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Abstract Polymorphonuclear neutrophils (PMNs) infiltra-
tion into brain parenchyma after cerebrovascular accidents is
viewed as a key component of secondary brain injury.
Interestingly, a recent study of ischemic stroke suggests that
after ischemic stroke, PMNs do not enter brain parenchyma
and as such may cause no harm to the brain. Thus, the present
study was designed to determine PMNs’ behavior after intra-
cerebral hemorrhage (ICH). Using the autologous blood in-
jection model of ICH in rats and immunohistochemistry for
PMNs and vascular components, we evaluated the temporal
and spatial PMNs distribution in the ICH-affected brain. We
found that, similar to ischemia, there is a robust increase in
presence of PMNs in the ICH-injured tissue that lasts for at
least 1 to 2 weeks. However, in contrast to what was suggested
for ischemia, besides PMNs that stay in association with the
vasculature, af ter ICH, we found abundance of
intraparenchymal PMNs (with no obvious association with
vessels) in the ICH core and hematoma border, especially
between 1 and 7 days after the ictus. Interestingly, the in-
creased presence of intraparenchymal PMNs after ICH coin-
cided with the massive loss of microvascular integrity, sug-
gesting vascular disruption as a potential cause of PMNs
presence in the brain parenchyma. Our study indicates that
in contrast to ischemic stroke, after ICH, PMNs target not only
vascular compartment but also brain parenchyma in the af-
fected brain. As such, it is possible that the pathogenic role
and therapeutic implications of targeting PMNs after ICH
could be different from these after ischemic stroke. Our work
suggests the needs for more studies addressing the role of
PMNs in ICH.
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Introduction

Intracerebral hemorrhage (ICH) is a devastating cerebrovas-
cular disease with high mortality and poor prognosis, for
which no effective therapies are available [1–3]. The rapid
accumulation of blood within the brain parenchyma leads to
increased intracranial pressure and brain tissue damage. Local
microglia sense the damage and respond with the release of
various cytokines and chemokines [4–7], which coordinate
the recruitment of blood inflammatory leukocytes. Among
these cells, polymorphonuclear neutrophils (PMNs) are con-
sidered to be the first to arrive to the hematoma site. Here, they
were proposed to cause microvascular plugging and, in an
instance of transmigration, lead to direct intraparenchymal
brain tissue damage [8–11]. It is considered that shortly after
entering the brain parenchyma, PMNs release/discharge an
arsenal of highly cytotoxic molecules (e.g., proteases, immune
regulation peptides, and reactive oxygen species) that are
normally used by PMNs in host-defense activities [12–15].
Although in stroke- and ICH-mediated brain injury [16–19],
most of the preclinical studies agree with the overall deleteri-
ous role of PMNs; several clinical stroke studies testing ther-
apeutic approaches for stroke based on restricting PMNs’
brain entry have been unsuccessful to date due to inefficacy
or side-effects such as direct toxicity, leukopenia, and immu-
nosuppression [20–22]. These clinical negative/neutral out-
comes intensified the debate over the role of PMNs in stroke
pathogenesis [23–27].

Recently, an intriguing study examined (using elegant im-
munostaining and cell-sorting approaches) the temporal and
spatial distribution of PMNs in the human brain tissue after
ischemic stroke and in a mouse brain after experimental focal
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ischemia [28]. It was suggested that although numerous
PMNs enter the ischemia-injured brain, the vast majority of
them remain closely associated with the vasculature
(intraluminal or perivascular). Only a negligible number of
PMNs were found in the intraparenchymal tissue (outside of
the glia limitans) [28], location where PMNs could inflict
most of the damage to the cells of a neurovascular unit.
These intriguing findings in ischemic brain inspire us to
explore in more details the behavior of PMNs after ICH, a
cerebrovascular condition that is pathologically different and
often more damaging than ischemic stroke.

Although a few earlier animal studies confirmed presence
of PMNs in ICH-affected brain [9, 18, 29–32], our present
study focuses on the temporal component of PMNs’ brain
recruitment and vessel wall integrity. And we evaluate spatial
relationship between PMNs and ICH-affected microvessels,
over critical 3 weeks after the insult. We are demonstrating
that the PMNs number increases over the first 3 days after ICH
in the ICH-affected brain and that PMNs infiltrate both the
perivascular space and, in contrast to ischemic stroke [28], the
brain’s intraparenchymal tissue. The intraparenchymal pres-
ence of PMNs antecede or coincides with the loss of
microvessels, suggesting that the extravascular PMNs may
not only be the consequence of the receptor-mediated trans-
migration but also be a result of loss of the physical barrier—
vessel wall.

Materials and Methods

Animal Preparation and Intracerebral Hemorrhage (ICH)
Model in Rat

All the animal studies followed the guidelines outlined in
Guide for the Care and Use of Laboratory Animals from the
National Institutes of Health and were approved by the
University of Texas-Houston Health Science Center Animal
Welfare Committee.

The ICH in 60 male Sprague–Dawley rats (Harlan) (250–
350 g) was induced by intra-striatal infusion of autologous
blood, as we described previously [33–36]. This protocol
produces injury that results in pronounced neurological defi-
cit. Briefly, under 0.35 g/kg chloral hydrate anesthesia, the rats
were immobilized onto a stereotaxic frame. One-millimeter-
diameter burr hole was drilled in the skull, and a 22-G stain-
less steel blunt cannula was inserted at 0.7 mm anterior and
3 mm lateral from the bregma and 3 mm deep from skull for
the blood (collected from femoral artery, right before blood
infusion) infusion (35 μl over 5 min) into the left corpus
striatum. This approach leads to the infiltration of blood into
adjacent neuropil which at closer look forms a heterogeneous
mixture (mosaic) of blood and brain tissue (Fig. 2b), not just a

large bulk of blood. The animals were analyzed at 1, 3, 6, 24,
48, 72 h, 7, 14, and 21 days after surgery.

Animal Perfusion and Immunofluorescence

The animals were anesthetized with isoflurane and intracardi-
ally perfused with ice-cold PBS. The harvested brains were
immediately frozen in 2-methybutane on dry ice and then
stored at −80 °C prior to cryosectioning into coronal 10-μm-
thick sections. The sections were treated with 95 % methanol
containing 5 % acetic acid at −20 °C for 10 min, as we
described [36], and then permeabilized in 0.3 % NP-40 and
blocked in 1 % normal goat serum in PBS. The rabbit anti-
human myeloperoxidase (MPO) (DAKO, A0398; 1:1,000),
mouse anti-rat RP-1 (BD Pharmingen, 550000; 1:1,000), rab-
bit anti-laminin (Novus Biological, NB300-144; 1:2,000),
rabbit anti-rat red blood cells (RBC, Fitzgerald, 60R-
RR009FT; 1:2,000), mouse anti-rat CD31 (BD Pharmingen,
550300; 1:500), or mouse anti-RECA-1 (Abcam, ab9774;
1:500) was applied to the brain sections and incubated at
4 °C overnight. For double immunofluorescence of laminin/
RP-1, laminin/CD31, or laminin/RECA-1, both primary anti-
bodies were simultaneously applied onto the sections and
incubated at 4 °C overnight. The signals were visualized using
goat anti-mouse or anti-rabbit IgG conjugated to either Alexa-
Fluor-488 or Alexa-Fluor-546 (Molecular Probes 1:200). The
tissue sections were covered with the anti-fade mount medium
containing 4 ′ ,6-diamidino-2-phenylindole (DAPI)
(Invitrogen).

Image Capture and Cell/Vessels Counting

A Zeiss Axioskop-2 microscope equipped with CCD camera
and operated with MetaMorph 6.2 software was used for
image acquisition. The fluorescence-labeled cells are visual-
ized using Ex/Em of 490/520 nm for Alexa 488, Ex/Em of
550/575 nm for Alexa 546, and Ex/Em of 365/480 nm for
DAPI. To avoid sampling bias during cell/vessel counting, we
took advantage of the montage element that allows stitching
the images (acquired through 10× objective), an approach
allowing for counting immunopositive PMNs (MPO or RP-
1) or vessels (laminin) across the ICH-affected hemisphere.
Three 10-μm-thick sections through the ICH-affected tissue
(one at the needle insertion site—0.7 mm anterior to the
bregma, and one at 0.25 mm anterior and one at 0.25 mm
posterior from the needle insertion site) were generated for the
data analyses. Five randomly selected rats were analyzed per
each time point. The number of PMNs in an ICH-affected
hemisphere was counted automatically with the assistance of
the MetaMorph program. The total number of PMNs in three
sections from each brain was calculated and expressed as
mean±SEM. The number of blood vessels in naïve or ICH-
affected rat brains was achieved by manual counting vessels
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projected on the computer screen. The vessel counting reflects
the overall number of individual immunolabeled vessels with-
in the area of 0.6 mm [2] representing a hematoma-affected
brain (core and borders).

Statistical Analysis

The results were analyzed using the GraphPad and InStat
programs and are expressed as mean±SEM. One-way analy-
sis of variance (ANOVA) with a Newman–Keuls posttest was
used for multiple comparisons. The statistical significance
was considered at P≤0.05.

Results

PMN Infiltration into Brain After ICH

Myeloperoxidase (MPO) is an abundant constituent of PMNs’
primary granules that is frequently employed as a sensitive
and considerably selective marker for PMNs from their
promyelocyte to the mature stage [37]. In addition to MPO,
RP-1 emerged recently as a reliable antigen for selective
recognition of rat segmented and band PMNs [38, 39]. Thus,
in our initial studies, to confirm the reliability of the PMNs
staining with antibodies recognizing these two antigens, we
demonstrated that in brain tissue after ICH, both anti-MPO
and RP-1 antibodies label the same population of cells (double
immunofluorescence experiment; Fig. 1a). We further showed
that these MPO and RP-1 immunopositive cells also

demonstrate multi-lobed nuclear morphology (visualized
using labeling of nuclear DNA with DAPI) similar to that of
MPO- and RP-1-positive neutrophils from peripheral blood
(Fig. 1a, b; DAPI). Although MPO was earlier shown to
localize to lysosomes of some macrophages [40, 41], the
staining intensity for MPO in the CD68-positive or OX42-
positive cells (markers for microglia/macrophages) in the
ICH-affected brain was dramatically weaker (basically unde-
tectable), as compared to the signal in RP-1-positive PMNs
(data not included), reassuring that under condition of our
experiments both MPO and RP-1 antigens are reliable
markers of PMNs in our morphological studies.

Next, using RP-1 staining, we characterized the temporal
and spatial PMNs’ profile in the ICH-affected brain. In agree-
ment with the existing notion, we found that there are no
PMNs in the naïve-perfused rat brain (Fig. 2a). Also, we
established that intracerebral injection of saline (instead of
blood) results in a negligible neutrophil response in the area
that is solely adjacent to the needle track (used to inject blood),
which is likely the result of mechanical tissue disruption
caused by the stereotaxic surgery (not shown). At 1 and 3 h
after ICH, we consistently detected an occasional (3–4 cells
per cross section through ICH brain) presence of PMNs that
were strictly confined to the hematoma mass. Based on their
homogenous distribution and location within the hematoma
mass, we believe that these cells most likely represent PMNs
that were injected with the blood to produce ICH. It was not
until 6 h after ICH when we detected a clear increase in
number of PMNs in the hematoma-affected hemisphere
(Fig. 2a), both within the ICH core (defined by not only
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Fig. 1 MPO (red) and RP-1
(green) label the same cell
population a in the brain at 24 h
after ICH and b in purified blood
PMN. The nuclei are stained with
DAPI (blue). Comb is an overlay
of MPO/RP-1/DAPI stain. Note
that the nuclei are multilobal,
feature typical for PMNs. The
PMNs attached to glass slide
appear larger than their brain
counterpart. Scale bar 30 μm
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immunostaining with anti-RBC antibody as a region com-
posed primarily of blood, but also consisting of patches of
brain tissue between blood; Fig. 2b) and the hematoma border
(neuropil that is directly adjacent to the hematoma mass;
Fig. 2b). In the course of consecutive 3 days, the total number
of PMNs in ICH-affected tissue robustly increased, followed
by the gradual decline over 2 weeks (Fig. 2a). There were no
PMNs present in the brain at 3 weeks after ICH. No MPO- or
RP-1-positive cells were detected in the contralateral hemi-
sphere at any of the time points.

Vascular Disruption in Brain After ICH

Since one of the primary goals of this study was to establish
the relationship between brain’s PMNs and vascular status
quo, we next investigated the impact of ICH on microvascular
integrity. To visualize the changes in microvascular structure
and distribution in the hematoma-compromised brain, we
used immunohistochemistry and a pan-laminin antibody,
which react with both laminin-1 (α1, β1, and γ1) and
laminin-2 (α2, β1, and γ1). This antibody labels all the brain
vessels (including capillaries) [42]. Since laminin could theo-
retically be degraded by proteases generated in response to
ICH-induced injury (thereby loosing capacity to serve as
tracer for the vessels), in selected experiments, to exclude
such possibility, we showed that laminin marks the same set
of vessels as RECA-1 and anti-CD31 antibodies (tracers com-
monly used for labeling vessels [43–45]) including after ICH
(Fig. 3a, b).

In the naïve rat brain or in the contralateral to ICH hemi-
sphere, blood vessels are evenly distributed throughout the

striatal tissue (Fig. 4a). This homogenous vascular pattern was
significantly disrupted by the ICH. As early as 1~6 h after
ICH, vessels within the hematoma core or hematoma periph-
ery showed some swelling and displayed morphology sugges-
tive of fragmentation (Fig. 4a). This coincided with the local
loss of BBB integrity as assessed by increased albumin per-
meability (not shown). The disruption of the vascular bed
gradually progressed over the consecutive 3 days after ICH
(Fig. 4a, b). By day 3, only scarce vessels remained in the
hematoma core and its immediately adjacent border. Finally,
by day 7, new vessels started to appear, initially at the hema-
toma borders and then gradually extending toward the areas
occupied by hematoma core over the next 2–3 weeks after
ICH.

Vasculature Disruption and PMNs Infiltration

To establish the relationship between blood brain vasculature
and PMNs in the ICH-affected brain, we used RP-1/laminin
double immunofluorescence. In the carefully perfused rat
brains after ICH, we consistently found that PMNs accumu-
lates on the luminal surfaces and in the perivascular space of
blood vessels (Fig. 5a, b), as well as in the brain parenchyma
(locations showing no association with the vessels; Fig. 5c, e).
At the earlier time points, e.g., at 1–3 days after ICH, a
preponderance of PMNs were found to be scattered through-
out the hemorrhagic areas (within the hematoma core as well
as at the adjacent hematoma border) and have no clear asso-
ciation with the surrounding vessels—laminin-outlined struc-
tures. Besides, we observed numerous PMNs that demonstrat-
ed an obvious association with the brain vessels (Fig. 5a, e).
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By day 7, intraparenchymal PMNs were still present, but their
manifestation was less prevalent and primarily confined to
larger vessels at the hematoma borders (Fig. 5e).

Discussion

PMNs in the ICH-affected brain have been studied for several
decades and are often viewed as one of the central features of
inflammation-mediated brain damage [8, 9, 13, 15, 29, 32, 46,
47]. It is assumed that after brain injury, PMNs that are
attracted to the damaged site could not only mechanically
plug affected brain microvessels (contributing to so called
no-reflow phenomenon) but also cause direct biochemical

injury following transmigrating to the brain parenchyma [8,
13, 15]. PMNs that entered the brain parenchyma can generate
large quantities of free radicals (primarily via NADPH-
oxidase and MPO) and release various proteases (e.g., cathep-
sin G, elastase, proteinase 3, or MMP-9), which may degrade
extracellular matrix and produce damage to vessels (including
loss of BBB integrity), neurons, and other cells within the
neurovascular unit [15, 48]. Unexpectedly, recent histological
studies of the brain after ischemic stroke by Enzman et al [28]
posed fundamental questions regarding the pervasiveness of
PMNs’ extravasation and their damaging effect toward the
neurovascular unit. Using brain tissues derived from mouse
subjected to focal ischemia or brain tissue from humans after
ischemic stroke and the carefully executed histological
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approaches, these authors proposed that although PMNs are
localized intraluminally and in the perivascular space of cere-
bral vessels, they were unfrequently present (or not present at
all) in the infarcted brain parenchyma. Since PMNs, which
entered the brain parenchyma, are viewed as a source on tissue
injury, this finding raises many questions and suggests a need
for more careful analysis of PMNs in other cerebrovascular
diseases—that includes ICH.

Thus, in the present study, using specific makers for PMNs
and blood vessels, we analyzed the temporal and spatial
distribution of PMNs in brain tissue after intraparenchymal
injection of autologous blood in rat, a common and clinically
relevant animal model of human ICH [3, 35]. Our data strong-
ly suggest that in the ICH-affected brain, the landscape of
PMNs behavior could be strikingly different regarding
intraparenchymal presence of PMNs. Following either the
ischemic stroke [28] or ICH (present study), PMNs can be
readily seen within the vascular lumen and in the perivascular
space (demarcated by glia limitans) of cerebral vessels. We
found an initial increase in the number of PMNs in the ICH-
affected brain as early as 6 h after the onset of injury, delay
which is similar to that reported for ischemic stroke [28].
PMNs infiltration peaked between 1 and 3 days, which is
again similar to what is reported for ischemic stroke, 8–24 h
[28]. Intriguingly, the most notable feature of the ICH-affected
brain histology was that unlike what is reported for ischemic
stroke [28], we found the abundance of PMNs in the
intraparenchymal tissue. This morphological feature was most
notable between day 1 and 3 after ICH and coincided with the
clear loss of vasculature in the hematoma-affected tissue. A
cause of the observed vascular loss remains speculative, as

much as the role it plays in PMNs’ extravasation. It was
suggested, that following ischemia, the intravascular accumu-
lation of PMNs in the affected brain vessels has no direct
impact on vascular integrity, as evidenced by the intact BBB
integrity [28]. Thus, it is likely that the vascular accumulation
of PMNs after ICH may similarly have no immediate impact
on the vascular damage. Interestingly, Enzman et al. [28] also
noted that although PMNs are seldom present in the paren-
chyma of ischemic brain, their intraparenchymal presence was
noted in case the ischemic tissue showed evidence of hemor-
rhagic transformation [28]. This intriguing observation, to-
gether with the results of our present study, raises a possibility
that the displaced blood components pushed to extravascular
space may be causally related to PMNs extravasation. During
hematoma formation, blood passes through the perivascular
space to the brain parenchyma where it can trigger inflamma-
tion, chemokine production, and PMN recruitment to the
ICH-affected brain. Consequently, blood- and proinflamma-
tory factors-mediated oxidative stress and proteolytic stress
may lead to the disruption of continuity of vessels and PMNs
leakage to the intraparenchymal space. This scenario appears
to be in line with our present findings that the presence of
PMNs in intraparenchymal space corresponded to the territory
demonstrating loss of the vasculature in the ICH-affected
brain, and especially core.

Ultimately, our studies suggest that ICH triggers a robust
PMNs recruitment to the injured brain and that many of these
recruited PMNs enter the brain parenchyma, a location where
PMNs may impose direct injury to all cells comprising the
neurovascular unit. This difference in pathogenesis of ICH
strongly suggests that the therapeutic approaches aiming at
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limiting PMNs recruitment to the injured brain could be more
beneficial when applied to ICH as compared to ischemic
stroke.
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