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Introduction

Plants commonly synthesize some antinutrients as a part 
of their protection against their predators and/or as a means 
to survive under adverse growing conditions; lectins being 
one of such plant products. Lectins belong to a complex 
group of proteins/glycoproteins and are present in almost all 
biological systems including viruses, bacteria, fungi, unicellular 
organisms, animals and plants (Peumans and Van Damme 
1995). Lectins are defined in terms of proteins which agglutinate 
the red blood cells with sugar specificity. In some cases 
however, sugar specificity is unknown and hence referred as 
hemagglutinins (Lam and Ng 2011). Many plant family mem-
bers have been screened for lectins by determining their 
abilities to agglutinate erythrocytes with specifically reversible 
binding to monosaccharides, oligosaccharides, and glyco-
conjugates which are reported to chemically act in accordance 
to lock and key models (Kennedy et al. 1995). Lectins contain 
one non-catalytic domain for binding specific carbohydrates 
(Sharon and Lis 1989). Boyd and Shapleigh (1954) for the 
first time coined the term ‘lectin’ which originates from the 

Latin word “legere”, it means to select. The plant lectin was 
discovered for the first time by Herrmann Stillmark (1888), 
who described the agglutination properties of ricin from 
castor bean (Ricinus communis) paving the way for accelerated 
research on lectin. It has been reported that modern age 
lectinology started about 100 years ago (Bies et al. 2004; 
Sharon and Lis 2004). Recently, the lectins from plants have 
attracted much attention because of their enormous biomedical 
potential with anti-tumor properties, resulting from their 
ability to reduce the growth and progression of cancer cells 
(Fu et al. 2011; Liu et al. 2010).

Two approaches for lectin classification are familiar. The 
primary basis of classification of lectins is beset on their 
carbohydrate specificity. Another basis of classification of 
lectins is their overall structures such as merolectin, hololectin, 
chimerolectin, and superlectin. The lectins may be grouped 
into different families such as legume lectins, type II ribosome- 
inactivating proteins, and monocot mannose-binding lectins. 
Plant lectins have been classified into four major groups by 
Van Damme et al. (1998) on the basis of their structures and 
biochemical properties. Four major types of lectins are 
merolectin, hololectin, chimerolectin, and superlectin which 
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contain a carbohydrate-binding domain out of which 
chimerolectin is abundantly found in plants (Fig. 1). Based 
on the structural features, lectins have been classified into 
four groups: 

‣ Merolectins: These lectin have single carbohydrate-binding 
domain, unable to agglutinate cells. 

‣ Hololectins: These lectins possess two similar domains 
for carbohydrate binding. 

‣ Chimerolectins: This class of lectin display catalytic 
activity by one chain and biological activity by another 
chain. 

‣ Superlectins: These are built of at least two carbohydrate- 
binding domains that are not identical. Thus, superlectins 
recognize structurally different sugar moieties (Teixeira 
et al. 2012). 

The largest and best characterized plant family is Leguminosae. 
The yield of legume lectins is usually high compared to other 
plant and animal lectins. Lectins are known for their diverse 
biochemical and biophysical characteristics in terms of their 
molecular characteristics. This includes number of sugar 
binding sites, molecular weight, and sub-unit structure, etc. 
In legumes, most of the reports are constrained to the 
biochemical analysis of lectins. Only some members have 
been studied their biomedical significance (Une et al. 2018). 

Legume lectins 

Legume seeds attribute significance in human and animal 
nutrition worldwide. However, further research is in progress 
on lectins isolated from the leguminosae family pertaining to 
its pharmacological properties (Gautam et al. 2018). In 
leguminous family, more than 600 species have been screened 
for lectin (Rudiger 1988) and many are currently under process 
for purification and characterization. The major sources of 
lectins include mature seeds which contain nearly 10% of 
the total protein along with carbohydrates, dietary fibers, 
minerals, and vitamins. In addition to these nutritional com-
ponents, some antinutritional compounds are also found in 
biologically significant amounts in raw seeds such as enzyme 
inhibitors, tannins, phytates, flavonoids, and lectins (Liener 
1982). The major storage protein of the seeds happens to be 
the bulk of lectin available in cotyledons called the protein 

body. Among various naturally occurring chemical compounds 
found in the food legumes, lectins have now attracted con-
siderable research interest because of their diverse biological 
significance both deleterious and beneficial (Fenwick et al. 
1991).

The carbohydrate specificity of most of the plant lectins 
have been studied. Lectin concentration in legume seeds is 
varied with their protein content, e.g. Phaseolus vulgaris 
(2.4-5.0%), Glycine max (0.8%), and Pisum sativum (0.6%) 
(Rudiger and Gabius 2001; Ye and Ng 2001a; Ye et al. 
2000). Phytohemagglutinin and Concanavalin-A are the best 
studied in legume lectin (Loris et al. 1998). According to 
Gatehouse et al. (1995), legume lectin is involved in plant- 
microbe interaction by binding to the cell surface of microbes, 
e.g. Concanavalin A and other lectins protect the plants against 
the Callosobruchus maculatus beetle. The plant-microbes 
interaction is an important mechanism which participates in 
the biological control of plant pathogens. 

Distribution of lectins

The legume family is the richest source of lectin-containing 
species in plants. The content and composition of lectin varies 
in different taxa. Leguminous lectins are especially concentrated 
in the seeds as one of the components of seed storage proteins 
(Etzler et al. 1987). It is mainly present in the cotyledons of 
seeds and appears during the maturation of seed. Therefore, 
seeds are mainly used as a source material for lectin isolation 
and purification. In contrast to seeds, vegetative organs such 
as roots, leaves, rhizomes, bulbs, tubers, stem, bark, flowers, 
and even the nectar of plants contain lectin (Peumans and 
Van Damme 1995). Differentiation of tissues at the devel-
opmental stage leads to lectin variation. The legume seeds 
contain lectins large amounts. The quantity of lectins purified 
from different legume varieties of the same species differed 
greatly, including also P. vulgaris also (Lam and Ng 2011). 

Structure of Lectins 

Legume lectins within themselves exhibit remarkable 
sequence homologies and structural similarities despite dif-
ferences in sugar specificities and quaternary structures. The 
primary structure of legume lectin is generally made up of a 
single subunit with one polypeptide chain of about 300 
amino acid residues with average molecular mass of 30 kDa 
(Wales et al. 1991). The subunits of legume lectins are most 
often made up of single polypeptide chains of ~250 amino 
acids exhibiting the legume lectin fold. The fold primarily 
consists of three β-sheets, a ‘flat’ six-membered ‘back’ β- 
sheet, a small ‘top’ β-sheet and a curved, seven-stranded 
‘front’ β-sheet and a number of loops interconnecting the 
sheets as well as the strands in them (Fig. 2) (Banerjee et al. 
1996), e.g. Con-A and peanut agglutinin (PNA) (Banerjee et 
al. 1996; Chandra et al. 2001; Srinivasan et al. 1996). 

Despite the diversity in carbohydrate-binding specificity, 
the folding patterns of secondary and tertiary structures of 
legume lectins are superimposable (Rudiger and Gabius 2001). 
At the primary, secondary, and tertiary structural monomeric 

Fig. 1. Class of plant lectins representing binding domain (Peumans 
and Van Damme 1995).



219JCSB 2018 (September) 21 (3) : 217 ~ 227

levels, legume lectins exhibit considerable variation in their 
quatenary structure; small differences in the amino acid 
sequences at the monomer-monomer interfaces and the 
presence/absence of glycosylation affects the monomer’s 
association modes. The monomer structures appear like a 
jellyroll motif, which contains a carbohydrate recognition 
domain (CRD) and metal binding sites for divalent cations 
(Ca2+ and Mn2+) (Ambrosi et al. 2005). The β-sheet of legume 
lectin also contains highly conserved Asp and Asn amino 
acids attached to calcium and manganese ions (Van Eijsden 
et al. 1992). These two amino acids play an important role in 
carbohydrate recognition (Sharma and Surolia 1997). Effect 
of such variation provides the specificity in the binding of 
multivalent glycan. Most legume lectins appear to assemble 
as homodimers or homo-tetramers (dimers of dimers), the 
stability of which is attributed to hydrophobic cooperation, 
hydrogen bonds, and salt links (Diaz et al. 2017). The amino 
acid variation leads to structural polymorphism that makes 
legume lectin an excellent model for molecular interactions 
studies.

Our previous studies reported crystallization and preliminary 
X-ray characterization of lectin from chickpea (Cicer arietinum 
L.) (Katre et al. 2005). Our studies with circular dichroism 
(CD) experiments have shown that the secondary-structural 
components for Cicer arietinum lectin (CAL) were 34% 
helix, 28% β-sheet, and 38% random coil. The results also 
demonstrated that the structure of CAL differ from the char-
acteristic antiparallel β-sheet structure of legume lectins 
(Chandra et al. 2001). Unlike other legume lectins, CAL 
lacks specificity for simple sugars or sugar derivatives 
(Reeke and Becker 1998). The Cicer arietinum L. crystals 

diffract to a resolution of 2.3Å and belong to the rhombohedral 
space group R3, with unit-cell parameters a = b = 81.2, c = 
69.4 Å (Fig. 3).

Detection of Lectin

Presence of lectins can be achieved by the agglutination of 
erythrocytes known as the heamagglutination. The first of 
all, the methods of heamggglutination used to determine the 
presence of lectin in castor beans extract was reported by 
Stillmark (1888) in his doctoral thesis. Therefore, coagulation 
of red blood cells called hemagglutination is the most suitable 
and reliable method to confirm the presence of lectin/ 
hemagglutinin. The lectins bind to the carbohydrate moieties 
present on the surface of erythrocytes and agglutinate them 
without altering the properties of carbohydrates. Lectins 
however undergo few conformational changes upon binding 
to sugar. In no case, have global changes in protein structure 
been observed instead small movements are restricted to the 
immediate vicinity of the sugar (Weis and Drickamer 1996). 
Hemagglutination assay is carried out in 96 well (U/V shape) 
microtitre plate and the results are recorded as hemagglutination 
titer unit, i.e. HAU. The unit of hemagglutination activity 
(U) termed as titer was expressed as the reciprocal of the 
highest dilution of the lectin that showed complete agglu-
tination. Further, the specific activity of the lectin is defined 
as the titer of hemagglutination per mg of protein (Wang et 
al. 1995). Chickpea is the second most important legume in 
the world after dry bean and pea (Parthasarathy et al. 2010). 
In our previous studies, hemagglutinating activity of 50 
chickpea extracts for lectin was determined (Bhagyawant et 
al. 2015).

Boyd and Shapleigh (1954) found that some lectins are 
blood type specific. The assay can be performed using human 
and rabbit erythrocytes. Different erythrocytes react in a 
different ways with plant lectin. Reports of chickpea producing 
a certain amount of agglutinating activity with cow eryth-
rocytes are reported. Ynalvez et al. (2015) isolated and 
characterized lectin activity in Texas Live Oak (Quercus 

fusiformis). Some of the plant lectins are non-blood group 
specific that includes Quercus fusiformis and Erythrina 

speciosa displaying lectin activity. Its lectin activity was 
examined in the human blood ABO system and animal blood 
groups of rabbit, mouse, sheep, etc. (Konozy et al. 2003).

Fig. 2. 3-Dimentional structure of legume lectins.

Fig. 3. Crystals of C. arietinum lectin (CAL) using the hanging-drop 
vapour-diffusion method.
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Carbohydrate specificity 

The protein-carbohydrate interactions confirm the specificity 
of lectins. Legume lectins represent diversity in carbohydrate 
specificity as evident from published reports (Diaz et al. 2017). 
Legume lectins with distinguished carbohydrate affinity are 
nowadays recognized as a marker in plant defense against 
insects and/or pests. Carbohydrate-lectin interactions are 
significant in medical, pharmacological, and other biological 
applications. The lectins are mainly involved in cell-cell rec-
ognition, where the carbohydrate protein interactions appear 
to be important. Normally, lectins possess shallow carbo-
hydrate-binding sites. Lectin has unique properties different 
from many other proteins in their specificity to bind simple 
or complex carbohydrates. Lectin interacts with carbohydrates 
through a network of several non-covalent interactions such 
as hydrogen bonds, hydrophobic interactions, Van der Waals 
interactions, and metal ion coordinations (Sharon and Lis 
1990).

The lectins with particular carbohydrate specificity have 
been purified from different legume seeds and its plant parts. 
Carbohydrate specificity also constitutes one of the basis for 
lectin classification (Goldstein and Poretz 1986). Plant lectins 
are divided into the following groups: namely mannose, 
N-acetylglucosamine, galactose, N-acetylgalactosamine, fucose, 
sialic acid, and a group with complex sugar specificity. Popular 
methods for classifying plant lectin employ their monosac-
charide specificity. However, monosaccharide specificity 
does not tell the complete story as in some cases lectins 
exclusively recognize complex glycans. Also, lectins with 
the same monosaccharide specificity may recognize different 
oligosaccharides. For instance, monocot mannose binding 
lectin from Galanthus nivalis, Narcissus peseudonarcissus, 
and Listera ovate bind mannose but differ in their fine sugar 
specificity. Galanthus nivalis agglutinin prefers terminal Man 
α 1-3 Man (Shibuya et al. 1988), whereas Narcissus pseun-

donarcissus agglutinin and the Listera ovate agglutinin have 
the highest affinity for Man α 1-6 Man and Man α 1-3 Man α 
1-3, respectively (Kaku et al. 1990; Saito et al. 1993). 

Some of the plant lectins display blood group specificity. 
For example, Sophora japonica and Dolichos biflorus show 
specificity with A and B blood groups while Erythrina 

velutina demonstrate specificity with A, B, and O blood 
groups (Etzler and Kabat 1970; Stojanovic et al. 1983). Most 
lectins have high affinity for oligosaccharides compared to 
simple sugars. The specificity of lectins to carbohydrates is 
examined by hapten inhibition techniques in which sugars 
are tested for their hemagglutination or precipitation by the 
lectins. The alternative methods to confirm the lectin specificity 
include spectrophotometry, fluorimetry, and equilibrium dialysis 
(Sharon and Lis 1989).

Overview of lectin purification

Using affinity chromatography, purification of lectin is 
usually carried out since they bind to specific sugars. However, 
for complex sugar binding lectins/hemagglutinins, a wide 
range of strategies can be employed for lectin purification, as 

shown in Table 1. Initially lectin extracts are precipitated by 
ammonium sulfate fractionation, followed by using various 
chromatographic approaches (He et al. 2013). Most widely 
and suitable methods for lectin purification techniques used 
by different workers are gel filtration, ion exchange, and 
affinity chromatography. However, affinity chromatography 
has been widely used in laboratory practice if the sugar 
specificity of lectin is known.

In order to obtain a high yield of lectin, the source material 
should contain high lectin so that simple purification pro-
cedures can be employed (Lam and Ng 2011). By and large, 
purifying lectin effectively with its natural properties and 
careful selection of affinity resin can be done, if sugar 
specificity is known.

The applications of recombinant technique in fermentation 
process enhances lectin yield significantly. One of the major 
limitations of recombinant technique is the high cost of 
experimentation and low yield. In the fermentation process, 
Escherichia coli is widely used as an expression system 
while other strains, e.g.,] BL21 (DE3) RIL and Nova Blue 
(DE3) are also used for expression of different recombinant 
lectins. In this technique, generally E. coli is transformed 
with expression vector which is grown in sterilized BMGY 
and Luria-Bertani (LB) medium in fermenter along with 
antibiotics, e.g. ampicillin to reduce the chance of contam-
ination. Sonication is one of the methods of lectin isolation 
subjecting the cells to homogenization in an appropriate 
lysis buffer. The purification of protein to the electrophoretic 
homogeneity involves different chromatography techniques 
including HPLC and/or affinity column chromatography 
(Tateno et al. 2004; Upadhyay et al. 2010). Isolation of lectins 
from legume seed begins with the soaking of seeds overnight 

Fig. 4. A flow chart entailing purification and characterization of 
legume lectin.
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and to make their crude extract by using different extraction 
solutions in buffers such as Tris-HCl buffer (pH-7.2) and 
phosphate buffer (pH-7.4) (Katre et al. 2005). 

The purification of lectins commonly employs the use of 
different chromatography resins. For example, Vigna sesqui-

pedalis lectin was purified using Superdex 75 column through 
FPLC (Wong and Ng 2003), Cicer arietinum lectin was 
purified by using ion-exchange chromatography through 
DEAE-cellulose (Katre et al. 2005), and gel filtration chro-

matography through Superose-12 (Wakankar et al. 2013), 
Dark red kidney bean on Affi-gel blue gel (Xia and Ng, 2006) 
chromatography. The published reports indicate that the 
production of lectins often relies on the use of a chromatography 
procedure. A brief scheme of commonly used procedures for 
lectin purification is demonstrated in Fig. 4.

Chickpea is one of the protein-rich legumes grown under 
varied conditions worldwide. In our previous study, lectin 
from desi chickpea (Cicer arietinum L.) cultivar BDN 9-3 

Table 1. Purification methods, biophysical properties and applications of some plant lectins.

S.N. Name of plant lectin 
Molecular 

weight (kDa) 
Purification methods Applications References

1 Vigna sesquipedalis 60  kDa FPLC-Superdex 75 column
It inhibited HIV-reverse transcriptase, 
stimulated the mitogenic response of 
mouse splenocytes 

Wong and Ng 
2003 

2 Cicer arietinum L. 43 kDa SP-Sephadex column
Crystallization and preliminary X-ray 
characterization

Katre et al. 2005

3 
Phaseolus vulgaris 

33  kDa Affi-gel blue gel and CM-cellulose 
Inhibit leukemia L1210 cells, antifungal 
protein against Mycosphaerella arachidicola

Xia and Ng 2006

4 
Phaseolus vulgaris L. 
(Purple bean) 

60 kDa
Q-Sepharose, Superdex 75 
10/300 GL column 

Anti-HIV-1 RT, Antitumor, Anticancer 
activity in nasopharyngeal carcinoma cells 
(CNE-1, CNE-2, HNE-2), breast cancer cells 
(MCF-7) and liver cancer cells (Hep G2) 

Fang et al. 2010 

5 
Phaseolus vulgaris 
(French bean) 

64 kDa
Column of Blue-Sepharose, 
Q-Sepharose and 
elfiltrationcolumnofSuperdex75 

Antiproliferative against hepatoma HepG2 
cells and breast cancer cells, antifungal, and 
anti-HIV-1 reverse transcriptase activities 

Lam and Ng 
2010 

6 Glycine max 25 kDa
Q-Sepharose, SP-Sepharose, and 
Superdex 75 

Antitumor  for breast cancer  and hepatoma 
cells,  HIV-1 reverse transcriptase inhibitory 
activities 

Ye and Ng 2011 

7
Phaseolus scutifolius 
(White tepary Bean) 

31 kDa
Size exclusion chromatography 
(SEC) on TSK 3000 SW size 
exclusion HPLC column 

Cytotoxicity activity on mouse 3T3 
fibroblast cell clones, Mitogenic activity 

Valadez-Vega et 
al. 2011 

8 Spatholobus parviflorus 
29 and 31
(tetramer)

CM Sephadex C50, affinity 
chromatography with activated 
guar gum 

Crystallization and preliminary X-ray 
characterization

Geethanandan 
et al. 2011 

9 
Phaseolus vulgaris 
(brown kidney bean) 

32 kDa Affi-gel blue gel, SuperdexG-75 
Enhanced mRNA expression of the 
cytokines IL-2, TNF-a and IFN-c

Chan et al. 2012 

10 
Concanavalin A, Lens 
culinarisis agglutinin, 
peanut agglutinin -lectin 

Commercially available Virus growth inhibition 
Uematsu et al. 
2012 

11 
Archidendron jiringa 
Nielsen-lectin 

35.7 kDa

Purified by aqueous extraction, 
90% ammonium sulphate 
precipitation and 
concanavalinA-Sepharose 4B 
affinity chromatography

Antifungal activity against C. cassiicola, F. 
oxysporum and E. turicicum 

Virounbounyapat 
et al. 2012 

12 
Indigo feraheterantha
(Indigo bush) 

70 kDa
DEAE-cellulose followed by gel 
filtration chromatography on 
Sephadex G 100 

Antibacterial activity against the pathogenic 
bacteria  

Qadir et al. 2013 

13 Glycine max (soybean) 120 kDa
Lactamyl Sephadex-G-100 affinity 
column

Induces autophagy and apoptosis as well as
DNA damage via ROS-mediated pathway

Panda et al. 2014

14 
Phaseolus acutifolius 
var. acutifolius A. 
Gray (tepary bean)

28 kDa
G-75 Sephadex gel filtration 
column and then Zorbax GF-250 
HPLC column

Differential cytotoxicity on colon
cancer cells

Arteaga et al. 
2016

15 C. bonariensis 25.5 kDa Sephadex G-50 matrix
Potential anticancer molecules capable of 
inducing cell death, mainly by apoptotic and 
autophagic mechanisms

Cavada et al. 
2017

16 Vatairea guianensis 120 kDa
DEAE-Sephacel column & affinity
chromatography (guar gum)

Elicites edematogenic activity, involving 
prostaglandins, IL-1b and CRD.

Marques et al. 
2017

17 Canavalia gladiate 30 kDa Maltamyl-Sepharose 4B Cancer chemopreventive agent Une et al. 2018

18 Cicer arietinum L. 35 kDa
DEAE cellulose and SP-sephadex 
chromatography

Antifungal, antibacterial and  anticancerous
Gautam et al. 
2018
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was purified and crystalized (Katre et al. 2005). Cicer 

arietinum L. lectin, i.e. CAL possessed complex-sugar 
specificity. The molecular weight of the native protein as 
determined by gel filtration using HPLC was 43 000 Da. It 
has been identified as a homodimer of subunit molecular 
weight 21 500 Da by SDS-PAGE both in the presence and in 
the absence of β-mercaptoethanol. The evidence for the 
complex specificity of CAL comes from the observation that 
the hemagglutination activity of 1 mg lectin inhibited using 
about 10 µg desialated fetuin. 

Primary sequences of legume lectin 

The amino acid sequences of legume lectins have now 
been time-honored chemically or by molecular genetic tech-
niques. The NH2-terminal amino acid sequences of one chain 
of lectins were followed by the α-chain. A BLAST search 
(Marchler-Bauer et al. 2003) based on the partial sequence 
against a non-redundant database discloses a match at 90% 
identity with the N-terminal sequence of a major seed 
albumin (PA-2) from Pisum sativum (Sharma et al. 2015). 

Plant lectins and their applications

The widespread distribution of lectins in the plant kingdom 
suggests that these molecules are of physiological importance 
to plants. Lectins have been reported to be associated to diverse 
functions concerning the defense mechanisms of plants (Sá 
et al. 2009). It has been proposed that lectins may protect 
plants against bacterial (Charungchitrak et al. 2011), fungal 
(Ye and Ng 2002), and viral (Sato et al. 2012) pathogens 
during seed imbibition, germination, and early growth of the 
seedlings. The noteworthy contributions of legume lectins 
are discussed below.

Lectin as storage and defense proteins 

Lectins are typically found in storage vacuoles, extracellular 
compartments, cytoplasm, and the nucleus. They are abundant 
especially in legume seeds. Hence, it may play a role as 
storage protein (Nakamura et al. 2004). Lectins are useful in 
insect resistance for various agricultural crops. Some of the 
legumes representing different cultivars of the same species 
demonstrate variation in biological activities (Chan et al. 
2016). For example, the antiproliferative activity is given by 
French bean No. 35 cultivar while French bean No. 1 cultivar 
expresses mitogenic activity; the Indian cultivar exhibited 
none of these activities belonging to P. vulgaris (Chan et al. 
2016). Recently, the introduction of the coding sequence of 
Allium sativum leaf agglutinin in a rice cultivar to obtain 
sustainable protection from attack of sap-sucking plant 
hoppers has been achieved (Sengupta et al. 2010).

Nitrogen fixation capability of lectins 

There exists a symbiotic relationship between leguminous 
plants and nitrogen-fixing bacteria. Wheat germ agglutinin 
can bind to the agglutinin binding receptor on the cell 

membrane of Azospirillum lipoferum, which is then stimulated 
to elevate transcription of the nitrogenase enzyme. As a result, 
the signaling cascade is triggered and nitrogen fixation cap-
ability is increased (Karpati et al. 1999). Literature perusal 
revealed that the lectins may possibly be involved in rhizobial 
symbiosis enhancing crop productivity. Lectins may be 
involved in sugar transport, binding of symbiotic rhizobia to 
form root nodules, as well as symbiotic and pathogenic inter-
actions between some microorganisms and hosts (Sreevidya 
et al. 2005).

Cytotoxicity

Concerning lectin affinity, it can bind to cancer cell mem-
branes or their receptors and thus induce cytotoxicity (Liu et 
al. 2015). Previous reports on Phaseolus vulgaris lectins 
inhibited the prolification of human tumor cells that could 
elicit production of nitric oxide (NO) through up-regulation 
of inducible NO synthase (iNOS) which is anticarcinogenic 
to produce apoptotic bodies (Fang et al. 2011). The lectin- 
dependent cytotoxicity explained the interaction of lectins 
with T-lymphocytes that require specific recognition by the 
effected cells mediated by lectin (Parker and Martz 1980). 
Thus, the lectins not only recognize specific cell types, but 
also affect cell physiology. The mitogenic lectins promoted 
the closeness between effected and target cells which resulted 
in the cytotoxicity of the affected cells (Greene et al. 1981; 
Parker and Martz 1980). Lectin from wheat germ (Kurisu et 
al. 1980), Griffonia simplicifolia (Maddox et al. 1982), possess 
the ability to bind carbohydrate moiety of mouse macrophage 
tumor cells and encourage the killing of tumor cells (Eckhardt 
et al. 1982). 

Lectins as anti-HIV agents 

Lectins have been reported to have promising biological 
and medical applications. The legume lectins have been shown 
to be involved in causing inhibition of viral progression in 
humans and animals (Balzarini et al. 1991). The first anti-viral 
lectin reported as D-mannose specific lectin from Gerardia 

savaglia stopped infection of H9 cells with human immuno-
deficiency virus type 1 (HIV-1). The exact mechanism behind 
this is the formation of cluster due to multivalent interaction 
of the three sugar-binding pockets with three high-mannose 
type glycans of HIV envelop gp120. Some legume lectins 
like concanavalin-A, Lens culinaris agglutinin, Pisum sativum, 

Vicia faba, and many other lectins were found to bind with 
HIV envelop gp120, which inhibit fusion of HIV-infected cells 
with CD4+ cells by interacting with carbohydrate of HIV- 
infected cells (Hansen et al. 1989). The lectins derived from 
Phaseolus vulgaris have been found to inhibit the activity of 
HIV-1 reverse transcriptase (Ye and Ng 2001b).

Lectins as insecticides

Lectins derived from a variety of crops including wheat, 
rice, tobacco, etc., have been recommended as chemical 
agents acting against many insect pests. These days, lectins 
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are being exploited as a part of the integrated pest man-
agement approaches. Lectins bind to insect gut glycan 
receptors which is essential site for the survival and growth 
of insect pests and exhibit anti-insecticidal activity. Legume 
lectins derived from Amburana cearenis, Anaden anthera, 

Dioclea megacarpa, and Piptadenia are the prospective 
sources of lectins with larvicidal activities against the 
mosquito species of Aedes aegypti. Lectins protect the seeds 
from being damaged by beetle Callosobruchus maculatus, 
e.g. Canavalia brasiliensis, Dioclea grandiflora, Cratylia 

floribunda, etc. (Gatehouse et al. 1995). There are many 
purified plant-based lectins reported to possess significant 
insecticidal properties. For example, Dioscorea batatas 
lectin inhibited the Helicoverpa armigera larvae in the adult 
stage. The Dioscorea batatas lectins act in a similar manner 
to kill Helicoverpa armigera larvae (Ohizumi et al. 2009). 
The Arum maculatum tuber lectins bind with the brush 
border membrane vesicle proteins of the gut to cause dele-
terious effects on the Lipaphis erysimi and Aphis craccivora 
(Majumder and Mondal 2005).

 
Lectins as antibacterial agents 

The major role of lectins involved in plant defense mech-
anisms is to prevent the entry of microorganisms into the 
cytoplasm. Lectins can indirectly interact with carbohydrate 
moieties of the bacterial cell wall (Peumans and Van Damme 
1995) and block the movement of motile bacteria at the 
air-water interface (Broekaert and Peumans 1986). Recent 
studies have revealed that strong binding of plant lectins 
with muramic acid, N-acetylmuramic acid, and muramyl 
dipeptide of bacterial cell walls protects the plants against 
microbes (Ayouba et al. 1994). Recently, lectin obtained 
from Indigo feraheterantha (Indigo bush) have been shown 
to be effectively inhibit against several pathogenic bacteria 
such as Klebsiella pneumoniae, Staphylococcus aureus, 

Escherichia coli, and Bacillus subtilis (Qadir et al. 2013).

Lectins as antifungal agents 

A large number of lectins have been reported however, 
only a small number have shown to exhibit antifungal 
properties. The chitin-binding lectins can play an important 
role in plant defense against fungi. The chimerolectins were 
found to be the only plant lectins with potential fungicidal 
proteins, which belong to class I chitinases. The mechanism 
against fungicidal activity involves the binding of lectin to 
the fungal cell membrane thereby inhibiting the fungal growth. 
Further, the binding of lectin to carbohydrates on the fungal 
cell wall surface interrupts the chitin synthesis (Van Parijs et 
al. 1991). The legume lectins demonstrating the fungicidal 
activity are documented in literature. This includes lectin 
from Pisum sativum which offers protection against Fusarium 

oxysporum (Sitohy et al. 2007); Cicer arietinum lectin protects 
against Candida parapsilosis, Candida krusei (Gautam et al. 
2018), and Candida tropicalis (Kumar et al. 2014).

Lectins as antitumor agents 

In recent years, the lectin family has attracted much atten-
tion due to their anti-tumor properties that could bind specific 
cancer cell surface glycoconjugates. Owing to a set of cell 
surface proteins and lipids, lectins can facilitate its binding 
and interact differentially with distinct cells. This makes them 
good antitumor agents. Concanavalin A (ConA), a typical 
legume lectin with a mannose/glucose-binding specificity, 
was reported to induce apoptosis in murine macrophage 
PU5-1.8 cells through clustering of mitochondria and release 
of cytochrome-c (Suen et al. 2000). An earlier study has 
shown that ConA induces apoptosis in human melanoma 
A375 cells in a caspase-dependent pathway (Liu et al. 2009). 
Subsequently, ConA caused mitochondrial transmembrane 
potential (MMP) collapse, cytochrome-c release, activation 
of caspases, and eventually triggering a mitochondria-mediated 
apoptosis. Another typical legume lectin with specificity 
towards sialic acid and purified from Phaseolus coccineus L. 
(Phaseolus multiflorus wild) seeds possesses a remarkable 
anti-proliferative activity. Gondim et al. (2017) investigated 
the potential of DLasiL lectin isolated from the seeds of 
Dioclea lasiocarpa as an anticancer agent. They investigated 
the potential of DLasiL lectin in A-2780 ovarian, A-549 lung, 
PC-3 prostate, and MCF-7 breast human cancer cell lines. 
Recently, Une et al. (2018) studied the lectin isolated from 
Japanese red sword beans as a potential cancer chemo- 
preventive agent. This lectin has similarities to concanavalin 
A in amino acid composition and sequences as well.

Lectins as antiviral agents 

The ability of lectins to inhibit the growth of viruses in 

vitro is documented in the literature. The D-mannose specific 
lectin from Gerardia savaglia was reported to prevent the 
spread of H9 cells with human immunodeficiency virus 
(HIV)-1 (Müller et al. 1988). This lectin inhibited syncytium 
formation in the HTLV-IIIB/H9-Jurkat cell system and 
HIV-1/human lymphocyte system by reacting with the oligo-
saccharide side chains of the HIV-1 envelop gp120 glycoprotein 
molecule. A year later, the lectins ConA, wheat germ agglutinin, 
Lens culinaris agglutinin, Vicia faba agglutinin, Pisum sativum 
agglutinin, and phytohaem (erythro) agglutinin were found 
to bind with gp120 (Hansen et al. 1989). 

Mitogenic activity of lectins 

Mitogenic stimulation by plant-based lectins was observed 
in the dormant stage of lymphocytes. The first mitogenic 
stimulation in such lymphocytes was found in the PHA of 
Phaseolus vulgaris (Nowell 1960). The mitogenic activity has 
also been reported to be present in Phaseolus acutifolius 
(Valadez-Vega et al. 2011) and Vigna sesquipedalis (Wong 
and Ng 2003).

Lectins as toxicants

Lectins become toxic to the mammalian cells when used 
in high concentrations (Liener et al. 1986). Some lectins 
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transported along with neuronal processes inactivate the 
ribosomes resulting in neuronal death. An example includes 
ricin and abrin (Wiley et al. 1982). The toxin lectin consists 
of two polypeptide chains inter-linked by disulfide bonds. 
The heavier (B) chain possesses the carbohydrate binding 
site, whereas the lighter (A) chain inhibits protein synthesis 
in the cells (Fulton et al. 1986; Olsnes and Pihl 1982). 

Conclusion 

Plant defense is the primary application of plant lectins. In 
addition, they exert non-preference predominantly to their 
predators like higher animals. Lectins also constitute a part 
of the seed storage organ in the form of carbohydrate-binding 
proteins which can be thus used as passive-defense protein. 
Since phytolectins possess an ability to make specific glyco-
conjugates, they may be exploited towards the identification 
of different microbial strains and other infectious agents for 
diagnostic purposes. Several plant-derived components have 
been used from ancient times to treat/cure several human 
diseases. Applications displayed by plant lectins in pharma-
cological studies may generate new active principles in the 
near future.
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