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aid population estimates, we developed a single nucleotide 
polymorphism (SNP) genotyping panel designed to iden-
tify individual bobcats from noninvasively collected fecal 
samples.

Empirical studies have raised concerns about the accu-
racy of microsatellites when applied to fecal genotyping 
(Creel et al. 2003; Piggott 2004). Although SNPs and mic-
rosatellites can both provide high-quality genotypes from 
fecal samples with adequate quality control measures in 
place, SNPs tend to attain higher genotyping success rates 
than microsatellites, attributed to the shorter size of the tar-
get sequence (von Thaden et al. 2017; Ekblom et al. 2021). 
SNP datasets that have been vetted for use with degraded 
samples provided highly accurate genotypes (Schultz et al. 
2018), in some cases outperforming microsatellites when 
directly compared (von Thaden et al. 2020; Ekblom et al. 
2021). In contrast to microsatellites, SNPs have the added 
benefit of not requiring allele calling standardization across 
laboratories. Our SNP panel was designed using samples 
spanning California’s diverse ecoregions to maximize res-
olution throughout the state (Table S1). We included sex-
linked SNPs and mitochondrial (mtDNA) loci differentiating 

Conservation and management strategies for carnivores are 
contingent upon accurate demographic data. Fecal geno-
typing presents a cost-effective and noninvasive means 
of obtaining mark-recapture data that is often preferable 
for monitoring populations of elusive carnivores (Waits 
and Paetkau 2005). In California, the bobcat (Lynx rufus), 
a widespread carnivore, is the subject of recent conserva-
tion focus due to a lack of robust demographic data. The 
accurate estimation of bobcat populations is crucial for 
understanding their ecology and the effects of fragmented 
landscapes, particularly in the face of urban expansion and 
disease (Serieys et al. 2015; Kozakiewicz et al. 2019). To 
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Abstract
Spatial mark-recapture abundance estimates obtained from fecal genotyping are becoming an essential component of 
conservation of carnivores. The bobcat (Lynx rufus) is a widespread carnivore in California, USA, that until recently 
lacked robust demographic data. To facilitate a statewide abundance study, we created a single nucleotide polymorphism 
(SNP) genotyping panel for individual identification. For SNP discovery, we performed restriction site-associated DNA 
sequencing (RADseq) on 78 samples collected throughout California and subsequently designed a panel of 96 SNPs for 
sequencing on a microfluidic platform. This panel includes loci to identify sex and differentiate bobcats from other com-
mon carnivores. The panel reliably differentiates individuals when using DNA extracted from feces, with 89% of samples 
amplifying at > 90% of SNPs. Importantly, we found autosomal SNPs were monomorphic in the closely related Canada 
lynx (L. canadensis) suggesting the panel would still be effective for bobcat study in areas of sympatry. Fecal genotyping 
provides a cost-effective, noninvasive method for population monitoring and detecting individual movement. Our panel 
generates standardized genotypes that can be analyzed across laboratories and used for continued bobcat monitoring in 
California and other western states.
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bobcat from sympatric carnivores. The resulting panel of 96 
highly reliable SNPs, optimized for a microfluidic platform, 
represents an effective, multipurpose genetic tool capable 
of distinguishing individual, sex, and species, even when 
applied to low-quality fecal DNA.

For SNP discovery, we extracted DNA from 78 bobcat 
tissues (Table S1) using the Qiagen Genomic-tip extraction 
kit (Qiagen Inc.,Valencia, CA). We used a genotyping-by-
sequencing (GBS) approach for restriction site-associated 
DNA sequencing (RADseq) based on methods outlined 
in Elshire et al. (2011) using PstI high-fidelity restriction 
enzyme. Libraries were sent to the University of Califor-
nia, Davis Genome Center for Illumina sequencing on a 
NovaSeq 6000 platform which produced 150 bp paired-end 
reads. We demultiplexed reads and trimmed adapters using 
GBSX v.1.3 (Herten et al. 2015). We aligned reads to the 
Lynx canadensis reference genome (GCF_007474595.2_
mLynCan4.pri.v2; GenBank Accession Nos. CM017329.2-
CM017347.2., CM023961.1) using BWA-MEM and default 
parameters (Li 2013). SNP calling and filtering steps were 
performed in stacks (v.2.53; Catchen et al. 2011) using the 
ref_map.pl pipeline with the following filters in the “popu-
lations” module: minor allele frequency 0.3, observed het-
erozygosity ≤ 0.6, genotypes present in ≥ 90% individuals, 
and we merged sites represented in overlapping loci.

We then selected 190 candidate autosomal bobcat SNPs 
that were evenly spaced across the genome, that had no 
indels, and had ≤ 1 SNP present in 75 bp of adjacent sequence 
in either direction (3’, 5’) to minimize the risk of mutations 
in primer binding sites. Further, we designed five taxon- or 
species-diagnostic mtDNA markers to discriminate between 
bobcats and other common carnivores. We aligned mtDNA 
sequences obtained from GenBank (Table S2) using mega 
v.10.0.5 and selected loci within the 12S or 16S ribosomal 
RNA genes that possessed a variable site flanked by highly 
conserved regions across carnivore taxa, with target ampli-
con lengths of < 130 bp.

We used the D3 Assay Design Tool (https://
d3.standardbio.com) to create Standard BioTools (formerly, 
Fluidigm; South San Francisco, CA) compatible oligos for 
all 195 markers. We validated the panel using a separate set 
of 67 bobcat tissue samples (Table S1) and carnivore refer-
ence samples (Table S3). We followed manufacturer proto-
cols for the integrated fluidic circuit (IFC) 96.96 Dynamic 
Array. All IFCs were run on the Standard BioTools Juno 
thermocycler and the Biomark HD system and subsequently 
analyzed using their SNP Genotyping Analysis Software 
v.4.5.1.

From the 190 candidate autosomal loci, we identified 
163 SNPs that amplified well with the standard chemistry 
(Table S4 and S5). We then selected SNPs with optimal 
clustering and high amplification rates for inclusion in a 

single 96 panel IFC. Our final panel included 91 autoso-
mal SNPs, two sex markers (2FelidSRYSNP-GT and mlbc-
Zfy-680; Buchalski et al. 2022), and three mtDNA markers, 
capable of differentiating felids from other carnivores 
(FelVCan_2496_16SriboRNA), bobcat from mountain lion 
(mtdna_658; Buchalski et al. 2022), and other carnivores 
from coyote (Canis latrans; CoyVAll_2427_16SriboRNA), 
a common non-target species whose feces can be misidenti-
fied as bobcat during surveys (Tables S3, S4, S5). We also 
validated an additional felid diagnostic mtDNA marker and 
two red fox (Vulpes vulpes) diagnostic mtDNA markers 
which could be incorporated for studies with high red fox 
abundance.

To characterize the level of polymorphism of the panel, 
we used the combined SNP discovery and validation data-
sets (n = 145; Table S1; genotype file provided in Genepop 
format as Supplementary File 2) and excluded poor-qual-
ity genotypes (> 20% missing data). We used R v.4.3.1 (R 
Core Team 2023) and the adegenet package (Jombart and 
Ahmed 2011) to calculate expected heterozygosity and 
minor allele frequency. We then used popgenutils pack-
age to estimate the probability that two individuals (PID) or 
two siblings (PIDsibs) may have the same genotype (Tourvas 
2021).

Our panel yielded a high (99%) amplification rate with 
66 of 67 tissue samples successfully genotyped above the 
20% missing data cutoff. The autosomal SNPs had high 
resolving power as reflected in the decreasing trend in PID 
and PIDsibs across loci, with an overall PID of 9.2 × 10–38 for 
the combined panel (Fig. 1, Table S6). Heterozygosity esti-
mates ranged from 0.38 to 0.5 among loci, with minor allele 
frequencies between 0.25 and 0.5 (Table S6). The autoso-
mal loci showed minimal cross-amplification in canids, 
raccoon (Procyon lotor), American badger (Taxidea taxus), 
and black bear (Ursus americanus), and monomorphic gen-
otypes for non-target felids (Canada lynx, L. canadensis; 
mountain lion, Puma concolor; domestic cat, Felis catus; 
genotypes provided in Supplementary File 2). The mtDNA 
markers (Table S3) were accurate in differentiating felid 
species (102/102) from other tested carnivores, and bobcats 
from both red fox (13/13) and coyote (15/15). For locus 
RedVCoyGray_227_12SriboRNA we found a haplotype 
unique to red foxes suggesting this marker is species-diag-
nostic. However, the coyote marker shared haplotypes with 
two carnivores, American badger (14/14; T. taxus) and kit 
fox (1/10; V. macrotis).

We also tested the panel with 88 fecal samples extracted 
using the QIAamp Fast DNA Stool Mini Kit (Qiagen Inc.). 
We modified the 96.96 Dynamic Array protocol with PCR 
pre-amplification optimizations for low quality samples 
(von Thaden et al. 2020). Of the 88 samples, 83 were 
determined by mtDNA markers to be bobcat. Of those, 74 
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(89.2%) successfully genotyped (90–100% of SNPs called) 
and nine failed (< 40% SNPs called).

Our SNP genotyping panel represents an advancement 
in the demographic monitoring of bobcats. Simultaneous 
individual identification, sex determination, and differentia-
tion from non-target carnivores enhances the efficacy and 
accuracy of abundance estimates based on fecal genotyping 
and allows for tracking bobcat movement over time periods 
that complement current telemetry technologies. Results 
for the closely related Canada lynx, which are sympatric in 
a portion of the bobcat range, indicated all autosomal loci 
were monomorphic which suggests this panel would remain 
accurate in areas where the species co-occur.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s12686-
024-01368-0.
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