INVITED REVIEW ARTICLE

Contemporary coronary drug-eluting and coated stents: a mini-review

Yuichi Saito¹ · Yoshio Kobayashi¹

Received: 29 October 2020 / Accepted: 30 October 2020 / Published online: 10 November 2020 © Japanese Association of Cardiovascular Intervention and Therapeutics 2020

Abstract

Percutaneous coronary intervention has become a standard-of-care procedure in patients with acute and chronic coronary syndromes, in which coronary stent technology is commonly used. In this mini-review article, we summarize the characteristics of contemporary coronary drug-eluting and coated stents.

Keywords Drug-eluting stent · Drug-coated stent · Percutaneous coronary intervention

The introduction of drug-eluting stents (DES) into the armamentarium of percutaneous coronary intervention (PCI) has reduced in-stent restenosis. Currently, PCI with DES has become a standard-of-care procedure in patients with acute and chronic coronary syndromes. Table 1 lists the features of contemporary stents. The first-generation DES were made of stainless steel, while contemporary DES mainly consist of different kind of alloys such as cobalt chromium and platinum chromium. In the current generation DES, thinner struts are employed than in the first-generation DES (>130 μ m) with preserved radial strength and radio opacity. The lower strut thickness is believed to be associated with better stentrelated outcomes including target lesion revascularization, myocardial infarction, and stent thrombosis [1, 2]. The number of links (connectors) between hoops has an impact on stent flexibility, deliverability and conformability, and possibly clinical events [2]. Current generation DES include both durable and biodegradable polymer-coated stents, and the lifelong presence of durable polymer is reported to be related to chronic inflammation and neoatherosclerosis [3]. To overcome this potential limitation of durable polymer, biodegradable polymer DES have been developed. To date, numerous clinical trials have shown the safety of biodegradable polymer DES compared with durable polymer DES, but their clinical benefit is unclear [4, 5]. DES polymer is applied to the surface circumferentially or only at

✓ Yuichi Saito saitoyuichi1984@gmail.com the abluminal side. Limiting the polymer to the abluminal aspect of the stent reduces total polymer burden, although whether this technology leads to better clinical outcomes is also unknown. Different immunosuppressive and anti-cancer agents are used as anti-restenotic drugs in DES to inhibit smooth muscle proliferation. There is a stent that has an additional circumferential layer of anti-CD 34 antibodies on the stent struts on top of the polymer to capture circulating endothelial progenitor cells, conceptually leading to better endothelial healing. However, the clinical evidence is limited [6]. Beyond polymer-based DES, polymer-free DES and a drug-coated coronary stent have been emerged. With no polymer, abluminally coated probucol regulates the release of sirolimus in the former, while the latter has the microstructured abluminal surface in which an anti-restenotic drug is directly applied.

Coronary stent technologies have evolved enormously in the past 2 decades from bare metal stents to contemporary DES, achieving safer and more effective devices for all patient and lesion subsets undergoing PCI. However, short- and long-term stent-related adverse events continue to accrue even in PCI with contemporary DES [7]. In the future, the use of novel technologies may provide better clinical outcomes.

¹ Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan

Table 1 Dr	ug-eluting an	nd coated ste	ants										
Stents	Manufacture	Strut material	Strut thick- ness (µm)	Number of links	Polymer	Polymer type	Polymer thickness (µm)	Coating method	Absorption time (m)	Drug	Drug elu- tion time (m)	Stent diam- eter (mm)	Stent length (mm)
DES													
XIENCE Sky point	Abbott	CoCr (L605)	81	б	PVDF-HFP	Durable	4.7–7.8 ^a	Circumferential	I	Everolimus	4	2.25-4.0	8–38
XIENCE Xpedition 48	Abbott	CoCr (L605)	81	£	PVDF-HFP	Durable	4.7–7.8 ^a	Circumferential	I	Everolimus	4	2.5-3.5	48
Orsiro	BIOTRONIK	CoCr (L605)	60 or 80 ^b	ю	PLLA	Bioresorbable	3.5-7.4	Circumferential	15	Sirolimus	3	2.25-4.0	13-40
Synergy XD	Boston Scien- tific	PtCr	74	2c	PLGA	Bioresorbable	4	Abluminal	3-4 4	Everolimus	ε	2.25-4.0	8-48
Resolute Onyx	Medtronic	CoCr with Pt-Ir	81 or 91 ^d	NA€	BioLinx ^f	Durable	9	Circumferential	I	Zotarolimus	9	2.0-4.0	8–38
COMBO Plus	OrbusNeich	Stainless steel (316L)	87	7	PLGA block co-polymer ^g	Bioresorbable	≤ 5	Abluminal	б	Sirolimus	-	2.5–3.5	9–33
Ultimaster Tansei	Terumo	CoCr (L605)	80	5	PDLLA-PCL	Bioresorbable	≤15	Abluminal	3-4 4	Sirolimus	ę	2.25-4.0	9–38
Polymer-free D	ES												
Coroflex ISAR Neo	B.Braun Melsungen AG	CoCr (L605)	55 or 65 ^h	ε	NA ⁱ	I	4 ⁱ	Abluminal ⁱ	I	Sirolimus	£	2.25-4.0	9–38
Drug coated ste	nt												
BioFreedom	Biosensors	Stainless steel (316L)	114 or 120	$2 \text{ or } 3^k$	I	I	I	Abluminal ¹	I	Biolimus A9	1	2.5-4.0	14–36
Contemporary	/ coronary DE	S and a drug-c	oated stent u	sed in Japan ar	e listed. Differe	ent stent sizes	may be avail	able outside Japa	n				
CoCr cobalt- platinum-chro	chromium, DE mium, Pt-Ir p	Z drug-eluting latinum-iridiu	g stents, NA 1 m, PVDF-Hi	not applicable, <i>FP</i> co-polymer	PCL poly(e-ca	prolactone), <i>P</i> fluoride and he	DLLA poly-	D, L-lactic acid, <i>J</i> bylene	PLGA poly-la	ttic co-glycc	lic acid, <i>PLI</i>	A poly-L-lact	c acid, PtCr
a 4.7 and 7.8 µ	m on the ablu	ninal and lumi	inal sides	•									
^b 60 μm for 2	25-3.0 mm ste	nts and 80 µm	for 3.5–4.0 r	nm stents									
^c Proximal two	segments hav	e 4 (2.25–3.5 :	mm) or 5 (4.(0 mm) links									
^d 81 µm for 2.0	D-4.0 mm sten	ts and 91 µm f	or 4.5–5.0 m	m (not availabl	le in Japan) stei	ıts							
^e Every 4th cr ⁱ ^f A blend of th	own laser fused e Medtronic pr	d (every 5th cr roprietary com	own fused in ponents (a h	the 2.75 and 3 ydrophobic C1	.0 mm platforn 0 polymer, a hy	ns). Approxima /drophilic C19	ately 1.5 link polymer, an	s for 2.0–3.0 mn d water-soluble j	n stents and a polyvinyl pyr	pproximately rolidinone)	2.5 links for	: 3.5–4.0 mm s	tents
^g An additiona	l circumferent	ial layer of ant	i-CD 34 antil	bodies is applie	ed on the stent	struts on top of	f the polymer	r to capture circu	llating endoth	nelial progeni	tor cells		
^h 55 μ m for 2	25-3.0 mm ste	nts and 65 µm	for 3.5-4.0 I	nm stents									
ⁱ Probucol (ab.	luminal coating	g) mimics the	function of a	polymer by ret	tarding the rele.	ase of sirolimu	IS						
j 114 µm for 3	.5-4.0 mm stei	nts and 120 μn	1 for 2.5–3.0	mm stents									

Biolimus A9 is directly coated to the micro-structured abluminal surface with no polymer

^k2 links for 2.5–3.0 mm stents and 3 links for 3.5–4.0 mm stents

Funding None.

Compliance with ethical standards

Conflict of interest Yuichi Saito reports nothing to disclose. Yoshio Kobayashi reports research grants from Abbott Medical Japan, Japan Lifeline, and Terumo, and honoraria from Abbott Medical Japan, Boston Scientific, and Terumo.

References

- Bangalore S, Toklu B, Patel N, Feit F, Stone GW. Newer-generation ultrathin strut drug-eluting stents versus older secondgeneration thicker strut drug-eluting stents for coronary artery disease. Circulation. 2018;138:2216–26.
- Iannaccone M, Gatti P, Barbero U, Bassignana A, Gallo D, de Benedictis M, et al. Impact of strut thickness and number of crown and connectors on clinical outcomes on patients treated with second-generation drug eluting stent. Catheter Cardiovasc Interv. 2019. https://doi.org/10.1002/ccd.28228.
- Nakazawa G, Shinke T, Ijichi T, Matsumoto D, Otake H, Torii S, et al. Comparison of vascular response between durable and biodegradable polymer-based drug-eluting stents in a porcine coronary artery model. EuroIntervention. 2014;10:717–23.

- El-Hayek G, Bangalore S, Casso Dominguez A, Devireddy C, Jaber W, Kumar G, et al. Meta-analysis of randomized clinical trials comparing biodegradable polymer drug-eluting stent to second-generation durable polymer drug-eluting stents. JACC Cardiovasc Interv. 2017;10:462–73.
- Kobayashi T, Sotomi Y, Suzuki S, Suwannasom P, Nakatani S, Morino Y, et al. Five-year clinical efficacy and safety of contemporary thin-strut biodegradable polymer versus durable polymer drug-eluting stents: a systematic review and meta-analysis of 9 randomized controlled trials. Cardiovasc Interv Ther. 2020;35:250–8.
- 6. Saito S, Krucoff MW, Nakamura S, Mehran R, Maehara A, Al-Khalidi HR, et al. Japan-United States of America Harmonized Assessment by Randomized Multicentre Study of OrbusNEich's Combo StEnt (Japan-USA HARMONEE) study: primary results of the pivotal registration study of combined endothelial progenitor cell capture and drug-eluting stent in patients with ischaemic coronary disease and non-ST-elevation acute coronary syndrome. Eur Heart J. 2018;39:2460–8.
- Madhavan MV, Kirtane AJ, Redfors B, Généreux P, Ben-Yehuda O, Palmerini T, et al. Stent-related adverse events >1 year after percutaneous coronary intervention. J Am Coll Cardiol. 2020;75:590–604.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.