

-Docile nature

-Applicability of BA for research

Easiness to handle

Suitability for vascular research

(measurement of contractile response or [Ca2+]i etc.)

Sufficient amount of BA tissue for protein or gene
research

-Safeness, less invasiveness and high reliability of
vascular access

Central auricular artery

Marginal auricular vein

-Easiness of evaluating narrowing of BA

Angiography, perfusion-fixation

-Accumulation of a wide body of research knowledge
regarding DCVS using rabbit BA

-Limitation in molecular biological research

Less availability of useful antibodies for rabbits

Limited availability of genetically modified
rabbits

(transgenic, knockout, knock-in, etc.)

-Insufficient accumulation of research knowledge
regarding EBI using rabbit
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Conclusion

In this review, detailed features of animals used, detailed
methods and settings of SAH induction and various physio-
logical and pathological parameters of rabbit cisterna magna
single and double blood injection model were demonstrated,
and technical issues of making models as well as the advan-
tages, disadvantages, and limitations of using this model were
discussed. This review might deepen the understanding of
rabbit cisterna magna blood injection model and be helpful
for choosing the appropriate animal model in accordance with
each investigation for various pathological conditions after
SAH.
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