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Introduction

Jatropha curcas is still under the race as second generation 

biofuels (Navarro-Pineda et al. 2016) J. curcas is resistant to 

drought, and can grow on marginal lands with minimum 

fertilizer inputs with moderate to high rainfall. Its cultivation 

will provide employment to rural people and also improve 

the environment (Openshaw 2000). The plant can be propagated 

through seeds but for sustainable yield clonal propagations 

are preferable.

In vitro propagation methods have been used to multiply 

many plants (Loberant and Altman 2010). However, the use 

of agar-agar, sucrose, and phytohormones make the in vitro 

propagation system expensive. The cost of micropropagated 

plant can be reduced by the use of liquid medium, commercial 

grade sucrose, and ex vitro rooting. Also, liquid medium has 

an advantage over solid medium like faster growth rate, 

greater number of multiple shoot buds, and no disruption in 

growth due to phenolic released by explant and contrary 

solid medium is labor intensives. Many plants respond poorly 

to liquid medium due to hyper-hydration (Aitken-Christie et 

al. 1995; Etienne et al. 2006; Shaik et al. 2010; Snyman et al. 

2011; Ziv 2010), and solid medium is the only alternate for 

their propagation. The liquid culture system allows the study 

of diverse physiological, and biochemical characteristics 

(Salaj et al. 2007). Recently, the use of suspension culture 

has also been involved in genetic transformation studies 

(Wenck et al. 1999). The use of liquid cultures not only 
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Abstract

Although several studies have been made on the micropropagation of Jatropha curcas using agar base mediums, none of 
them have been by using liquid medium systems. The effects of explant type and temporary immersion system (test tube, jar 
with filter paper boat, and growtek bioreactor) on the micropropagation of J. curcas were studied. The explant type 
influenced shoot quality, multiplication coefficient (MC), and rooting. Leaf explant produced more and longer shoots than 
nodal explant. Use of filter paper (FB) boat prevented hyperhydricity and allowed proliferation of nodal explants cultured in 
liquid MS (Murashige and Skoog) medium supplemented 6-benzylaminopurine (BAP) and Kinetin (KN). The best shoot bud 
induction (92.1±3.1%) was achieved in liquid MS medium supplemented with 2.0 mg/L KN. Leaf regeneration efficiency 
was compared in growtek bioreactor and in jar containing liquid MS medium supplemented with 0.5 mg/L Thidiazuron 
(TDZ). The best shoot bud regeneration (78.7±2.1%) was obtained in growtek bioreactor. Shoot buds achieved from nodal 
segment and leaf were subcultured on filter paper boats in jar and bioreactor containing liquid MS medium supplemented 
with BAP, Indole butyric acid (IBA), Indole-3-acetic acid (IAA), and KN. Best shoot proliferation and elongation was 
obtained in filter paper boats containing liquid MS medium supplemented with 1.5 mg/L BAP, 0.5 mg/L IAA, and 0.2 mg/L 
KN. The number of multiple shoot buds was higher in leaf explants as compared to nodal explants and the highest number of 
multiple shoot buds was recorded from leaf explants. Up to 76.4% rooting efficiency was obtained when the shoots were ex 
vitro rooted. The generated plants well established in the nursery and grew normally in outdoor conditions. The protocol has 
good potential for application in large-scale propagation of J. curcas using liquid medium.
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reduces the cost and labor, but also enhances multiplication 

rates with or without mechanization (Ascough and Fennel 

2004). Cell suspension culture of J. curcas has been reported 

by Soomro and Memon (2007) without any further regeneration 

from callus. Tissue culture of J. curcas have been tried using 

various explant sources on solid medium by many researchers 

(Deore et al. 2008; Khemkladngoen et al. 2011; Khurana-Kaul 

et al. 2010; Kumar et al. 2010, 2011; Kumar and Reddy 2012; 

Singh et al. 2010, 2014), but the use of liquid medium has 

remained confined to somatic embryogenesis (Cai et al. 2011; 

Demissie and Lele 2013). To the best of our knowledge, this 

is the first report on micropropagation of J. curcas using 

liquid medium. We report here efficient micropropagation 

method using nodal and leaf explants. High shoot multiplication 

and shoot growth in liquid medium were optimized using 

different vessel conditions.

The aim of this study was to develop an efficient micro-

propagation protocol using liquid medium. Various temporary 

immersion systems and explants were tested for best shoot 

quality, multiplication coefficient and rooting. 

Materials and Methods

Plant material and culture condition

Nodal explants were collected from 3-4 year-old elite genotype 

of J. curcas (CSMCRI-5). Nodal explants of 3 cm were 

excised from young shoots. Explants were surface sterilized 

with 0.1% mercuric chloride (HgCl2) for 8 min and rinsed 

three times in sterile distilled water. Uniform culture conditions 

were applied to all experiments. The pH of the medium was 

adjusted to 5.7 prior to autoclaving at 1.05 kg cm-2 pressure 

at 121°C for 20 min. The cultures were maintained at 25 ± 

2°C under a 16 h photoperiod with light intensity of 88 µmol 

m-2 s-1 (cool white fluorescent tubes).

Shoot bud induction from nodal and leaf explants

Nodal explants were cultured in test tube containing filter 

paper boat and filled with liquid MS medium supplemented 

with 1.0-3.0 mg/L Kinetin (KN), and 1.0-3.0 mg/L 6-benzyl-

aminopurine (BAP); nodal explants were also cultured in 

bioreactor (Growtek, Tarson) containing liquid MS medium 

supplemented with 1.0-3.0 mg/L KN, and 1.0-3.0 mg/L BAP 

for shoot bud induction. The leaves collected from 2-month-old 

cultures were used as explants. Leaf explants were cultured 

in bioreactor, jars containing cotton covered with a filter 

paper filled with liquid MS medium supplemented with 0.1 

-1.0 mg/L Thidiazuron (TDZ) and 1.0-3.0 mg/L BAP for 

shoot bud regeneration. Percent shoot bud induction and 

number of shoot buds was recorded after 4 weeks.

Shoot proliferation and elongation 

Shoot buds obtained from nodal and leaf explants were 

cultured in liquid MS medium supplemented with different 

concentration and combination of 0.5 mg/L BAP, 0.5, 1.5 mg/L 

Indole acetic acid (IAA), 0.5, 1.5 Indole butyric acid (IBA), 

and 0.2, 0.5 mg/L KN for shoot proliferation and elongation 

in bioreactor and jar containing zig-zag (Z) folded filter 

paper boat. The number of shoots, and shoot length were 

recorded, after 6 weeks of culture. Multiplication coefficient 

(MC), calculated as the number of new segments of 1.0 cm 

(for subculturing) obtained per explant. 

Ex vitro rooting and establishment

Elongated shoots (3-4 cm) were harvested and transferred 

to poly bags containing sterilized sand, wetted with sterile 

water, and covered with transparent poly bags to maintain 

humidity. The rooting percentage was recorded, after 4 weeks. 

Covered poly bags were gradually punctured and finally cut 

to slowly harden the plants. After 1 week, hardened plants 

were shifted to the nursery. 

The data are provided as mean ± standard error; each 

treatment comprised 10 explants and repeated three times. 

Data was analyzed by analysis of variance (ANOVA). Data 

was statically analyzed using SPSS (7.5). For the figures, 

standard error (SE) was calculated from the residual variances.

Results

Shoot bud induction from nodal and leaf explants

Best shoot bud response (92.1±3.1%) from nodal explants 

was achieved on liquid MS medium supplemented with 2.0 

Table 1. Effect of different concentrations of PGRs and culture vessel on the percentage of shoot bud induction from nodal explants of J. curcas. 

BAP KN Test tube Test tube B B

(mg/L) (mg/L) SBI (%) NH (%) SBI (%) NH (%)

1.0 74.8±3.6c*   89±2.6c 73.5±2.8*b 73±3.5b

2.0 86.7±3.9b*   91±2.1b 78.2±2.6*b 75±3.4b

3.0 84.3±4.6b*   92±2.9b 79.4±3.4*b 78±2.9b

1.0 76.4±2.6c 100±2.7a 72.4±3.6b 86±2.4a

2.0 92.1±3.1a 100±1.9a 88.6±3.4a 88±2.1a

3.0 91.3±3.4a 100±2.4a 87.6±3.5a 86±2.8a

Data were presented as mean ± SE. Means followed by the same letter within columns are not significantly different at the 5% probability level. NH 
non-hyperhydric, SBI Shoot bud induction, B Bioreactor, BAP 6-benzylaminopurine, KN Kinetin, *callus formation.
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Fig. 1. Axillary shoot bud induction from nodal segment in test tube (A), shoot bud regeneration in bioreactor from leaf explants, after 5 days (B-C), 
shoot proliferation and elongation of shoot buds in jar (D-E), shoot proliferation and elongation of shoot bud in bioreactor (F-G), ex vitro rooted 
shoots in sterile soil after 4 weeks (H-I).

Table 2. Effect of different concentrations of PGRs and culture vessel on the percentage of shoot bud regeneration from leaf explants of J. 
curcas.

BAP TDZ B B Jar Jar

(mg/L) (mg/L) SBI (%) NH (%) SBI (%) NH (%)

1.0 36.4±3.3d 78.2±2.3b 21.1±3.4c 67±1.6b

2.0 56.8±3.5c 76.1±1.9b 33.6±3.6b 66±2.6b

3.0 41.3±3.4d 77.6±2.6b 31.2±3.1b 68±2.9a

0.1 66.4±2.3b 96.2±2.1a 32.3±2.8b 69±3.1a

0.5 78.7±2.1a 99.1±3.2a 46.2±2.6a 71±2.8a

1.0 75.1±2.6a 97.3±2.8a 41.1±2.4a 73±1.8a

Data were presented as mean ± SE. Means followed by the same letter within columns are not significantly different at the 5% probability level. SBI 
Shoot bud induction, B Bioreactor, NH non-hyperhydric, BAP 6-benzylaminopurine, TDZ Thidiazuron.

Table 3. Effect of hormones and culture system on growth response and rooting of leaf cultures. 

IAA BAP KN B Jar B Jar B Jar

(mg/L) (mg/L) (mg/L) MC MC SL (cm) SL (cm) RS RS

0.5 0.5 - 1.1±0.1b 2.6±0.2c 1.1±0.5a* 1.5±0.4b* 0.8±0.1a 1.3±0.2b

1.5 0.5 - 1.7±0.3a 2.4±0.4c 1.3±0.4a* 1.9±0.6b* 0.6±0.2b 1.5±0.3b

1.5 0.5 0.2 2.3±0.2a 8.6±0.2a 1.8±0.6a 3.4±0.4a 1.3±0.3a 2.4±0.1a

1.5 0.5 0.5 2.1±0.4a 3.9±0.6b 1.4±0.5a 2.1±0.5b 0.9±0.1a 2.1±0.5a

Data were presented as mean ± SE. Means followed by the same letter within columns are not significantly different at the 5% probability level. 
*callus formation, MC multiplication coefficient, SL length of the longest shoot, RS number of rootable shoots per explant, B Bioreactor, BAP 
6-benzylaminopurine; IAA Indole-3-acetic acid; KN Kinetin.
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mg/L KN (Table 1). BAP developed callus at the proximal 

end of the explants in all the treatments. However, no 

callusing was observed in all the treatments of KN containing 

medium (Fig. 1A). Shoot buds initiated in bioreactor but did 

not elongate further. This may be due to the orientation of 

the nodal explants. Nodal explants were lying horizontally in 

bioreactor due to broader surface area. The percentage of 

non-hyperhydric (NH) shoot was more in test tube as compared 

to bioreactor (Table 1). Hence, test tubes were more suitable 

for shoot bud induction as compared to bioreactor.

Best shoot bud regeneration from leaf explants was achieved 

on liquid MS medium supplemented with 0.5 mg/L TDZ in 

bioreactor. Poor shoot bud regeneration was noted in leaf 

cultured on liquid MS medium supplemented with 0.5 mg/L 

TDZ in jar. Shoot bud initiation was started on the 5th day in 

bioreactor (Figs. 1B, C). Optimum shoot bud regeneration 

(78.7±2.1%) was noted in bioreactor as compared to 46.2± 

2.6% in jar (Table 2). The percentage of non-hyperhydric 

(NH) shoots was more in bioreactor (99.1±3.2) as compared 

to jar (71±2.8). Role of culture vessel was critical for 

optimum shoot bud regeneration of leaf explant. BAP 

resulted poor shoot bud regeneration in all the treatments.

Shoot proliferation and elongation 

Shoot buds were cultured in bioreactor and jar containing 

liquid MS medium supplemented with BAP, IBA, IAA and 

KN. The combination of 0.5 mg/L BAP and 1.5 mg/L IAA 

developed callus and addition of 0.2 mg/L KN to the same 

medium minimized the callus (Table 3). Optimum shoot 

proliferation and elongation was achieved in jar (Figs. 1D, 

E) as compared to bioreactor (Figs. 1F-G) from leaf explant. 

Greater shoot length (3.4 cm) in jar was noted over bioreactor 

(1.8 cm) using leaf explant, filter paper folding might have 

provided better support and enhanced shoot growth. Shoot 

proliferation and elongation response of axillary shoot buds 

was poorer compared to leaf regenerated shoot buds in both 

the culture vessel. Highest multiplication coefficients of 

8.6±0.2 and number of rootable shoots per culture 2.4±0.1 

were recorded from leaf explants in jar (Table 3). Poor multi-

plication coefficients of 2.3±0.4, and number of rootable 

shoots per culture 1.7±0.1 were recorded from nodal cultures 

in jar (Table 4). Leaf cultures multiplied more rapidly than 

nodal cultures. Also, shoot length of leaf cultures was better 

than nodal cultures. These results revealed that leaf is better 

explant for micropropagation of J. curcas using liquid medium. 

It was also known by the results that shoot proliferation and 

elongation was affected by different culture system and 

explant type. Shoots were further subcultured on the same 

liquid medium to get sufficient shoot length for rooting. 

Ex vitro rooting and establishment 

Shoots were harvested from both the explant types leaf 

and nodal, growing in liquid medium containing 0.5 mg/L 

BAP, 1.5 mg/L IAA, and 0.2 mg/L KN. Poor rooting of 

36.1% (leaf cultures) and 34.1% (nodal cultures) was noted 

in shoots obtained from the bioreactor (Fig. 2). This may be 

due to hyperhydric malformations in bioreactor. Best rooting 

(76.4%) was achieved from shoots of leaf cultures obtained 

from jar. Plantlets resume shoot growth and there were new 

leaves on each plant, after transferring in poly bag. The 

plantlets exhibited good shoot development and root growth 

(Figs. 1H, I), which confirmed the ability of shoots derived 

from liquid medium to root and to continue growth, after 

transplant to soil. The acclimatized plantlets were well 

established upon transfer to greenhouse. More than 90% 

plant survival was obtained in the greenhouse and nursery.

Table 4. Effect of hormones and culture system on growth response of nodal cultures.

BAP KN IAA IBA B Jar B Jar B Jar

(mg/L) (mg/L) (mg/L) (mg/L) MC MC SL (cm) SL (cm) RS RS

0.5 - 0.5 - 0.5±0.1b 1.1±0.4b 0.6±0.3b 1.1±0.4b 0.5±0.1a 0.6±0.2b

0.5 - 1.5 - 0.7±0.2a 1.4±0.3b 0.8±0.4a* 1.3±0.5b* 0.6±0.2a 0.7±0.1b

0.5 0.2 1.5 - 1.2±0.1a 2.3±0.4a 1.5±0.4a 2.3±0.6a 1.1±0.1a 1.7±0.3a

0.5 0.5 1.5 - 1.4±0.2a 1.8±0.2a 1.1±0.6a 1.8±0.4a 0.9±0.1a 1.6±0.1a

0.5 0.2 - 0.5 1.3±0.3a 1.1±0.3b 0.5±0.4b* 0.8±0.b3* 0.6±0.3a 0.8±0.1b

0.5 0.5 - 1.5 1.1±0.4a 1.5±0.1b 0.6±0.3b* 0.9±0.5b* 0.7±0.1a 0.8±0.3b

Data were presented as mean ± SE. Means followed by the same letter within columns are not significantly different at the 5% probability level. 
*callus formation, MC multiplication coefficient, SL length of the longest shoot, RS number of rootable shoots per culture, B Bioreactor. BAP 
6-benzylaminopurine; IAA Indole-3-acetic acid; IBA 3-indolebutyric acid; KN Kinetin.

Fig. 2. Effect of culture system on ex vitro rooting of Jatropha curcas.
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Discussion

Plant production using liquid medium is a harmonized 

system to overcome limitations present in the agar-based 

solid medium (Aitken-Christie 1991; Paek et al. 2001, 2005). 

To date, there was no study reported on the micropropagation 

of the J. curcas in liquid cultures using nodal and leaf explants. 

Thus, in the current study, we investigated the possibility of 

micropropagation in liquid medium and assessing different 

immersion methods together with various PGR combinations. 

In solid medium, shoots absorb nutrients through their cut 

end (Guan and De Klerk 2000), however, the medium taken 

up by plants in a liquid medium is through leaves via stomata 

and transferred to growing tissues (De Klerk and Ter Brugge 

2011; Schonherr 2006). Liquid medium uptake over the whole 

plant surface can be beneficial for the growth of plantlets 

(Berthouly and Etienne 2005; Quiala et al. 2006). In our study, 

vessel type significantly affected initiation and elongation of 

shoot buds. The medium volume and the culture vessel type 

were critical for the micropropagation of sugarcane (Snyman 

et al. 2011). We observed highest leaf regeneration in bio-

reactor as compared to jar. Similar to the above observations, 

improved plant regeneration in liquid media using different 

culture vessels were earlier noted in several plants (Mujib et 

al. 2014; Nitayadatpat and Te-chato 2005; Te-chato and Lim 

1999). This fact could explain our results, that liquid medium 

improved shoot proliferation and elongation as best shoot 

proliferation was achieved in jar containing liquid medium. 

Sometimes the permanent contact of plant tissues with a 

liquid medium causes total or partial hyperhydricity (Etienne 

et al. 2006; Niemenak et al. 2008). In the present study, such 

effects could be overcome by the use of test tube and filter 

paper boat. Test tube and boat provided better support to 

shoots to maintain upright position as compared to bioreactor. 

The only lower end of the nodal explant was in the contact 

with medium; hence, more number of non-hyperhyderated 

shoots was achieved from nodal explants in test tube. Liquid 

medium improved regeneration efficiency of Centaurium 

erythraea and Phaseolus vulgaris (Piatczak et al. 2005; 

Veltcheva and Svetleva 2005). In the present study, BAP- 

containing medium induced callusing at the basal end of the 

explants. However, no callusing was noted in the explants 

cultured on KN-containing medium. Cytokinins in their 

higher concentrations have increased the occurrence of 

vitrification (Ivanova and Van Staden 2011). Vitrified shoots 

and leaves were observed in BA containing medium in teak 

(Quiala et al. 2012). BAP along with IAA developed inter-

vening callus and addition of KN to the same medium inhibited 

callusing. Similar observation was noted in sugarcane liquid 

cultures, BAP in combination with KN boosted up culture 

growth (Singh et al. 2001). Advantage of the use of liquid 

medium was to drop down the costs in media constituents, 

media preparation, and waste disposal, together with less 

manual labor for inoculation of cultures. 

To date, there was no study reported on the micropro-

pagation of the J. curcas in liquid cultures medium. It was 

known by the study that the use of a support to maintain the 

explants in an upright position was essential to minimize 

hyperhydricity, and it was the main obstacle for propagation 

in liquid medium. Three types of temporary immersion system 

were evaluated and all of them proved suitable at different 

culture stages. The test tube was suitable for nodal explants, 

bioreactor was best for leaf regeneration and jars produced 

longer shoots. Thus, in the current study, we investigated the 

possibility of micropropagation in liquid medium by assessing 

different explants, immersion types and together with various 

PGR combinations.
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