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Abstract
Information on the sex- and individual-specific space use by a species elucidates demography, resource selection and 
individual life history. However, traditional field surveys often lack information on sex and individual identity, thereby 
not maximizing the potential of the effort put in. Recent advances in genetic non-invasive sampling provide cost-effective 
approaches to determine identity and sex from faecal DNA with high accuracy, which are advantageous for tracking individu-
als compared to field observations. Therefore, we describe the first single multiplex-based sex and individual identification 
protocol using faecal samples of the wild Asian elephant (Elephas maximus) collected from the vicinity of Rajaji Tiger 
Reserve, Uttarakhand, India. We co-amplified fluorescence-labelled microsatellites (n = 5) and a Y chromosome-linked sex 
marker in four replicates from faecal DNA extracts (n = 149). The mean per genotype allelic drop-out rate was 0.11 ± 0.02, 
while the false allele rate was 0.05 ± 0.01. The mean null allele frequency across the markers was 0.15 ± 0.02. We obtained 
74.1% consensus genotypes across microsatellites and dropped samples with more than one-locus missing genotype from 
further analyses. The remaining dataset comprised 105 samples, 30.5% of which were females. We identified 51 unique 
individuals (25 males and 26 females) with a maximum of one-locus mismatch. With low genotyping error rates and adequate 
misidentification probabilities (PID = 4.2 × 10−4; PIDSib = 3.0 × 10−2), the described panel provides a cost-effective method 
(US$ 18/sample) for molecular sexing and individual identification. Hence, the suggested multiplex panel would provide a 
thorough understanding of individual and sex-specific differences in habitat use across heterogeneous landscapes, facilitat-
ing effective conservation strategies.
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Introduction

Developing an effective conservation strategy for long-
ranging mammalian species, often traversing through a 
human-modified landscape, requires fine-scale information 
on resource requirements (Sanderson et al. 2002). Multi-
ple studies in recent times have concluded the existence of 
individualistic as well as sex-linked variability in patterns 
of resource utilization across various taxa to account for dif-
ferential physiological requirements at various life-history 

stages (Sprogis et al. 2018; Ofstad et al. 2019; Carrasco et al. 
2020; Johnson and Derocher 2020; Rehnus and Bollmann 
2020). Individual-level studies on animals with distinct mor-
phological marks or tags can monitor their life history while 
also providing information such as abundance and survivor-
ship at the population level, often requiring ample resources 
(Galvis et al. 2014; Sadhu et al. 2017). For species lacking 
such markings, invasive physical tags, e.g. coloured bands 
or collars, ear tags, transmitters and skin brands are used 
that may be lost over time and are cost- and time-intensive 
(Woods et al. 1999).

With the recent advances, permanent genetic tags such 
as multi-locus microsatellite genotypes and molecular sex-
ing from non-invasive faecal samples of individuals over-
come these limitations and hence, are useful for long-term 
monitoring across large landscapes and over the focal spe-
cies’ lifespan. Molecular tracking and faecal DNA-based 
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abundance estimation have been used as cost-effective tech-
niques alternative to physical tagging or camera trapping 
with comparable accuracy and precision (Ernest et al. 2000; 
Janečka et al. 2011; Hedges et al. 2013; Caniglia et al. 2014; 
Gray et al. 2014).

However, some key parameters (e.g. age of the individual, 
the decay rate of the faeces deposited) for obtaining reli-
able demographic estimates from non-invasive sampling 
have been calibrated for only a limited number of species 
(Eggert et al. 2003; Flagstad et al. 2012; Hedges et al. 2013; 
Poutanen et al. 2019). Additionally, molecular tagging poses 
a substantial challenge in obtaining reliable genotypes from 
the inferior quality faecal DNA due to intrinsic errors, i.e. 
allelic drop-outs and false alleles (Fernando et al. 2003a; 
Scandura et al. 2006; Sethi et al. 2014). Too few microsatel-
lites lacking optimal resolution produce ‘shadow’ genotypes 
caused by merging individual identities, thereby underesti-
mating the actual count (Mills et al. 2000; Sethi et al. 2014). 
Conversely, ‘ghost’ individuals are produced if samples from 
the same individual generate non-identical genotypes due 
to the accumulation of genotyping errors (Creel et al. 2003; 
Lampa et al. 2013; Sethi et al. 2014). The proportion of 
‘ghost’ individuals is positively correlated with the num-
ber of microsatellite loci used for individual identification, 
incurring up to five-fold positive bias in enumerating unique 
individuals (Creel et al. 2003). Multiple studies (Wang et al. 
2012; Rothstein et al. 2016; Wang 2016) have developed 
algorithms incorporating genotyping error rates to minimise 
‘ghost’ errors.

The Asian elephant (Elephas maximus) has been oblit-
erated from 95% of the historical stronghold, whereas, in 
India, its geographic distribution has shrunk by 70% since 
the 1960s (Sukumar 2006). Additionally, the loss of a quar-
ter of the elephant habitat in India within the last century 
(Padalia et al. 2019) underscores the importance of regu-
lar monitoring of elephant populations to understand habi-
tat use, movement patterns, estimation of abundance and 
dynamics of human-elephant interactions. Monitoring 
elephants at the individual level based on variables such 
as body shape, ear, tail, and tusk require enormous efforts 
to maintain such a database over the species’ lifespan and 
across the vast landscape it inhabits (Morley and van Aarde 
2007; de Silva et al. 2011; Goswami et al. 2019).

For Asian elephants, non-invasive genetic sampling 
(gNIS) has been employed to address a broad range of 
research topics, i.e. population monitoring (Vidya et al. 
2007; Flagstad et al. 2012; Hedges et al. 2013; Chakraborty 
et al. 2014; Gray et al. 2014; Zhang et al. 2015), social 
organization (Vidya and Sukumar 2005a; Ahlering et al. 
2011a), population and landscape genetics (Fernando et al. 
2003b; Vidya et al. 2005; Goossens et al. 2016; De et al. 
2021; Parida et al. 2022), demographic history (Sharma et al. 
2018), and phylogeography (Vidya et al. 2009). However, 

the sets of markers used by different research groups are 
often non-overlapping, rendering the data difficult to com-
pare, as is the case with microsatellite data of most other 
species (Garner et al. 2005; Li and Kimmel 2013). It is criti-
cal to generate harmonized, comparable data, especially for 
threatened taxa having a wide distribution range for conser-
vation planning at the landscape level (de Groot et al. 2016).

Molecular sexing in elephants has been carried out using 
either of the following strategies: restriction fragment length 
polymorphism (RFLP) (Fernando and Melnick 2001; Vidya 
et al. 2003; Ahlering et al. 2011a; Hedges et al. 2013), poly-
merase chain reaction (PCR) followed by gel-based evalu-
ation (Gupta et al. 2006; Vidya et al. 2007; Munshi-South 
et al. 2008; Ahlering et al. 2011b; Chakraborty et al. 2014), 
PCR and subsequent fragment analysis of fluorescent dye 
labelled product or quantitative PCR (qPCR) based assay 
(Aznar-Cormano et al. 2021).

A gNIS based method for cost-effective identification of 
unique individuals and their sex is crucial for augmenting 
information on elephant ecology, demography, and under-
standing the patterns of human-elephant interactions at the 
landscape scale (Chiyo et al. 2011; Chakraborty et al. 2014). 
Therefore, we aimed to propose a microsatellite panel with 
sufficient resolution while using a minimum number of 
microsatellites to avoid compounding genotyping errors that 
inflate unique individual counts (Creel et al. 2003). We pri-
oritized co-amplification of the microsatellite markers along 
with a sexing marker in a single multiplex, thereby mini-
mizing reagent and plasticware consumption and chances 
of human errors during handling. The specific objectives of 
this study using degraded elephant faecal DNA were: (i) to 
standardize a co-amplifiable multiplex panel consisting of 
a sex-linked marker and microsatellite markers that would 
provide low misidentification probability and genotyping 
error rates, and (ii) empirical validation of the proposed 
microsatellite panel using a larger set of published markers.

Materials and methods

Study area

The sampling for this study was conducted in the human-
dominated landscape around Rajaji Tiger Reserve (RTR) in 
the Shivalik Elephant Reserve (SER), with the majority of 
the samples being from areas under Haridwar and Dehradun 
Forest Divisions (FD), Uttarakhand, north-west India.

Field sampling and DNA extraction

We opportunistically collected spatially segregated elephant 
faecal samples (n = 149, Fig. 1a) from the landscape between 
August 2014 and May 2018. We placed the samples in sterile 
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containers (50 ml) over silica gel following Wasser et al. 
(1997). The samples were oven-dried at 56 °C placed ~ 15cm 
apart from one another (~ 10 samples per rack) < 30 days 
post-collection. We set the airflow velocity of the oven at 
a minimum to reduce the chance of cross-contamination. 
The dried samples were capped and stored at room tem-
perature away from sunlight for up to 32 months until DNA 
extraction.

Faecal samples of multiple mammalian species were 
routinely dried together in the same oven, and we assessed 
cross-contamination possibilities based on > 1000 DNA 
sequences from samples processed using this protocol. 
Downstream Sanger sequencing of amplicons (~ 400 bp) 
using universal mammalian primers consistently yielded 
distinct sequences of the target species (Goyal et al. unpub-
lished data) based on nucleotide BLAST (https://​blast.​ncbi.​
nlm.​nih.​gov/​Blast.​cgi). Upon scrutiny of the raw chromato-
grams (Q > 20), none of the samples displayed any ambigu-
ous peaks across the variable sites. Similar oven drying pro-
tocols have been used in non-invasive genotyping studies 
for sample desiccation before long-term storage (Murphy 
et al. 2000; Borthakur et al. 2011, 2013; De et al. 2021, 
2022). Therefore, we believe that the chance of the results 
being affected by cross-contamination during oven drying 
of elephant faecal samples is negligible.

We scraped the top layer of the dung boluses with a sterile 
blade into 2 ml polypropylene centrifuge tubes. We used 
QIAamp DNA Stool Mini Kit (Qiagen GmbH, Hilden, Ger-
many) to isolate DNA from the faecal scrapings using the 
manufacturer-specified stool DNA extraction protocol after 
overnight digestion in stool lysis buffer at 56 °C. We carried 
out all the DNA extractions in a separate low DNA isolation 
facility with negative controls to track contaminations.

PCR amplification

Selection of microsatellite markers

We initially selected a published multiplex microsatellite 
panel (EMU13, EMU17, LafMS02 and LafMS05; Nyakaana 
and Arctander 1998; Kongrit et al. 2008) exhibiting high 
amplification success with faecal DNA (De et al. 2021). We 
modified the combination to exclude a marker (EMU17) pro-
ducing inconsistent ‘stutter’ bands with degraded samples 
during initial testing (unpublished data) and replaced with 
two more loci (EMU07 and EMU12; Kongrit et al. 2008) of 
higher success and low error rates (De et al. 2021). Finally, 
the selected panel consisted of five dinucleotide microsat-
ellite loci, i.e. EMU07, EMU12, EMU13, LafMS05 and 
LafMS02. This combination of microsatellite markers could 
assign the highest number of individuals to their respec-
tive identities among several panels tested using a blind test 
approach (De et al. 2022).

Molecular sexing

For molecular identification of sex from faecal DNA, we 
selected an elephant-specific Y-chromosome linked Amelo-
genin marker (Ahlering et al. 2011b) for co-amplification 
with the microsatellite panel. The sex marker, AMELY2, 
produces a 121 bp amplicon in Asian elephant males and 
does not amplify in females (Ahlering et al. 2011b). The 
criteria for assigning a sample of female origin were non-
amplification of the AMELY2 fragment and a minimum of 
four microsatellites co-amplifying. For males, co-amplifi-
cation of AMELY2 and at least four microsatellites were 
required.

Reaction composition and conditions

The forward primers of the microsatellite panel (n = 5) and 
the sexing marker (n = 1) were labelled with fluorescent 
G5 dyes (Applied Biosystems, CA, USA). Each reaction 
consisted of 5 µl Qiagen Multiplex PCR Master-mix, 10µg 
bovine serum albumin (BSA), 2 µl DNA template and 1.0 
µl labelled primer cocktail containing equal proportions of 
10 µM microsatellite and sexing markers and nuclease-free 
water to make the reaction volume up to 10 µl. The thermal 
cycling profile (Veriti thermocycler, Applied Biosystems) 
consisted of initial denaturation at 95 °C for 15 min, 45 
cycles of denaturation at 95 °C for 30 s, touchdown anneal-
ing at 62 to 52 °C for 1 min—a drop of 1 °C every two cycles 
up to 20th cycle and 52 °C for rest of the 25 cycles, exten-
sion at 72 °C for 40 s; final extension at 60 °C for 30 min 
and finally, hold at 4 °C. To screen for PCR performance, we 
visualized the products in 2% w/v agarose gel stained with 
ethidium bromide.

We followed a multi-tube approach (Taberlet et al. 1996) 
to restrict genotyping errors with minor modifications. 
Instead of a two-step protocol to amplify up to seven repli-
cates (Taberlet et al. 1996), we replicated the multiplex reac-
tion a total of four times (Ruiz-González et al. 2013; Bhatt 
et al. 2020; De et al. 2021) with each DNA isolate (n = 149).

All sets of PCRs included positive and negative controls 
to track PCR failure and reagent contamination. We dis-
solved 1 µl of each PCR product in 8.93 µl HiDi formamide 
and 0.07 µl Gene Scan 500 Liz size standard (Applied Bio-
systems) and denatured at 95 °C for 5 min before loading in 
an ABI 3500xl automated genetic analyser (Applied Biosys-
tems) for fragment analysis.

Data analysis

The resulting electropherograms were visualized using 
GENEMAPPER 5.0 (Applied Biosystems). Automated 
allele scoring was performed subsequently while we 
manually verified each call. We only considered alleles 
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that produced sharp, clear peaks without any ambiguity 
caused due to stuttering or + A peaks (Matsumoto et al. 
2004). Additionally, we carefully reviewed any peak 
under a relative fluorescence unit (RFU) value of 1000. 
We removed data with RFU < 500 from all further analy-
ses as the probability of allelic drop-out (ADO), inversely 
proportional to peak heights, has been demonstrated to 
be ≤ 5% at RFU ≥ 487 (Gill et al. 2015). We used a lower 
threshold peak height ratio (PHR; signal intensity ratio of 
the larger allele in terms of fragment length to the smaller 
allele) of 40% (Mäck et al. 2021) for heterozygous geno-
types to minimize false alleles in the dataset. Considering 
samples with high RFU ensured a greater quality of data 
with unambiguous profiles, falling in the top two catego-
ries of ‘SEQ-score’ 1 and 2 as suggested in the literature 
(Scandura et al. 2006).

We binned the resulting raw fragment length data using 
AUTOBIN v0.9 Excel Macro (Salin 2010). The criteria for 
a consensus homozygous genotype was the amplification 
of the same allele in a minimum of three replicates, while 
a consensus heterozygous genotype was recorded in the 
case at least two replicates produced the exact same sets of 
alleles (Sawaya et al. 2011; Morin et al. 2016). Any repli-
cate genotypes that did not pass the criteria for consensus 
were recorded as missing data. We considered a sample 
of male origin when the AMELY2 fragment co-amplified 
with at least four microsatellites, while for a female indi-
vidual, non-amplification of AMELY2 and amplification 
of four microsatellites were required. We used GIMLET 
v1.3.3 (Valière 2002) to compute ADO and false allele 
(FA) rates per heterozygote and homozygote genotypes, 
respectively, based on the four sets of multi-tube repeat 
genotypes.

We proceeded for individual identification with all 
samples with a minimum of 4-loci consensus microsatel-
lite data using the program CERVUS 3.0.7 (Kalinowski 
et al. 2007). A threshold of at least four-loci match (i.e., 
exact matches across five-loci and four-loci) along with 
the molecular sexing data was set as the criteria to assign 
unique genotypes. We used the R package ‘diveRsity’ 
(Keenan et al. 2013; R Core Team 2019) to compute the 
diversity statistics for the microsatellite markers from the 
identified individual data. We tested for linkage disequi-
librium (LD) using GENEPOP 4.7 (Rousset 2008) with 
1000 dememorization, 100 batches and 1000 iterations 
per batch. Null allele frequencies were calculated using 
the EM algorithm (Dempster et al. 1977) as implemented 
by the software FreeNA (Chapuis and Estoup 2007). We 
used GenAlEx 6.5.0.1 (Peakall and Smouse 2006, 2012) 
to calculate the probability of misidentifying two different 
random individuals as a single individual (PID) and two 
full siblings as an individual (PIDSib) for the chosen panel 
of markers.

Empirical validation of panel resolution

We amplified and scored additional microsatellite mark-
ers (n = 9; EMU03, EMU04, EMU09, EMU10, EMU11, 
EMU14, EMU15, EMU17 and LafMS03) (Nyakaana and 
Arctander 1998; Kongrit et al. 2008) with the samples 
meeting evaluation criteria using reaction conditions 
described in De et al. (2021). We used the five-loci and 
14-loci (including the original five microsatellite loci) 
panels separately to identify first-order relatives (parent-
offspring and full siblings) using the software COLONY 
v2.0.6.6 (Jones and Wang 2010) under a full-likelihood 
framework with medium run lengths and weak sib-ship 
prior for three independent runs. We screened for the 
potential ‘shadow’ error by comparing the incongruity 
between the two datasets. Thereafter, we manually quan-
tified the sample pairs assigned as first-order relatives with 
the 14-loci panel but merged as same individuals using 
5-loci genotypes.

Results and discussion

Marker amplification and genotyping errors

We recorded a 74.1% average success rate (calculated as 
the proportion of successful consensus genotypes out of 
the total attempted genotypes) across the five microsat-
ellite loci, ranging between 59.7 and 83.2% successful 
amplification (Table 1). The PCRs yielded microsatellite 
amplicon sizes between 101 and 157 bp, while AMELY2 
fragments were 121  bp (Fig.  2). All positive controls 
amplified successfully, along with accurate identifica-
tion of sex. Neither of the negative controls showed any 
amplification. Most alleles (95.6%) produced a peak height 
of > 1000 RFU (Supplementary Fig. S1). Allele frequen-
cies across the markers ranged from 0.01 to 0.62 (Sup-
plementary Fig. S2). The mean ADO rate across loci was 
0.11 ± 0.02, and the FA rate was 0.05 ± 0.01. Null allele 
frequencies varied between 0.12 and 0.22 with a mean 
of 0.15 ± 0.02. None of the pairs of the loci showed any 
evidence for linkage disequilibrium (LD) at a 95% level of 
significance. The locus LafMS02 produced allelic peaks 
followed by a ‘+A’ peak, one bp apart (Fig. 2). We retained 
the allelic peak and ignored the trailing +A despite having 
comparable peak height. Accurate allele scoring from fae-
cal samples has been a significant limitation in getting reli-
able data from non-invasive samples. However, character-
izing each observed allele across loci using stutter-to-peak 
and first-to-second allele ratios (Table 1), as suggested by 
Matsumoto et al. (2004), may aid accurate allele scoring 
by providing a quantitative criterion. 〹
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Individual identification

We dropped samples with lower than four-loci microsat-
ellite consensus genotypes (n = 44) from further analyses. 
There were 148 missing genotypes for the 44 samples dis-
carded. The majority of the gaps (n = 127; 85.8%) within the 
dropped samples were caused by non-amplification, while 
consensus could not be reached for the rest 14.2% (Supple-
mentary Fig. S3).

The remaining samples (n = 105) contained only 4.6% 
missing genotypes across the five-microsatellite panel. Com-
plete five-locus data were available for 81 samples (77.1%), 
while the rest of the 24 samples (22.9%) had one missing 
genotype each. Based on the threshold set for microsatel-
lite similarity, CERVUS algorithm identified 151 pairs of 
matching genotypes (putative recaptures) out of the 5460 
pair-wise comparisons possible between the samples under 
analysis (n = 105). Out of these matching sample pairs 
(n = 151), 47% matched exactly across all five microsatellite 
loci, whereas 53% had genotypes that matched for four loci, 
with the remaining one locus data either missing or mis-
matching. We identified a minimum of 51 unique genotypes 
or individuals from the samples analyzed (n = 105). There 
were 39 individuals (76.5%) appearing in the dataset only 
once (single genetic captures), while 23.5% of individuals 
(n = 12) showed multiple captures each, thereby account-
ing for 62.9% of the total samples analyzed. We observed 
five individuals with two to three captures, one individual 
with four captures, four individuals with six to seven cap-
tures and one individual each with nine and fifteen captures, 
respectively.

Molecular sexing

Molecular sexing was successful for all 105 samples. We 
identified 73 samples of male and 32 samples of female ori-
gin (Fig. 1b). Out of 51 individuals identified using micro-
satellite data, 25 (49.1%) were identified as males using 
molecular sexing, while 26 (50.9%) were females.

Marker characteristics

The number of alleles per locus (Na) varied from four 
to seven (Mean Na = 4.80 ± 0.58) (Table 1). For the 51 
individuals, estimates of expected heterozygosity (HE) 
across loci were in the range of 0.54 to 0.77 (Mean HE = 
0.63 ± 0.04). The mean observed heterozygosity was HO = 
0.40 ± 0.05 (0.22–0.56). PID and PIDSib varied between 0.09 
and 0.27 and 0.38–0.55 across the loci (Table 1).

We designed this microsatellite panel to reliably identify 
Asian elephant individuals under the worst-case scenario of 
using degraded DNA for genotyping as we used dry-stored 
samples kept at room temperature up to ~ 3 years after field Ta
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collection. We achieved a mean success rate (74.1%) and 
genotyping error rate (Table 1; allelic dropout: 0.11 ± 0.02, 
false alleles: 0.05 ± 0.01) comparable to other non-invasive 
studies on Asian elephants (Vidya and Sukumar 2005b; 
Flagstad et al. 2012; Hedges et al. 2013; Chakraborty et al. 
2014; Gray et al. 2014; Goossens et al. 2016). Therefore, 
adopting a similar methodology of a single multiplex PCR 
with four replicates using elephant faecal DNA would be 
useful for a rapid sweeping survey to identify individuals 
and their sex under financial and logistic constraints. The 

efficacy of the prescribed panel with dried samples stored 
in room temperature indicates that post-facto analyses can 
also be taken up using this approach where faecal samples 
have already been collected for nutritional, parasitological 
or endocrinological studies.

The five-loci microsatellite panel suggested in this study 
has a probability of misidentification rate of 0.04% for ran-
dom individuals (recommended range < 1%; Waits et al. 
2001) and 3% between full siblings (Supplementary Fig. 
S4). It is possible to achieve even lower probabilities of 

Fig. 1   Locations of the 
a elephant faecal samples col-
lected (n = 149) and b samples 
used in analyses (n = 105) along 
with their identified sex from 
the vicinity of the Rajaji Tiger 
Reserve, Uttarakhand, India
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‘shadow’ genotypes (Mills et al. 2000) dataset by scrutiny 
of matching genotypes for differences in molecular sexing 
results, bolus morphometry, location and time of sampling.

Validation of the suggested panel

It has been established that ‘ghost’ individuals, directly 
proportional to the number of markers used for individual 
identification, may incur significant positive bias while 
estimating wildlife abundance (Creel et al. 2003; Lampa 
et al. 2013, 2015; Winiarski and McGarigal 2016; De et al. 
2022). Due to the prevalence of genotyping errors in non-
invasive microsatellite data, several studies suggest using the 
minimum number of markers to obtain sufficient resolution 
(i.e. reasonably low PID) for identifying unique individu-
als (Waits et al. 2001; Creel et al. 2003; Wang 2016). The 
typical social organization of elephants warrant validation 
of the suggested panel for its ability to distinguish between 
closely-related individuals, as the theoretical PIDsib obtained 
may be considered sub-optimal.

We recorded 86 dyads of first-order relatives using the 
14-loci data set generated for the purpose of validation. 
In comparison, the suggested 5-loci panel could correctly 
differentiate 83 dyads (96.5%) as individuals. Discrepant 

merging of three dyads of first-order relatives while using 
the five-loci panel translated into a ‘shadow’ error of only 
0.2% across 1275 possible dyads (51 individuals). Therefore, 
the empirical validation suggests that the multiplex five-loci 
panel, along with the sexing marker, is sufficient for identi-
fying unique elephant individuals for monitoring purposes. 
Using the additional nine markers did not add any signifi-
cant information towards individual identity. This is clearly 
indicated by the cumulative PID and PIDsib values plotted 
against the number of markers used for individual identifica-
tion (Supplementary Fig. S4).

Cost‑effectiveness of the described protocol

We propose collecting 10 to 15 g of faecal samples from 
the outer surface of an intact elephant dung bolus as a DNA 
source during routine field surveys or patrolling activities. 
Following the protocol outlined in this study, the cost of 
laboratory analyses to obtain sex and individual identity 
is US$ 18/sample, including reagents and laboratory staff 
(Supplementary Table S1). We excluded the cost of perma-
nent laboratory equipment from the calculation. In compari-
son, Hedges et al. (2013) reported a cost of US$ 55/sample 
(reagents and human resources) for laboratory analyses to 

Fig. 2   Electropherograms of the 
microsatellites and the Y-linked 
sex marker co-amplified from 
faecal DNA extracts of a male 
and b female elephant individu-
als
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estimate demographic parameters of the Asian elephant 
in Laos, including microsatellite markers (n = 8), mtDNA 
sequence and RFLP-based molecular sexing data, includ-
ing sequencing costs (US$ 14). While acknowledging intrin-
sic differences such as age of the samples being collected, 
impact of environmental conditions on DNA quality, skill 
of the human resources involved, we believe the protocol 
suggested in the current study provide a cheap alternative for 
faecal DNA based monitoring of the Asian elephant.

Conclusion

We suggest harmonized use of the multiplex panel described 
in this study for multi-locus genotyping during future sta-
tus surveys undertaken for Asian elephants across its range. 
Identifying elephant individuals and their sex using the 
optimized single multiplex panel provides a high potential 
to reveal additional information on (i) sex-specific spatio-
temporal distribution patterns, abundance, habitat use 
(Fig. 1b), (ii) population estimation from periodic surveys, 
and (iii) understanding human-elephant interaction includ-
ing individual-based crop-raiding behaviour. Based on the 
requirement, additional markers (n = 9) can be supplemented 
as described in a previous pan-India study using non-inva-
sive faecal sampling of the Asian elephant (De et al. 2021) 
for information such as population and landscape genetics 
and kinship patterns. Detailed information on the fine-scale 
spatio-temporal resource utilization patterns is lacking for 
most of the elephant populations in India (Vijayakrishnan 
et al. 2020). Hence, we believe that an effort to understand 
the demography and individual-level distribution and rang-
ing patterns using the described protocol would provide 
additional insight, which is critical to formulating success-
ful elephant conservation strategies.
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