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Abstract
Genomic selection (GS) is fundamentally a statistical genetics technique, which encourages scientists to develop robust 
models for this purpose. However, the application of GS is not confined to mathematical theory alone; it entails a meticulous 
evaluation of its practicality and applicability, particularly across generations of crossbreeding and in the strategic man-
agement of base-populations used for model calibration. While costs have diminished, it remains a substantial investment, 
notably due to the dollar pricing of each breeding sample. To ensure the efficiency of this technology, foresight in planning 
is imperative, taking into account available data, those to be acquired, and the quality of SNP and phenotypic data. Main-
taining focus on the base population that will endure throughout the selection cycles of the program is paramount (given 
that GS models are inherently linked to relatedness among individuals). Selection strategies encompassing both additive 
and non-additive effects are necessary. Still, they must be applied judiciously, considering the phase of the program, be it 
for the development of lines, hybrids, or both. The complexity of models should be managed with prudence, considering 
their routine applicability; for instance, a predictive artificial intelligence model may not always be the unequivocal choice. 
Furthermore, it is wise to consider that in some cases, a simple pedigree-based model may deliver results as effective and 
more cost-efficient than GS. However, when kinship information is limited or absent, this is where genomics reveals one of 
its greatest advantages. Genomic models possess a unique elegance, and those who employ them are at the forefront of crop 
biotechnology advancement.
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Introduction

Genomic selection (GS) represents a well-known innovation 
in the plant breeding process, allowing for the prediction 
of genotypic values without the need to grow and evalu-
ate crops in the field. It proves particularly successful in 
recurrent selection programs tailored for allogamous spe-
cies, characterized by elevated genomic heterozygosity rates 
and, in some cases, protracted selection cycles (Zhang et al. 
2017a; Grattapaglia 2022). The efficacy of GS is closely 
tied to the Linkage Disequilibrium (LD) phenomenon, a 
pattern that affects loci across the genome. This type of 

non-random association suggests that the inheritance of 
loci may not strictly adhere to the pattern of independent 
Mendelian segregation across generations (Liu et al. 2015; 
Skelly et al. 2016). Thus, even a locus not directly linked to 
the expression of a phenotypic trait can provide a significant 
understanding of it. This fundamental feature of segregative 
genetics ushered in a new era of plant breeding, known as 
genomic analysis, enabling strides in developing more pro-
ductive crop varieties.

GS heavily relies on the genetic relationships among indi-
viduals. When applying a model developed for a specific 
population to predict genotypic values in another unrelated 
population, the likelihood of success is expected to be sig-
nificantly reduced (Ramstetter et al. 2017; Merrick et al. 
2022). The base population represents the initial group of 
plants from which breeding endeavors originate. Therefore, 
thoughtfully choosing the base population is essential when 
applying GS approaches to segregative allogamous individ-
uals (Labroo et al. 2021; Grattapaglia 2022). This careful 
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choice serves as the cornerstone for the accuracy and effi-
cacy of genomic prediction along the breeding cycles of the 
program, leading to more pertinent outcomes in the context 
of genetic improvement.

It is common in the literature to find studies that perform 
the training and validation of GS models within the same 
population (as will be discussed in the present Review and 
also been discussed by Taylor 2014, Merrick et al. 2022, 
and Berro et  al. 2019). While this may seem a reason-
able approach, given the optimization of models in a fixed 
founder population, many of these studies group training and 
validation populations in one or a few specific experiments, 
often utilizing samples from a genetic panel of the same gen-
eration (see Ferrão et al. 2017, Simiqueli & Resende 2020, 
and Simiqueli et al. 2023 for more details on this). In this 
context, it is important to consider the relevance of training 
and validating models across different generations, such as 
between parents and offspring, or even other combinations 
of relatedness (Simiqueli et al. 2023); and also, between dif-
ferent environments and types/phases of breeding popula-
tions (Resende et al. 2021). This practice not only ensures a 
more authentic validation but also strengthens the robustness 
and reliability of genomic predictions.

We are immersed in an era of advanced information sys-
tems and big data analysis, where the integration of infor-
mation and the use of Artificial Intelligence (AI) prevail 
(Harfouche et al. 2019; Xu et al. 2022; Montesinos-López 
et al. 2021). However, despite the abundance of technolo-
gies and automation, certain processes have been neglected 
due to the pursuit of quick results. Indeed, GS cannot be 
considered a low-cost technique, and it is dependent on hard 
quantitative genetics skills. To calibrate the models, reliable 
phenotypic data and SNP markers are required. This may 
explain the hesitancy in adopting GS in plant breeding pro-
grams in some sectors, either due to its potential cost or the 
inapplicability of the model to operational reality (Wartha 
and Lorenz 2021). Therefore, progress is needed to seize 
adoption opportunities in both the short and long terms, 
with considerations about cost-based feasibility, disruption 
of current practices, and associated risks (Bernardo 2021).

Genomics demonstrates its great efficiency in the genetic 
characterization of individuals and populations (Huisman 
2017; Dwiningsih et al. 2020). On the flip side, establishing 
DNA causality in the expression of complex phenotypes is 
a finicky field of study, susceptible to producing false posi-
tives in statistical models if not approached with scrupulous 
precision (Wu et al. 2018). The secret to the effective func-
tioning of GS lies in the ability to unravel genetic relatedness 
among evaluated individuals through LD. It is worth noting 
that, in many cases, information about the pedigree of these 
individuals is already available. However, if reliable pedi-
gree information is accessible for the target breeding popu-
lation, the traditional approach of phenotypic selection not 

only proves equally effective but, in most cases, surpasses 
GS (Henryon et al. 2019; Michel et al. 2020). Selection-
based exclusively on pedigree becomes a choice that can 
be adopted without hesitation. However, in scenarios where 
genealogical information is unavailable, or when seeking to 
maximize selection gains through the combination of pedi-
gree and SNP data, the application of genomic selection 
techniques proves highly valid.

This brief review article offers planning perceptions into 
the field of Genomic Selection (GS), aiming to optimize 
time and resource investments during its implementation. 
It consistently centers around the driving force of the tech-
nique, the Linkage Disequilibrium (LD). The topics encom-
pass high-throughput SNP-based genotyping of the breeding 
samples, GS design regarding sample sizes (both pheno-
typed-and-genotyped individuals), and predictive accuracies. 
The primary emphasis is on allogamous crops like maize 
(an annual crop) and eucalyptus (a perennial crop). The 
objective is not to compare predictive models or propose 
statistical protocols, but rather to aggregate strategies for the 
effective application of the technique and explore projections 
of predictive abilities based on available data.

SNP‑based genotyping of the breeding 
samples

In the field of molecular genetics, the choice of the most 
suitable genetic marker is pivotal for precise and effective 
analysis. Studies indicate that single nucleotide polymor-
phisms (SNPs) can provide the most informative estimates 
of genetic differentiation and structure (Dwiningsih et al. 
2020). These SNPs, being the most common form of DNA 
variation, allow for the simultaneous genotyping of hundreds 
to thousands of loci. Advances in sequencing technologies 
have contributed to the creation of extensive SNP datasets, 
expanding the viability of this approach. Today, it is easy to 
access public phenotypic and genomic data, for example, in 
wheat (an autogamous crop) and eucalyptus (Scheben et al. 
2019; Resende et al. 2017). However, it is worth noting that 
some high-impact scientific journals request authors to share 
phenotypic and genomic data to facilitate publication.

In any genomic analysis, especially in the context of 
allogamous plant breeding, Linkage Disequilibrium (LD) 
plays the main role in relating DNA markers to agronomi-
cally relevant traits. LD represents the relationship between 
two or more loci along the genome, resulting in their depend-
ent segregation (Skelly et al. 2016). Therefore, even a locus 
that may not be a direct expression of interest can provide 
relevant information if it is in LD with the target gene. This 
phenomenon is of great importance since, without the occur-
rence of LD, genomic technologies enabling rapid haplotype 
identification and SNP marker detection would be severely 
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compromised. Associating DNA with phenotypic traits 
would, in this context, be akin to the challenge of “looking 
for a needle in a haystack”. Establishing the magnitude of 
LD is fundamental for conducting studies of assisted selec-
tion and genomic selection, although the identification of 
causal variants underlying phenotypic variation remains a 
considerable challenge.

It is not surprising that next-generation sequencing (NGS) 
technologies represent transformative genomic tools (Kim 
et al. 2020). Initiated between 2004 and 2005 with the Roche 
GS20 model, NGS platforms continue to evolve, enabling 
the generation of data with billions of base pairs and high 
nucleotide-level accuracy (Kchouk et al. 2017). The practi-
cal application of this process involves the fragmentation 
and preparation of DNA from plant samples, followed by 
the construction of genomic libraries. The NGS sequencer 
reads DNA sequences, and the resulting data are aligned to 
a species’ reference genome, allowing for the identification 
of variants such as SNPs and indels.

Genotyping arrays, such as SNP chips, are widely used 
in plant breeding. Operationally, these chips consist of glass 
substrates containing thousands of oligonucleotides repre-
senting specific SNPs, enabling high-throughput genotyp-
ing. With high reproducibility and faster result analysis, 
SNP chips integrate molecular data from different studies, 
becoming a routine research approach (Rasheed et al. 2017). 
Figure 1A, adapted from Resende et al. 2017, provides a 
detailed illustration of the distribution of genotyped SNP 
markers on an Illumina BeadChip platform (Silva-Junior 
et al. 2015), specifically for a hybrid population of Euca-
lyptus grandis × Eucalyptus urophylla. Delving deeper into 
Fig. 1-B, we examine the patterns of allogamous heterozy-
gosity across the genome, represented by 2pq = 2p(1 − p) , 
where ‘ p ’ signifies the frequency of one of the bialleles, and 
‘ q ’ is the frequency of the other, or simply 1 − p . This illus-
tration highlights the applicability of SNP chips in species 

with relatively complex genomes, such as eucalyptus, which 
has several native species in Oceania. For instance, E. gran-
dis has a genome of approximately 697 Mb, while in E. 
urophylla, it is approximately 626 Mb.

To ensure high-quality genomic data, it is necessary to 
conduct data mining and cleaning. Genotyping platforms 
typically offer tens or hundreds of thousands of markers. 
However, in the sample used to calibrate the GS models, 
some marker polymorphisms may not be present. This 
implies that while the genotyping library identifies thou-
sands of SNPs, only a portion of them may exhibit polymor-
phism in the sample. Therefore, we need to exclude markers 
with low or no frequency (Minor Allele Frequency, MAF), 
ensuring a high Call Rate (indicative of high-quality data), 
among other quality control measures. Please note that the 
sample in Fig. 1 has ~ 25 K markers, while the chip has 60 K 
(Silva-Junior et al. 2015). In addition, markers should be 
parameterized to capture both additive and non-additive 
genetic effects (Vitezica et al. 2013; Muñoz et al. 2014). 
Detailing these issues is not the focus of this text. For this 
purpose, the utilization of R packages like {snpReady} (Gra-
nato et al. 2018) and {AGHmatrix} (Amadeu et al. 2023) 
are very good options.

GS efforts planning: sample sizes 
and the predictive accuracy

Through high-throughput genotyping techniques, the avail-
ability of large quantities of SNPs per sample allows us to 
fully explore the genetic variance within breeding popula-
tions (Yang et al. 2017; Grattapaglia 2022). As previously 
mentioned, genomic selection is made possible by Linkage 
Disequilibrium (LD) among markers, which is, more directly 
put, the correlation that exists between two markers in a 
genotyped population with SNP markers. This means that 

Fig. 1   Distribution of 24,806 
polymorphic SNP markers 
along the 11 chromosomes of 
a eucalyptus population. Part 
“A” of the figure displays the 
concentration of SNPs per 1 Mb 
window. Part “B” of the figure 
shows the average heterozy-
gosity of SNPs in a 100 kb 
window (in terms of the allele 
frequency ‘ p ’ and ‘ q = 1 − p

’).  Adapted from Resende et al. 
(2017)
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even if a marker is not directly linked to a QTL, many mark-
ers adjacent to the QTL can provide information about the 
segregation of genes related to the expression of the trait 
of interest (e.g., crop yield, time-growth, and biotic/abiotic 
stress tolerances).

By applying genomic-wide selection, or simply genomic 
selection (GS) techniques, it is possible to predict the “phe-
notypes” (i.e., genotypic values) of experimental breeding 
trials, even before these trials are conducted. In other words, 
based solely on the DNA of individuals who would hypo-
thetically be planted in the field. Although this may initially 
seem unrealistic, it makes sense to remember that a signifi-
cant portion of the information leading to the final pheno-
type originates from genes. By appropriately managing and/
or correcting the environmental component of the phenotype 
(as is well known, Phenotype = Genotype + Environment), 
GS models will demonstrate strong predictive abilities 
(Montesinos-López et al. 2018).

It is important to note that, in terms of predictive abil-
ity (i.e., accurately ranking the best genetic materials), GS 
may not necessarily surpass the phenotypic selection carried 
out in the field (Heffner et al. 2011). This is because GS 
is generally applied as an “extremely-early-indirect” selec-
tion method, to approximate the direct selection (a “bench-
mark”) conducted in the field (see preliminary Fig. 2A). 
However, GS can indeed be more advantageous than direct 
field selection, primarily for five reasons: (i) time savings, as 
early genomic selection can be conducted from initial plant 
propagules; (ii) resource savings, including labor and inputs 
that would be expended in the entire process of establish-
ment, phenotypic measurement, and harvest/transportation 
in experimental breeding trials; (iii) the ability to evaluate 

a greater number of genetic materials that may not eventu-
ally go to the field and therefore would not be tested—for 
example, instead of taking 2000 genetic materials for field 
evaluation, 4000 could be genotyped and their phenotypes 
predicted genomically; (iv) predicting traits that are difficult 
to measure, such as root volume in cassava and wood volume 
in highly branched trees; and (v) correcting potential pedi-
gree errors in the construction of the relationship matrix ( A ), 
with this information being recovered through the genomic 
matrix ( G ), or even concatenating matrices A + G into a 
“super” matrix called “ H ” (Legarra et al. 2014).

The GS model performance can be understood with a 
didactic example involving a hundred genetic materials and 
a predictive ability of approximately 50% (Fig. 2). Some 
phenotypically good individuals may be left out of the 
genomic selection sieve and still demonstrate satisfactory 
predictive abilities. Figure 2B shows a shuffle of the best 
and worst phenotypes when predicted genomically, while 
Fig. 2C illustrates the relationship between observed pheno-
typic values (or genetic values estimated from means or Best 
Linear Unbiased Prediction—BLUP—of an experiment). It 
is observed that the term “selection” in GS can be confused 
with genomic “exclusion,” which is actually what happens in 
most cases when GS is used to eliminate the worst individu-
als, rather than to effectively select the best.

Much is said about the appropriate number of markers to 
be used in a genomic selection process, as well as the ideal 
quantity of individuals/genetic materials to be phenotyped 
and genotyped (Merrick et al. 2022; Werner et al. 2020). 
The truth is that there is no one-size-fits-all approach to this 
process. It will depend on various factors inherent to the 
crop species, the population to be improved, the breeding 

Fig. 2   Relationship between observed phenotypic values (averages 
or BLUP of hundred genetic materials) in the experiments versus 
genomically predicted values. In part “A,” the so-called "true” geno-
typic ranking based on experimental field-measured values is shown. 
In part “B,” only genomic prediction is displayed, yet analogously to 
the ranking of genetic materials seen in “A.” Part “C” illustrates the 

relationship between parts “A” and “B.” The dotted blue line repre-
sents the selection sieve of the GS, with selected genetic materials on 
the right and discarded ones on the left. The gray dotted line in part 
“C” provides an indication of the predictive ability of the GS model. 
Adapted from Vianello, Resende & Brondani (2023)
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objective (such as developing lines, hybrids, and clones), 
and the phenotypic trait targeted for breeding (Silva et al. 
2021). Among some equations used to plan the breeding 
program coupled with genomic selection, Resende (2008) 
proposed the equation:

where r̂gĝ is the projected, or theoretical, predictive accuracy 
(attempting to anticipate the predictive ability achieved in 
GS practice); L is the size of the species genome (in mor-
gans, M); nm is the number of SNP-type markers; h2 is the 
coefficient of heritability for the phenotypic trait (which can 
be broad-sense or narrow-sense heritability, depending on 
the breeding phase, we will delve further into this shortly); 
N is the actual size (i.e., sampled individuals) of the popula-
tion (taking into account an equal number of individuals per 
family); Ne is the effective size of the population, represent-
ing the number of genetically contributing individuals to 
future generations, factoring in inbreeding effects that lower 
genetic diversity and can decrease Ne in smaller populations 
by increasing the likelihood of mating among close rela-
tives. It is advisable to plan and have an understanding of 
the possible outcomes before starting any genomic selection 
process, as failing to do so may lead to significant resource 
and time losses. It is suggested to take a look at the alterna-
tives to this equation found in Resende et al., (2012) at pages 
139–146.

Therefore, the GS requires careful planning, with meticu-
lous accounting of all resources to ensure its effectiveness. 
Figure 3 illustrates the application of the r̂gĝ equation pro-
posed by Resende (2008). It highlights a genus with a rela-
tively compact genome (Eucalyptus spp., please referee to 
Fig. 1, wherein L ≈ 10 M, with approx. 700 Mb length) 
(Bartholomé et al. 2015; Silva-Junior & Grattapaglia 2015) 
and another with a substantially larger genome (Zea mays, L 
= 19.96 M, with approx. 2,300 Mb length) (Dell’Acqua et al. 
2015). In both cases, a feasible effective population size ( Ne ) 
of 50 was considered for crop improvement programs.

The r̂gĝ values presented at Fig. 3 assume that all events 
unfold as planned, with the minimization of any unfore-
seen contingencies not already accounted for in the calcu-
lation of the phenotypic trait heritability ( h2 ). Generally, 
genotyping technologies availability ranges from 1 K to 
over 600 K SNP markers for various crop species (Rasheed 
et al. 2017). Notice that, the quantity of utilized SNPs ( nm ) 
plays a significant role in predictive capacity. It is also 
worth noting that, in general, GS demonstrates effective-
ness for traits with both high and low h2 , with predictions 
being more accurate for traits with higher h2 . For traits 
with high h2 , the number of phenotyped-and-genotyped 
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individuals ( N ) is not a major limiting factor. Conversely, 
this is the case for traits with low h2 , where even popu-
lations of 5000 individuals may not provide substantial 
predictive accuracy.

At this point in the article, it is important to emphasize 
that the statistical-mathematical validation of broad GS 
models is necessary to assess the predictive ability of the 
models. Among the methods available for computing pre-
dictive abilities, the simple correlation between observed 
phenotypic values and values predicted by the model is a 
direct measure of the model’s predictive reliability and is 
considered a trustworthy way to assess the performance of 
the GS model. Accuracy can also be calculated by weighting 
based on the heritabilities of the phenotypic and/or genomic 

Fig. 3   Genomic selection projected scenarios using the r̂gĝ equation 
by Resende et  al. (2012). It addresses genome sizes of Eucalyptus 
spp. ( L ≈ 10 Morgans, M) and Zea mays ( L = 19.96 Morgans, M). 
The effective population size ( Ne ) is fixed in 50 for both. Predictive 
accuracies ( ̂rgĝ ) consider 1–100 K SNPs. Three scenarios of trait her-
itability ( h2 = {Low, Moderate, High}); and phenotyped-and-geno-
typed individuals ( N = {1000, 2000, 5000}) were evaluated
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traits, with the premise of correcting for potential predic-
tion shrinkage effects (Müller et al. 2015). However, cau-
tion must be exercised when including these quantities in 
accuracy equations, as this may lead to an overestimation of 
GS accuracy in traits with low heritability or an underesti-
mation of predictive ability in traits with high heritability. 
To address this issue, a reasonable option is to use Pearson’s 
correlation, a well-known measure of correlation, or even 
Spearman correlation (for genotypic rankings).

Regarding the sample size for GS, in general, it has been 
experienced that well over the stereotypically indicated 1000 
individuals are needed to fit good GS models (see Fig. 3). 
Furthermore, after observing many efforts to fit various 
types/approaches of predictive models (such as Bayesian—
Bayes A, B, Cπ, LASSO—and those via Artificial Intelli-
gence or Machine Learning), there is little incremental gain 
in predictive ability over the initially described GBLUP or 
RRBLUP methods by Meuwissen et al. (2001). In fact, there 
are many situations where better fits can be achieved with 
more elaborate methods compared to the classic GBLUP/
RRBLUP mentioned here (Montesinos-López et al. 2021). 
However, it is important to highlight those other efforts, such 
as managing breeding populations and strategies for feeding 
and validating the models, are vital to the success of GS. In 
addition, properly exploring the additive and non-additive 

components of the intended phenotypic traits, as well as 
adapting GS to the specific phase of the breeding program, 
are factors that generally provide greater benefits compared 
to striving for higher predictive abilities among Frequen-
tist × Bayesian × AI methods.

Practical inferences on genomic selection 
in allogamous plant breeding

Numerous modeling approaches could be applied in genomic 
prediction, and Fig. 4 presents the basic mixed linear model 
y = X� + Zg + e as a single illustration. In this case, y is 
the vector of phenotypic data, � is the vector of fixed effects 
(such as: experimental replicates/blocks, locations, repeated 
measurements over time, among others); g is the vector of 
random genetic effects (the genetic materials, which can be 
lines, hybrids, among others); and e is the random vector of 
residuals; X and Z are incidence matrices on the fixed and 
random effects, respectively. It is not the focus of this article 
to discuss when to assign certain effects as fixed or random 
in nature, but it is a consensus that genetic materials should 
be considered as random in order to enable the execution of 
mixed models for genomic selection (Resende et al. 2008).

Fig. 4   Simplified diagram of a genomic selection (GS) process, using 
corn as an example. Part ‘A’ of the figure illustrates the process of 
fitting and validating predictive genomic models. Part ‘B’ of the fig-
ure depicts possible schemes for use, both for the prediction of inbred 

lines and for the prediction of hybrids based on the best inbred lines 
or validated models with hybrid information. Adapted from Vianello, 
Resende & Brondani (2023)
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In the example procedure illustrated in Fig. 4, GS is 
employed for two purposes: first, in the development of 
improved inbred lines (L1, L2, …), and second, in the crea-
tion of improved heterotic hybrids (H1×2, H1×2, …). These 
genetic materials may eventually become registered culti-
vars, following appropriate field testing, such as in “Value 
for Cultivation and Use” (VCU) trials. It is important to note 
that a genomic predictive model will predict based on the 
data it has been trained on. If you feed it data from progeny 
tests, it will yield predicted values for maize progeny, just 
as it will for clonal eucalyptus tests if provided with clonal 
test data. Therefore, great care must be taken in selecting the 
base population for model training (Resende et al. 2022b).

The requirement for complete or partial genetic related-
ness between training, validation, and application popula-
tions is a drawback of genomic selection. This is because 
LD, the driving force behind genomics, is easily lost and 
created between distinct populations, or even after several 
generations within the same population (Liu et al. 2015; 
Simiqueli et al. 2023). However, it is advisable to manage 
the model training data according to the program's objec-
tives. Initially, it is need to comprehensively map the genetic 
base of the program (i.e., the germplasm bank), including 
the addition of new materials and, importantly, the removal 
of less desirable materials to eliminate unnecessary noise 
from the analysis to come (Resende et al. 2022b). It is worth 
noting that genetic materials developed using GS will always 
necessarily be related to the initial genetic base (Grattapaglia 
2022). This is reasonable considering that companies typi-
cally have well-defined genetic bases. A good GS model is 
unlikely to predict the performance of genetic materials from 
other genetic bases (such as those from different companies, 
countries, or regions).

The same applies when using only one or a few environ-
ments in the genomic predictive model, as it will only be 
capable of predicting the performance of genetic materi-
als for those few environments it has been trained on. The 
lack of representativeness in the input data for GS models, 
coupled with validation using a subset of the same data, 
can falsely inflate the perceived model performance, as the 
validation population will be entirely related to the train-
ing population. In addition, if the phenotypic data is col-
lected in only one or a few environments, the model may 
not perform well in unobserved environments. Models that 
account for genotype–environment interactions (G × E) 
have been shown to be more effective than the traditional 
GBLUP model in terms of prediction accuracy (Montes-
inos-López et al. 2018). Two strategies can be employed 
to address this issue: (i) develop a multi-environment 
genomic model capable of providing predictions with high 
stability, meaning the genetic material's expected value 
is good regardless of the environment; (ii) use models 
that incorporate Genotype × Environment × Management 

interactions (G × E × M)—notable among these are mod-
els within the scope of Enviromics (Resende et al. 2021, 
2022a; Costa-Neto et al. 2023), which can provide pre-
dictions for individuals with high stability and adaptabil-
ity across different locations. These models can predict 
improved materials on a site-specific scale.

In this context, it is essential to select the key traits 
for operational or industrial model feeding. Some traits 
are easier to measure than others, but this can lead to a 
low genetic correlation with the actual trait of interest, 
a serious problem that is often overlooked. For example, 
phenotypic traits from genetic breeding tests (e.g., prog-
eny, hybrids, clones, among others) may not correlate well 
with actual field performance. While it is important to feed 
the GS model with operational data, there is often limited 
data available for commercial genotypes. In such cases, 
integrating test and commercial data can help compute 
the genetic correlation between the two types of data. This 
approach can effectively address the issue and yield bet-
ter results in grain production, forestry, horticulture, fruit 
farming, and other sectors (Resende et al. 2021).

Genomic selection for multiple traits is an approach in 
which plant breeders make selection decisions consider-
ing a variety of trait characteristics, such as yield, plant 
height, flowering time, and disease resistance, aiming to 
optimize genetic gain over multiple generations. However, 
while index selection is a common practice, it presents 
challenges in optimizing non-linear breeding objectives 
and in experimenting to determine the ideal weights for 
each trait (Moeinizade et al. 2020). Thus, in any breeding 
program incorporating genomic selection, various types of 
phenotypic traits will be improved, preferably simultane-
ously. Large-scale phenotyping data can also be included 
in GS models, such as data collected by sensors on drones 
or those predicted via Near Infrared Spectroscopy (NIRS) 
(Robert et al. 2022). Each phenotypic trait has its own 
characteristics, as well as genetic nature, inheritance, and 
so forth. The traits will be directly related to the type of 
genetic material being worked on, as well as the program's 
objectives. However, one thing is certain: the higher the 
heritabilities of the trait (whether additive in the narrow 
sense—h2

a
 , or broad-sense heritability—h2 ), the better the 

GS model will work and deliver good results (see Fig. 3, 
where the theoretical results will be approximate for both 
h2 and h2

a
 ), i.e., in a recurrent selection program, in the 

initial phases, genetic variability tends to be greater, and 
due to the evaluation of many materials, likely with low 
replication, heritabilities tend to be higher (Zhang et al. 
2017b). The paradox is that later in the program, although 
the genetic base may narrow (after several cycles of selec-
tion), the quantity of genetic materials is much greater and, 
therefore, they are more experimentally replicated.
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Therefore, GS models should be managed considering 
that heritabilities should be maximized as much as possible 
to optimize selection efficiency. This is generally achieved 
in two ways: (i) by increasing genetic variation; and/or (ii) 
by reducing environmental variance through better resid-
ual control or increasing the number of replications. In the 
early stages of the program, whether it is autogamous or 
allogamous, annual or perennial, additive effects (α) are 
valued, as these involve crossing, recombination, and selec-
tion stages (non-additive effects tend to be less influential in 
these stages). However, in the later stages of the programs, 
non-additive effects (ẟ) are also desired, since the generated 
cultivars are usually hybrids with some degree of heterosis 
(a dominance phenomenon) and genetically more uniform 
materials (Labroo et al. 2021). While inbreeding is a desir-
able, even indispensable, process in the stages of composing 
pure lines, if not well managed, its consequent inbreeding 
depression can pose a significant problem during the hybrid-
ization stages, particularly in F1-segregating (outcrossing) 
crosses in perennial species, such as forest and fruit-bearing 
species. Its critical impact includes decreasing genetic diver-
sity and vitality—a reduction in variability that is the oppo-
site of heterosis—increasing susceptibility to diseases, and 
reducing reproductive success and overall population fitness.

In this regard, using Fig. 4B as a reference, one can 
employ a model for additive genomic prediction, which will 
be effective in predicting segregating individuals in the early 
stages of the program, even if the goal is to obtain pure lines. 
It is also possible to use models that incorporate additivity 
and dominance when considering only the materials at the 
end of the program. A modern approach involves integrat-
ing data from all stages, maximizing and interconnecting 
the entire selection process. But, it is advised that when 
adopting AI models for GS to capture pure additive effects, 
caution is necessary. GS AI-based models may inherently 
capture non-additive effects (i.e., non-linear) unless their 
architectures are ultra-simplified, but in such cases, tradi-
tional linear models can provide the similar results.

The combination of different sources of phenotypic data 
offers several advantages, starting with the use of various 
environments, which allows for predicting behavior in terms 
of stability and adaptability of genotypes. Furthermore, 
since it involves the same genetic base, the effective popu-
lation size ( Ne ) usually does not change drastically, but the 
total population size ( N ) increases, allowing for the best of 
both worlds: high variability in the initial populations of the 
program and a greater number of experimental repetitions 
in the final stages. This has a direct impact on increasing the 
predictive capacity of the model.

The incorporation of multi-omic approaches, often com-
bined with genomics, is also a powerful tool in the genetic 
prediction of plants. These approaches can integrate tran-
scriptomic, proteomic, metabolomic, phenomics, genomic, 

and other omic data to predict phenotypes of the plant indi-
viduals under study. Aggregating information at a higher 
level of intimacy with the final phenotype can improve the 
predictive capacity of the models, as demonstrated in the use 
of exomic markers, which effectively translate into pheno-
typic proteins (Hashmi et al. 2015). With other molecular 
structures, the logic is similar. For example, the prediction 
of flavor compounds (sugars, acids, and volatiles) in blue-
berries and tomatoes, based on metabolomics, shows very 
promising results (Colantonio et al. 2022), as does genom-
ics in coffee taste (Ferrão et al. 2023). Approaches that 
combine transcriptomics, proteomics, metabolomics, and 
functional genomics were also conducted for the study of 
abiotic stress in vegetables (Zhuang et al. 2014). Performing 
“genomic” prediction but with phenomics data (using NIR) 
is also something astonishing (Robert et al. 2022). The joint 
analysis of these different layers of information increases the 
predictive accuracies of the models and enables the predic-
tion of characteristics highly influenced by the environment 
or even subjective, such as the taste of agricultural products.

Final considerations

Advancements in allogamous plant genomics are character-
ized by the ongoing evolution of molecular tools and the 
gradual yet significant reduction in genotyping costs. This 
trend widens the applicability of these technologies to an 
even broader range of samples within genetic improvement 
programs. While we observe a leaning towards the use of an 
increasing number of genomic markers in breeding analyses, 
potentially involving hundreds of thousands of SNP markers, 
there are also researchers advocating for a framework with 
a lower number of markers, however, supplemented with 
advanced data imputation techniques.

Genomics also plays a role in establishing more sustain-
able and cost-effective production processes, especially 
through the development of cultivars with increased dis-
ease resistance, particularly when these diseases follow an 
oligogenic pattern of expression. In addition, the growing 
integration of artificial intelligence and machine learning 
techniques in genomic analysis aims to automate and opti-
mize the interpretation of extensive datasets.

There is also a growing trend in incorporating large-scale 
phenotyping data, such as those obtained through drones and 
NIRS, into genomic selection models. Alternatively, the use 
of analog models to genomics, also for predictive purposes, 
but with data (characterizing similarities between samples) 
derived from other omics, is being considered. Furthermore, 
the integration of envirotypic or enviromics data is also 
emerging as a rising practice, to better address variations 
stemming from genotype–environment interactions.
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The GS is a statistical technique for crop breeding. Its 
application requires careful planning and pragmatic evalua-
tion, especially across generations and at the base-population 
model management. Selection strategies should take into 
account the program phase and model complexity. In some 
cases, a pedigree-based model can be as effective as GS, but 
genomics excels when kinship information is limited. Unde-
niably, genomic models represent an elegant and advanced 
tool in crop breeding.
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