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Abstract A transient, ischemia-resistant phenotype known
as “ischemic tolerance” can be established in brain in a
rapid or delayed fashion by a preceding noninjurious
“preconditioning” stimulus. Initial preclinical studies of
this phenomenon relied primarily on brief periods of
ischemia or hypoxia as preconditioning stimuli, but it was
later realized that many other stressors, including pharma-
cologic ones, are also effective. This review highlights the
surprisingly wide variety of drugs now known to promote
ischemic tolerance, documented and to some extent
mechanistically characterized in preclinical animal models
of stroke. Although considerably more experimentation is
needed to thoroughly validate the ability of any currently
identified preconditioning agent to protect ischemic brain,
the fact that some of these drugs are already clinically
approved for other indications implies that the growing
enthusiasm for translational success in the field of pharma-
cologic preconditioning may be well justified.

Keywords Ischemic tolerance . Stroke . Brain .

Neuroprotection . Neurovascular unit . Review

One goal common to all preclinical stroke research is to
identify molecular mediators of neurovascular injury or
protection and to devise therapies to either block or enhance
these mechanisms to improve outcome. Investigations of
preconditioning and ischemic tolerance (IT) [1, 2] are no
different: The receptors, signal transduction pathways,

transcriptional regulatory elements, micro and messenger
RNA and protein profiles, and subcellular organelle
function that are modified by the preconditioning stimulus
are all suitable targets for therapeutics. At first pass, the
patient population that suffers from cerebral ischemic injury
due to unpredictable focal stroke, cardiac arrest, or
subarachnoid hemorrhage represents, by definition, one
that is unlikely to derive benefit from preconditioning
research. However, the novel endogenous survival path-
ways identified in preclinical IT studies may ultimately
become targets for drugs that protect brain even when
acutely administered after the precipitating event. Impor-
tantly, a significant number of other patients—those in
which we can anticipate a period of cerebral ischemia
following transient ischemic attack, aneurysm clipping,
subarachnoid hemorrhage, carotid endarterectomy or stent-
ing, asymptomatic carotid stenosis, coronary bypass, and
cardiac valve replacement—represent defined at-risk pop-
ulations ideally suited for translational therapeutic precon-
ditioning. The candidate drugs that might underpin clinical
trials for this latter group of patients actually comprise a
relatively long—and therefore promising—list, particularly
if the current foundation of preclinical studies is expanded
with intention. This review will highlight many of these.

Overview

In the initial years of cerebral IT research, the majority of
studies utilized brief ischemia in vivo, or oxygen–glucose
deprivation (OGD) in vitro, as the preconditioning stimu-
lus. However, as time passed, the effectiveness of other IT-
promoting preconditioning stimuli was slowly realized. The
ability of a nonischemic, nonhypoxic stimulus to protect
against subsequent cerebral ischemia was initially referred
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to as “cross-tolerance,” but with the increasing number of
preclinical pharmacologic preconditioning studies appear-
ing in the literature, this nomenclature is no longer in
frequent use. More important is the implication that the
ability of disparate stimuli to trigger both the metabolic
changes and the up- or downregulation of expression of the
hundreds of genes responsible for establishing IT suggests
that many of these stimuli share a common, but limited, set
of overlapping molecular signaling pathways that may be
amenable to activation by pharmacologic preconditioning
mimetics. Some of these preconditioning-inducing agents
are particularly attractive from a translational standpoint,
given their demonstrated low toxicity and minimal side
effects in humans. Even though several nonischemic or
nonhypoxic stimuli that are not pharmacologic (hyperther-
mia, spreading depression, hyperbaric oxygen, exercise,
etc.) have shown efficacy as preconditioning triggers in
some stroke models, including various “immunological
preconditioning” strategies [2], for the purposes of this
review, only pharmacology-based preconditioning regimens
will garner the spotlight. Not included are prophylactic
approaches to neuroprotection that, in essence, represent
acute or chronic pretreatments in which the drug is present
when ischemia strikes. Rather, the focus here will be on
classical or delayed pharmacologic preconditioning wherein
the singular or final drug treatment of a series precedes the
ischemic event by many hours or days, and the obligatory
genomic reprogramming that largely defines the ischemia-
tolerant phenotype is promoted.

After almost two decades of preclinical research, the
number of pharmacologic stimuli that induce a state of IT is
noteworthy (Table 1). However, the relative depth and
breadth of research on any specific pharmacologic para-
digm for establishing preconditioning-induced IT remains
extremely uneven. For example, some agents that are
clinically approved for other indications and that are safe
and well tolerated in human patients have received scant
attention as preconditioning stimuli, even though a prece-
dent exists for demonstrated protection from ischemic brain
injury in at least one laboratory preconditioning study.
Conversely, some compounds continue to receive consid-
erable experimental attention in animal studies (albeit
sometimes disproportionately from only a handful of
laboratories), and we have uncovered a number of their
respective induction and expression mechanisms, despite
the fact that, even though efficacious in rodents, these
agents are unlikely to be approved for clinical use. The
volatile anesthetics and the KATP channel openers (KCOs)
are the two classes of drugs that break this pattern, given
that a relatively large number of laboratory studies have
characterized the effectiveness of these already clinically
approved drugs; these and other examples from this latter
category will be discussed further below. While not

dismissing the value of in vitro models (including organo-
typic slices and cell culture), the majority of studies cited in
this review will be those conducted in animals subjected to
transient or permanent focal ischemia, or global ischemia,
since the latter models are necessary stepping stones on the
road to demonstrating the neuro-, glial-, and vasculopro-
tective efficacy of a particular preconditioning treatment,
which, in turn, lay the groundwork for clinical trials [3].

Tested at the Bench and Clinically Approved

The volatile anesthetics and the KCOs probably rank as the
most well-studied and best understood pharmacologic
preconditioning agents already in widespread clinical use
(Table 1). One family of drugs that have received a
significant amount of preclinical attention in adult [4–6]
and neonatal [7–9] rodent IT models are the volatile
anesthetics; together with their proven safety profiles, these
agents are ripe for translational application. To date,
isoflurane is the most thoroughly investigated precondition-
ing anesthetic, but more recently, xenon [10, 11] and
sevoflurane [11–14] have garnered attention as well.
Further mechanism-based animal studies of both rapid and
delayed ischemic preconditioning with sevoflurane, the
current inhalational anesthetic of choice for human surgery,
are warranted. Mechanistically, studies implicate inducible
nitric oxide synthase (iNOS), the MAP kinases, Akt, and
KATP channels, as critical to establishing the IT phenotype
following anesthetic preconditioning, and also reveal
gender and sex hormone dependencies [15, 16] (Table 1).

Different subtypes of KATP channels exist in different
subcellular locations and in different tissues; at least nine
structure-dependent families of KCOs have now been
identified, some of which, like diazoxide, are selective for
the mitochondrial KATP channel. Studies of the ability of
chromakalim and selective mitochondrial KCOs like the
blood–brain barrier-permeable diazoxide to precondition in
a classical fashion against global [17–19] and focal [19, 20]
ischemia in rodents are many, as are investigations
conducted in in vitro models. Moreover, rapid diazoxide
preconditioning provided both morphological and function-
al protection in a canine model of brain injury by
hypothermic cardiac arrest [21]. In vitro studies, and some
animal investigations, suggest that KCO-induced IT is
associated with postischemic reductions in proinflammatory
and apoptotic mediators, reactive oxygen species, and
blood–brain barrier breakdown, along with increases in
Akt, endothelial nitric oxide synthase (eNOS), heat shock
proteins, and antioxidant enzymes (Table 1), but the many
molecular pathways leading from channel opening to the
manifestation of cytoprotective neuronal and vascular
phenotypes remain to be clarified. Notably, accumulating
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evidence indicates that activation of mitochondrial KCOs
and modulation of mitochondrial function are key means by
which many other pharmacologic (and nonpharmacologic)
preconditioning stimuli ultimately manifest their protective
effects [22].

Approved for Clinic Applications, but Relatively
Unexplored at the Bench

A surprisingly long list of FDA-approved drugs (e.g.,
deferoxamine, erythropoietin (EPO), antibiotics, opioids,
statins, phytochemicals, peroxisome proliferator-activated
receptor (PPAR) agonists, estrogen, and certain immuno-
suppressants) have shown preconditioning efficacy in a
small number of in vitro and/or in vivo models of ischemic
brain injury (Table 1). Expanding efforts to assess these
pharmacologic stimuli for the robustness of their protective
effects in other models of IT should be prioritized given
their high translational potential. Some of the primary
features that render these compounds particularly attractive
in this regard are detailed below.

Drugs that stabilize the transcription factor hypoxia-
inducible factor (HIF) isoforms HIF-1α and/or HIF-2α
look promising as preconditioning stimuli for anticipated
cerebral ischemia. Deferoxamine, an iron chelator used for
over 30 years in the treatment of assorted chronic anemias
and iron poisoning—and now in clinical trials for intrace-
rebral hemorrhage [23]—is an effective preconditioning
compound in models of neonatal [24, 25] and adult [26, 27]
stroke. As a result of its ability to inhibit members of the
HIF-stabilizing, iron-dependent prolyl hydroxylase family
secondary to binding iron, deferoxamine is just one of
several preconditioning treatments (e.g., LPS, inflammatory
cytokines, thrombin, nitric oxide) that may induce IT in this
mechanistic fashion. The transcription of hundreds of
survival- and angiogenesis-promoting genes (e.g., vascular
endothelial growth factor (VEGF), EPO), as well as the
modulation in cellular energy metabolism, that HIF induces
[28, 29] is thought to contribute significantly to the
ischemia-tolerant state. A number of small molecule
inhibitors of prolyl hydroxylase enzymes are under active
investigation to leverage this phenotype, including the
blood–brain barrier-permeable tilorone [27] and Fibrogen’s
FG-2216 and FG-4592—now in phase II clinical trials for
kidney disease patients with anemia—and may eventually
prove useful as preconditioning therapeutics for HIF
stabilization. However, studies of the effects of neuron-
specific HIF-1α deletion on stroke outcome (in the absence
of preconditioning) are controversial [30, 31], suggesting
that helpful preischemic, but harmful postischemic, effects
of at least neuronal HIF are involved. Therefore, under-
standing, and controlling, the pharmacokinetics of prolyl

hydroxylase inhibition and other HIF regulatory factors will
be critical to the success of such approaches.

Evidence from preclinical studies indicates that EPO,
like nitric oxide, can serve as both inducer [32, 33] and
effector [26, 34–36] of the ischemia-tolerant phenotype.
The ability of exogenous EPO to trigger IT might mimic,
in part, a paracrine-based signaling system for hypoxic/
ischemic preconditioning wherein HIF-driven gene ex-
pression changes occurring in astrocytes lead to the
synthesis and release of EPO and other downstream target
proteins (e.g., adrenomedullin, VEGF), which then medi-
ate the IT response in neurons [33, 37]. The mechanistic
basis of EPO’s beneficial effects with respect to postis-
chemic treatment protocols in animals is multifold [38–40]
(Table 1). Clinically, recombinant human EPO (rhEPO) is
FDA-approved for hematopoiesis and has been used by
millions of people. However, while a phase II stroke trial
for rhEPO showed significant improvements across sev-
eral outcome measures [41], the outcome of the phase III
stroke trial was less encouraging (potentially confounded
by cotreatment with recombinant tissue plasminogen
activator) [42].

Interestingly, some antibiotics also exhibit precondition-
ing effects. In particular, administration of the macrolide
erythromycin to rats protected pyramidal cell function when
hippocampal slices from these animals were rendered
severely hypoxic [43] and improved survival of both
hippocampal and neocortical neurons following transient
global ischemia [44]. Follow-up microarray studies suggest
that this protection may be afforded secondary to poststroke
transcriptional suppression of proinflammatory genes [45].
The morphologic and functional protection against both
transient and permanent focal stroke injury afforded by
preconditioning with the third generation cephalosporin
antibiotic ceftriaxone was also associated with a reduction
in postischemic inflammatory mediators (e.g., TNFα and
MMP9), as well as increases in the expression of the
astrocyte glutamate transporter protein [46]. Assuming that
these improvements in outcome are not the result of
reductions in poststroke infection [47, 48], the fact that
specific members of the commonly prescribed antibiotic
drug family are efficacious as preconditioning stimuli
represent provocative findings with high translational
potential.

In a similar fashion, opioid preconditioning may be
another attractive way to induce rapid or delayed IT in the
clinic, particularly if single doses prove effective, and the
addiction/withdrawal concerns associated with chronic
opioid use can be avoided. However, experimental support
for this possibility is limited at present to a handful of
studies. In particular, morphine effectively preconditioned
Purkinje cells in cerebellar slices against simulated ische-
mic injury [49], and a delta-opioid receptor antagonist

Transl. Stroke Res. (2010) 1:19–30 23



blocked the ability of both hypoxia to precondition cultured
rat cortical neurons against glutamate toxicity [50] and
electroacupuncture to precondition rats against transient
focal stroke [51]. Elsewhere in the CNS, systemic morphine
administration was demonstrated to promote retinal ische-
mic tolerance, while the nonselective opioid antagonist
naloxone blocked ischemic preconditioning-induced retinal
IT [52].

Statins represent another class of widely used drugs that
might find utility for preconditioning at risk patients. One
finding in the ongoing Stroke Prevention by Aggressive
Reduction in Cholesterol Levels (SPARCL) trial was that
high-dose atorvastatin reduced the incidence of subsequent
stroke in patients without known coronary artery disease,
but who had already suffered a recent stroke or transient
ischemic attack [53]; whether this is representative of a
statin-based preconditioning effect is open to debate, as is
the notion that regular statin therapy might chronically
precondition the brain and improve stroke outcome in
patients taking this drug. The few relevant laboratory
studies published to date hint rather strongly that statins
might actually be useful for acute preconditioning, given
that administration of a single dose of simvastatin is
neuroprotective in the postnatal-day-7 rat model of hypoxia–
ischemia [54] and that rosuvastatin protects cultured neurons
from OGD-induced cell death [55]. Although reductions in
the postischemic elaboration of inflammatory cytokines and
increases in Akt and CREB activation were observed in the
former model [56] (Table 1), more preclinical studies are
clearly needed to support this promising avenue of inducing
both short- and long-lasting cerebroprotection.

The ability of several agents commonly found in specific
foodstuffs to serve as preconditioning triggers is consistent
with the notion that, like exercise, phytochemicals and
other dietary factors may engender an acute—or with
regular consumption perhaps even a chronic—ischemia-
tolerant state [57]. Despite the attractiveness of this
concept, the study of the CNS effects of phytochemicals
with respect to preconditioning and the possible mechanis-
tic basis for such an effect is really in its infancy. The best
developed example to date would be resveratrol, a
polyphenolic derivative from grape skins, that is, an
effective preconditioning compound for focal and global
ischemia [58–60]. Whether its mechanism of action
involves alterations in histone deacetylation secondary to
sirtuin activation, increases in PPAR gamma coactivator 1α
(PGC-1α) expression, modulations in mitochondrial redox,
protease release, and/or other effects remain unclear.
Similarly, in a gerbil forebrain ischemia model, short-term
oral administration of grape polyphenol extract is protective
[61]. Even the polyunsaturated fatty acid linolenate, a
common ingredient of vegetable oil, can precondition the
gerbil brain after short-term administration [62]. While

obviously more of a causative agent in disease induction
and progression than a potential treatment, ethanol is a
molecule that can precondition a number of tissues against
ischemic and other injuries, including the stroked brain
[63]. It should not be unexpected that “Eastern” medicinal
herbs and therapeutics—well tolerated by patients for
centuries—might also exhibit preconditioning effects suit-
able for cerebral ischemic protection. To my knowledge, a
single study presents evidence for such an effect: Ginko-
glides (constituents of the nonflavone fraction of a Ginkgo
biloba extract) preconditioned against simulated ischemic
injury in the C6 rat glioma cell line by a HIF1α-, MAPK-,
and Akt-dependent mechanism [64].

Many other clinically approved drugs that promote IT in
brain are worthy of mention. In particular, three ligand-
activated, nuclear transcription factor isoforms in the PPAR
family that regulate gene expression in a number of unique
ways exert neuroprotective effects when given after stroke
[65]. However, studies also demonstrate that, following a 2-
week treatment with the PPARα agonist fenofibrate,
reductions in lesion size are realized following focal
ischemic injury in the rat, secondary to vascular-based
protective effects (reductions in postischemic inflammation
and improved vascular reactivity) [66, 67]. Given the rather
widespread clinical use of fibrates for hyperlipidemia, the
ability of this and other PPAR agonists—perhaps those
acting at the gamma (the thiazolidinediones [68]) and delta
receptors—to not provide stroke prophylaxis per se but
rather to precondition the brain following single or repeated
application deserves more research scrutiny. Treating rats
with estrogen [69] or the primary naturally occurring
estrogen hormone estradiol-17β [70] is also an effective
preconditioning strategy and may leverage the natural
neuroprotective advantage premenopausal women exhibit
regarding their incidence of stroke. The immunosuppressive
drug fingolimod (FTY-720), which is in phase II and phase
III trials for the treatment of multiple sclerosis, precondi-
tions the mouse brain against focal ischemic injury [71]; its
phosphorylation and subsequent activity at different
sphingosine-1-phosphate receptors may underlie this effect,
although cytosolic phospholipase A2 inhibition and other
signaling actions may contribute as well. Thus, studies to
determine whether these and/or other immunosuppression-
based features of FTY-720 contribute to its preconditioning
effect, and whether other FDA-approved immunomodula-
tory drugs might also promote IT, are worthy pursuits.
Finally, one of Western medicine’s “miracle” drugs,
acetylsalicylic acid (aspirin), shows both rapid and delayed
preconditioning-like effects [72, 73], but surprisingly, no
follow-up studies were forthcoming from this early pro-
vocative work.

Finally, there are a number of nonischemic/nonhypoxic,
nonpharmacologic interventions reported to date that
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trigger robust ischemic tolerance in brain, including
exercise [74–77], acupuncture [51, 78, 79], hyperbaric
oxygen, transcranial magnetic stimulation [80], and caloric
restriction [81], to name a few. With the exception of
exercise and hyperbaric oxygen, studies of the ability of
antecedent treatment with these agents to protect brain are
relatively rare. Ultimately though, the signaling pathways
and molecules that lead to the requisite metabolomic and
genomic changes induced by these interventions, when
identified, may become viable targets of a pharmacologic
preconditioning strategy.

Tested at the Bench, but Unsuitable for Clinic
Applications

As alluded earlier, there are some pharmacologic agents
(e.g., lipopolysaccharide (LPS), NMDA, and the metabolic
inhibitor 3-nitropropionic acid (3-NPA)) that have received
significant experimental focus. However, these agents are
unlikely to be approved for clinical use because of toxicity
concerns related to the difficulties of dose titration and the
magnitude of noncerebral, off-target side effects. Other
drugs in this category include exogenously administered
thrombin [82, 83], adenosine [17, 84], TNFα [85],
bradykinin [86], and oxidative stress-inducing agents [87]
(Table 1). However, as elaborated below, analogs of these
compounds may eventually be developed that provide the
same therapeutic, IT-promoting benefit with considerably
fewer safety, tolerability, and dosing concerns, so careful
reviews of the collected mechanistic data underpinning
these studies are merited.

The ability of low doses of LPS, a common endotoxin
derived from the cell membrane of specific Gram-negative
bacteria, to precondition ischemic brain is a case-in-point.
Following a very early study showing LPS-mediated
protection against permanent focal stroke in rats [88],
preconditioning with low doses of this endotoxin in rat [89,
90] and mouse [91] transient focal stroke models and
neonatal hypoxia–ischemia models [92] is now well
established. Notably, LPS is one of the few preconditioning
stimuli to be efficacious in a large animal model of
ischemic brain injury (hypothermic circulatory arrest in
pigs) [93]. Mechanistically, the ischemia-tolerant state is
one exhibiting a transient anti-inflammatory phenotype that,
in turn, appears to result from LPS stimulating a proin-
flammatory activation of the innate immune system. Toll-
like receptor activation likely plays a role in mediating this
somewhat paradoxical response to LPS and perhaps other
preconditioning stimuli as well [94].

3-NPA depresses oxidative phosphorylation secondary to
the irreversible inhibition of succinate dehydrogenase.
Initially, neuroprotection from OGD was documented by

the rapid preconditioning of brain slices with this metabolic
inhibitor [95], but even when administered systemically,
3-NPA can promote a state of delayed cerebral ischemic
tolerance that protects against both transient [96, 97] and
permanent [98, 99] focal stroke in a number of rodent
species; its effects in models of global ischemia are more
controversial [100–102]. While this particular compound
will not be considered for clinical trials, its ability to
transiently reduce cellular metabolism, as observed with the
prolyl hydroxylase inhibitors and to some extent by
preconditioning with aspirin [72] and antibiotics [43],
suggests that a finely controlled, tissue- and/or cell-
specific suppression of mitochondrial metabolism [22]
could serve as a general therapeutic approach to inducing
ischemic tolerance, akin to that found in hibernating and
anoxia-tolerant vertebrates. If generally true, then how to
achieve and temporally regulate such an effect in an organ-
specific manner present one of many significant transla-
tional research challenges in this field.

Additional Considerations

With respect to treating patients by oral or intravenous
routes, the efficacy of some systemically administered,
pharmacologic preconditioning strategies suggests many
provocative implications for therapeutic consideration. For
example, “whole animal” preconditioning with hypoxia or
hyperbaric oxygen, or with systemic (intravenous or
intraperitoneal) administration of agents such as LPS,
3-NPA, various cytokines, resveratrol, etc., must require
the sequential participation of all cells of the neurovascular
unit to account for the pan-cerebral IT they promote. In
other words, protection by centrally delivered precondition-
ing drugs that do not readily cross the blood–brain barrier
(which excludes morphine, ethanol, and a few others) likely
entails the following intercellular signaling sequence:
Cerebrovascular endothelial cells sense and respond in an
integrated fashion to a circulating molecular signal (or
alterations in oxygenation) and transduce the stress/
survival signal to surrounding astrocytes and neurons by
yet another series of intercellular molecular signals. The
extent to which disparate systemic preconditioning stimuli
activate distinct or overlapping signaling pathways in and
between these different cells, and the degree to which the
resulting gene expression patterns are shared among them,
is unclear. As one example, there is evidence that TNFα
serves as a downstream mediator in response to hypoxia
[103], ischemia [104], hyperoxia, LPS [91], exercise [76],
and other preconditioning stimuli. From a treatment
standpoint, these findings suggest that IT may be achieved
in humans by a drug that does not actually have to cross the
blood–brain barrier, but rather, one that is capable of

Transl. Stroke Res. (2010) 1:19–30 25



activating the appropriate cerebral endothelial receptors,
and even though isolated neurons or other resident brain
cells can be preconditioned in culture with a variety of
stimuli, it may be possible that a noncerebral tissue (e.g.,
the liver), or its specialized vascular endothelium, is the
indirect “mediator” of systemically delivered precondition-
ing treatments by virtue of its “response” to such treatments
(e.g., releasing cytokines into the blood). Thus, these
tissues, and not the brain per se, may be suitable therapeutic
targets for stroke preconditioning. The ability of remote
preconditioning (brief mesenteric or limb skeletal muscle
ischemia) to protect ischemic brain [105, 106] underscores
such a possibility.

Next Steps

To date, the endpoints used in many preclinical IT
studies, even for the more “popular” pharmacologic
preconditioning agents, tend to be morphologic; more
functional outcome measures, and more long-term
follow-up studies at clinically relevant time points, are
needed in both focal and global ischemia models.
Ultimately, drumming up solid preclinical efficacy for
any lead preconditioning drug will require detailed
pharmacokinetic studies to identify the time dependency
of its effect and the dose that is neither impotent nor
toxic. Ideally, documentation that such a treatment is
efficacious in large animal models [21, 93], in females
[73, 107], in aged animals where IT may be blunted [108],
and those with comorbidities and other known stroke risk
factors is also needed.

Of course, no pharmacologic treatment is without
unintended side effects and related concerns. Analogs of
one or more of the aforementioned pharmacologic agents
that exhibit less than ideal clinical profiles might
ultimately promote cerebral IT just as effectively but with
a wider safety and tolerability profile. Current examples
of this include dipyridyl, a lipid soluble iron chelator
effective in preconditioning in a photothrombosis model
[109] that may prove less problematic in certain precondi-
tioning paradigms than deferoxamine. The nonmethylated
cytosine-guanine bacterial oligonucleotide CpG, which
acts as a toll-like receptor 9 ligand [110, 111], and the
nonharmful endotoxin analog diphosphoryl lipid A [112]
seem to protect the mouse brain at magnitudes similar to
those achieved with LPS. One or more of the non-
hematopoietic, cerebroprotective EPO analogs that appear
to activate unique EPO receptor populations in brain that
are linked to neuroprotective signaling pathways [40] may
also exhibit robust qualities as a preconditioning agent.

The hypotensive, hyperglycemic, and other side effects
of mitochondrial-selective KCO drugs like diazoxide

might be avoided by using the analogs BMS-191095
[113] and bepridil [114], the latter a clinically approved
antianginal medication. Iptakalim, a relatively new KCO
that crosses the blood–brain barrier to act selectively
at SUR2 type of KATP channels, without adversely
affecting the pancreatic SUR1 type of channels, shows
preconditioning-like neurovascular protective effects in a
rat model of high altitude hypoxic brain injury, even when
administered by gavage [115]. Ultimately, phase I and II
clinical trials will be necessary for our most promising
preconditioning drugs to define dosing, tolerability, and
efficacy in humans, but these translational steps may
fail like many others if such preclinical studies are not
designed carefully and do not adhere to the updated
STAIR criteria [116].

Given the number and diversity of pharmacologic
treatments that currently promote IT in animals, some of
which are already approved for clinical use, and
considering that the very concept of finding utility in
what was viewed by many not so long ago as a field of
endeavor without clinical ramifications, the potential for
translational success looks bright. In all likelihood, the
preconditioning treatment regimen of choice will have
to be modified significantly depending on the nature of
the anticipated ischemic event (as is true in our animal
models), be it stroke, subarachnoid hemorrhage, or any
number of planned or emergency neurosurgical or
cardiac surgeries, or neuroradiological interventions.
Preconditioning “cocktails” may ultimately be utilized
to induce mechanism- and cell-specific IT across all
cells of the neurovascular unit. Also, we may find
pharmacologic preconditioning employed in conjunction
with post-stroke treatments—particularly with the throm-
bolytics. As the field of pharmacogenomics evolves
[117], it will be exciting to define and implement
individualized preconditioning treatments based on per-
sonal genetic profiles.

Despite the many issues regarding chronic drug admin-
istration of any kind, some can envision a future in which a
form of preconditioning-like prophylaxis is pharmacologi-
cally established in a vitamin-mimicking fashion for
patients with defined combinations of the more “standard”
risk factors (e.g., age, race, genetic history, smoking,
hypertension, diabetes) that we already know are associated
with adverse cerebrovascular events.
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