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TECHNICAL NOTE
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Abstract
The mountain lion (Puma concolor) is one of the few remaining large predators in California, USA with density estimation 
from fecal genotypes becoming an essential component of conservation and management. In highly urbanized southern Cali-
fornia, mountain lions are fragmented into small, inbred populations making proper marker selection critical for individual 
identification. We developed a panel of single nucleotide polymorphism (SNP) markers that can be used for consistent, routine 
mountain lion monitoring by different laboratories. We used a subset of existing Illumina HiSeq data for 104 individuals 
from throughout California to design a single, highly heterozygous multiplex of 95 SNPs for the Fluidigm platform. This 
panel confidently differentiates individual mountain lions, identifies sex, and discriminates mountain lions from bobcats. 
The panel performed well on fecal DNA extracts and based on design, had sufficient resolution to differentiate individual 
genotypes in even the population with lowest genetic diversity in southern California.
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The mountain lion (Puma concolor) is an elusive, common 
large predator native to California, USA. Monitoring of wild 
felids often requires non-invasive genetic tools (Ernest et al. 
2000). In California, population monitoring has increasingly 
relied on canine surveys for feces followed by fecal geno-
typing and mark-recapture analyses to estimate population 
abundance. Although microsatellites have previously been 

relied upon for such noninvasive surveys, they have several 
weaknesses that must be overcome to prevent errors (Taber-
let et al. 1999), including low amplification rates (Brinkman 
et al. 2010; Murphy et al. 2007; Piggott 2004), challenges 
calibrating between laboratories (von Thaden et al. 2017), 
allelic dropout, and false alleles (Creel et al. 2003; Pompa-
non et al. 2005).

There is great need for genetic methods that can be 
applied to low quality DNA samples while maintaining sta-
tistical power to differentiate individuals in low-diversity 
populations. In southern California, many mountain lion 
populations are impacted by urban development, and exist 
in small numbers with low genetic diversity (Ernest et al. 
2014; Gustafson et al. 2017; Riley et al. 2014), making it 
difficult to apply genetic methods without high probability 
of monomorphic loci and identification errors. A previous 
SNP panel (PumaPlex100; Erwin et al. 2021) demonstrated 
the utility of SNPs to differentiate among mountain lion 
individuals. However, this panel was not optimized for low-
diversity populations and requires up to four multiplexes. 
Therefore, we developed a single multiplex of 95 SNPs for 
the Fluidigm platform (Fluidigm, San Francisco USA) that 
can be used across laboratories for surveys of California 
and potentially other mountain lion populations. These SNPs 
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can identify individuals for abundance monitoring, assign 
sex, and discriminate mountain lion feces from bobcat (Lynx 
rufus), the most common non-target species detected during 
canine surveys.

We identified SNPs using existing RADseq data (Illumina 
HiSeq, paired-end 150 bp reads) from mountain lion tissues 
sampled as part of a California statewide population genetic 
study (Gustafson et al. 2021; raw data available at https://​
doi.​org/​10.​17605/​OSF.​IO/​HUF4K) and mapped reads to 
the Puma concolor scaffold-level genome assembly (Pum-
Con1.0), using 104 individuals, including up to 15 individu-
als from each of 10 populations identified by Gustafson et al. 
(2019). We used vcftools to filter biallelic autosomal SNPs 
to a PHRED score ≥ 30 (99.9% accuracy) with ≥ 80% of indi-
viduals genotyped at each SNP. To maximize heterozygo-
sity and resolution to differentiate individuals, we used plink 
v1.90b6.10 to filter the minor allele frequency to 0.40–0.45. 
We retained 134 SNPs distributed across 28 scaffolds (mean 
within-scaffold distance of 11.3 Mbp) for further validation 
(Supporting File 1). We identified species-diagnostic SNPs 
using published mitogenome sequences for mountain lion 
and bobcat (Supporting information Table S1). We also 
identified sex-linked SNPs from both the SRY locus on the 
non-recombining region of the Y chromosome and the zinc 
finger orthologs of the X and Y chromosomes (Supporting 
information, Table S2).

We used pysam v0.15.0 to retrieve 100 base pairs of up- 
and down-stream flanking sequence for the 134 SNPs. We 
used Fluidigm’s D3 Assay Design Tool (https://​d3.​fluid​igm.​
com) in conjunction with the flanking sequences (Support-
ing Information, Table S3) to design primers, which we 
ordered from Fluidigm (Supporting information, Table S4).

To test the performance of the SNP panel on fecal DNA, 
we used 19 pairs of tissue and fecal samples collected dur-
ing mountain lion necropsies conducted by the California 
Department of Fish and Wildlife from 14 different counties. 
Feces were experimentally weathered outdoors in direct sun-
light for seven days. Tissue and fecal DNA were extracted 
using the Genomic Tip 20G kit and the QIAamp Fast DNA 
Stool Mini Kit (Qiagen, Valencia, CA), respectively. To 
assess the performance of the SNP panel on low-diversity 
populations, we extracted tissues for 26 mountain lions from 
the highly inbred Santa Ana Mountains population in south-
ern California. We also extracted 16 bobcat tissues to test the 
species-diagnostic SNPs.

We used Fluidigm’s protocol for 96.96 Dynamic Arrays 
with integrated fluidic circuits run on the Juno thermocycler 
paired with the Biomark HD system. We modified the pre-
amplification PCR reaction to align with optimizations for 
degraded samples (see Table S2 in von Thaden et al. 2020). 

We also increased the manufacturer’s PCR cycling profile 
from 34 to 45 in the final allele specific reaction. We ana-
lyzed genotyping results using Fluidigm SNP Genotyping 
Analysis Software version 4.5.1. We selected a final panel 
of 91 autosomal SNPs based on consistent cluster separation 
and high call rates. We also selected two species-diagnostic 
and two sex-linked SNPs. For the Santa Ana population, we 
tested for linkage disequilibrium LD using the r package 
poppr (Kamvar et al. 2014) to calculate the index of associa-
tion among pairs of loci and corrected for a false detection 
rate FDR of 5%. We estimated expected heterozygosity HE 
using the adegenet package (Jombart and Ahmed 2011) and 
calculated the probability of identity PID and probability of 
identity in siblings PIDsibs using the popgenutils package 
(Tourvas 2021). All packages were implemented in R 4.1.1 
(R Core Team 2021).

When genotyping the 19 paired tissue and fecal samples 
at the 91 autosomal SNPs, we obtained > 95% call rates on 
18 of the 19 fecal samples. The overall agreement between 
the paired samples was 99.9% (SD = 0.6%), indicating a gen-
otyping error rate < 0.1%. For the low-diversity Santa Ana 
population, no loci were in LD following FDR correction. 
The average HE for the 91 autosomal SNPs was 0.404, an 
estimate higher than previously measured using 42 micros-
atellites (HE = 0.33; Gustafson et al. 2019), suggesting our 
SNP filtering protocol successfully inflated heterozygosity 
and increased power for individual identification. In fact, 
values for PID and PIDsibs across all SNPs were < 1 × 10−10 
(Supporting information, Table S5) and individual iden-
tifications could be made with high confidence from as 
few as 15 SNPs (Fig. 1). For 33 samples where both sex-
linked SNPs (2FelidSRYSNP-GT, mlbcZfy-680) yielded 
genotypes, 30 pairs (91%) agreed with known sex, suggest-
ing < 5% sex-typing error rate. The species-diagnostic SNPs 
(mtdna_658, mtdna_2089) were 100% successful at differen-
tiating mountain lions from bobcats. Further, bobcat refer-
ence genotypes were monomorphic at all autosomal SNPs.

This high-resolution panel of 95 SNPs was optimized 
for the Fluidigm system but can be genotyped in any SNP-
typing platform. The panel was designed from mountain 
lions throughout California and may be subject to ascer-
tainment bias when applied to other geographic regions. As 
a result, the utility of this panel for individual identification 
throughout the species range requires further verification. 
The high minor allele frequency screening step for SNP 
selection proved useful for differentiating individuals but 
also inflates estimates of heterozygosity. Therefore, certain 
analyses, such as estimating and comparing heterozygosity 
or identifying population structure and gene flow would not 
be appropriate uses of these markers.
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Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12686-​022-​01255-6.
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