TECHNICAL NOTE

Primers for amplification of innate immunity toll-like receptor loci in threatened birds of the Apterygiformes, Gruiformes, Psittaciformes and Passeriformes

Catherine E. Grueber • Ian G. Jamieson

Received: 12 May 2013 / Accepted: 30 May 2013 / Published online: 25 June 2013 - Springer Science+Business Media Dordrecht 2013

Abstract Assaying diversity at functional genomic regions, such as those of the immune system, allows us to test hypotheses about processes that determine the distribution of genetic diversity in threatened populations, and the fitness consequences of those distributions. Toll-like receptors (TLR) are a family of genes responsible for initiating innate and acquired immune responses to a diversity of pathogens. We provide 30 new primers, which, along with cross-species application of published primers, amplify TLR gene sequences in nine bird species of conservation concern in New Zealand. By including one member each of Apterygiformes and Gruiformes, two members of Psittaciformes, and five members of Passeriformes, our data significantly expand the number of avian species for which TLR sequences are available, and facilitates study of these genes in a greater diversity of taxa.

Keywords Apteryx · Callaeas · Cyanoramphus · Evolution · Immunogenetics · Mohoua · Notiomystis · Philesturnus - Porphyrio - Strigops - Xenicus

Immune genes are ideal for studying the evolutionary processes affecting genetic diversity of wild populations, as they represent the most rapidly evolving genes within the genome, due to selection pressure from a wide diversity of coevolving pathogens (Hedrick [1998](#page-4-0); Piertney and Oliver

C. E. Grueber $(\boxtimes) \cdot$ I. G. Jamieson Allan Wilson Centre for Molecular Ecology and Evolution, Dunedin, New Zealand e-mail: catherine.grueber@otago.ac.nz

C. E. Grueber - I. G. Jamieson Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand

[2006](#page-4-0)). While genes of the major-histocompatibility complex have been widely used for assaying levels of functional diversity, variation at other immunity genes also affects variation in individual immune responses, and are thus of interest to population geneticists (Acevedo-Whitehouse and Cunningham [2006](#page-4-0); Vinkler and Albrecht [2009](#page-4-0); Turner et al. [2012\)](#page-4-0). One such gene family is toll-like receptors (TLRs), which recognise a wide diversity of pathogens and are responsible for initiating the innate and acquired immune responses (Uematsu and Akira [2008](#page-4-0)). TLR sequence variation in wild populations has been associated with variation in resilience to infections (Villaseñor-Cardoso and Ortega [2011\)](#page-4-0), and may influence variation in survival of wild animals (e.g. Grueber et al. in press). TLRs also offer some technical advantages over molecular genotyping of MHC (Grueber et al. [2012](#page-4-0)). Most previous studies of avian TLR diversity have primarily focussed on common or domestic species (Alcaide and Edwards [2011\)](#page-4-0). Expanding the conservation genetics toolkit by examining genic regions associated with a variety of crucial biological processes, including those of the immune system, can provide valuable data for effective management of wild populations (Acevedo-Whitehouse and Cunningham [2006](#page-4-0)). We aim to provide additional genetic resources (PCR primers and sequences) to facilitate the examination of TLR diversity in threatened birds.

Our study species included one member of Apterygiformes (North Island brown kiwi Apteryx mantelli), one member of Gruiformes (takahe Porphyrio hochstetteri), two members of Psittaciformes (kakariki [red-crowned parakeet] Cyanoramphus novaezelandiae and kakapo Strigops habroptilus) and five members of Passeriformes (kokako Callaeas wilsoni, hihi [stitchbird] Notiomystis cincta, mohua [yellowhead] Mohoua ochrocephala, South Island saddleback Philesturnus carunculatus and New Zealand rock

Table 1 Sequences of PCR primers developed in this study

wren Xenicus gilviventris). Samples were collected for previous (Grueber et al. [2008;](#page-4-0) Taylor and Jamieson [2008](#page-4-0); Tracy and Jamieson [2011](#page-4-0)) or concurrent studies and were provided to us either as extracted gDNA, whole blood in ethanol or lysis buffer (Seutin et al. [1991](#page-4-0)), or feathers. We used two samples from all species (except one from X. gilviventris) as an internal control against sample handling errors. Where tissue samples were provided, DNA was purified using a modified Chelex (Bio-Rad) extraction [based on Walsh et al. ([1991](#page-4-0)), Casquet et al. ([2012\)](#page-4-0)] (blood samples), followed by an additional ethanol precipitation using GenElute linearised polyacrylamide (Sigma) as a DNA carrier (feather samples).

We first attempted to amplify TLR sequences in all species using published primers (Alcaide and Edwards [2011;](#page-4-0) Grueber et al. [2012](#page-4-0)). If these primers failed to produce a clear product, we re-examined the avian alignment for the locus in question (Alcaide and Edwards [2011](#page-4-0)). Primers were then designed at conserved regions using Primer3 (Rozen and Skaletsky [1998](#page-4-0)); ambiguities in the alignment were resolved to the most taxonomically similar species for which sequence was available (either published sequences available on Genbank, or sequences obtained herein). Our priority was to amplify fragments of maximal length, so we only designed internal primers in cases where no product amplified, or the sequence data was of too low quality to reliably identify ambiguities. Where multiple primer pairs were successful, we report only the pair that provides that longest fragment.

Amplification, clean up and sequencing followed Grueber et al. ([2012\)](#page-4-0). Amplifications were performed in a total volume of $15 \mu l$, containing 1 μl extracted DNA, 0.6 U MyTaq polymerase (Bioline Ltd), $1 \times$ MyTaq buffer (giving a final concentration of 3 mM Mg^{2+} and 1 mM dNTPs) and 500 nM each primer (Sigma-Aldrich). Thermocyling conditions (on an Eppendorf Mastercycler pro S) consisted of 94 °C for 3 min, followed by 35 cycles of 94 °C for 40 s, locus-specific annealing temperature (Alcaide and Edwards

Table 2 Primers and annealing temperatures (Ta) used to amplify partial Toll-like receptor sequences in nine threatened New Zealand bird species (lengths shown are total amplicon length, including primers, and are approximate)

Species and locus	Forward	Reverse	Ta	Length (bp)	Genbank accession numbers ^d
Apterygiformes: Apteryx mantelli					
TLRILA	avTLR1LAF ^a	avTLR1LAR ^a	58	1,267	KF265255
TLR2B	avTLR2F ^a	avTLR2R ^a	50	1,285	KF265275-6
TLR3	DnoTLR3F ^b	DnoTLR3R ^b	56	856	KF265282
TLR5	avTLR5F ^a	avTLR5R ^a	50	1,345	KF265302-3
TLR7	DnoTLR7F ^b	DnoTLR7R ^b	56	883	KF265314-5
Gruiformes: Porphyrio hochstetteri					
TLR1LA	avTLR1LAF ^a	avTLR1LAR ^a	54	1,267	KF265263
TLR1LB	avTLR1LBF ^a	avTLR1LBR ^a	50	1,058	KF265273
TLR3	avTLR3F ^a	avTLR3R ^a	50	1,267	KF265288
TLR4	avTLR4F ^a	AplTLR4R ^b	52	877	KF265299
TLR5	OleTLR5F ^b	PpoTLR5R ^b	56	990	KF265312
TLR7	avTLR7F ^a	avTLR7R ^a	54	1,341	KF265323
TLR15 ^e	PpoTLR15Fb	FnaTLR15R ^b	54	1,207	KF265333-4
TLR21	PpoTLR21Fb	PpoTLR21R ^b	61	830	KF265339
Psittaciformes: Cyanoramphus novaezelandiae					
TLR1LA	avTLR1LAF ^a	avTLR1LAR ^a	58	1,267	KF265257-8
TLR1LB	PcaTLR1LBF ^b	PcaTLR1LBR ^b	60	971	KF265267-8
TLR2B	avTLR2F ^a	avTLR2R ^a	50	1,285	KF265277-8
TLR3	PcaTLR3F ^b	PcaTLR3R ^b	54	1,080	KF265284
TLR4	MunTLR4F ^b	MunTLR4R ^b	55	943	KF265291-2
TLR5	ShaTLR5F ^b	AalTLR5R ^b	50	1,073	KF265306-7
TLR7	$AaITLR7F^b$	AalTLR7R ^b	52	831	KF265318
Psittaciformes: Strigops habroptilus					
TLRILA	avTLR1LAF ^a	avTLR1LAR ^a	58	1,267	KF265264
TLR2B	avTLR2F ^a	avTLR2R ^a	50	1,285	KF265281
TLR3	avTLR3F ^a	avTLR3R ^a	52	1,267	KF265289
TLR4	MunTLR4F ^b	MunTLR4R ^b	55	943	KF265300
TLR5	ShaTLR5F ^b	ShaTLR5R ^b	54	983	KF265313
TLR7	parrotTLR7F ^b	parrotTLR7R ^b	56	677	KF265324
Passeriformes: Callaeas wilsoni					
TLR1LA	avTLR1LAF ^a	avTLR1LAR ^a	58	1,267	KF265256
TLR1LB	PcaTLR1LBF ^b	PcaTLR1LBR ^b	56	971	KF265266
TLR3	avTLR3F ^a	avTLR3R ^a	$50\,$	1,267	KF265283
TLR5	avTLR5F ^a	avTLR5R ^a	50	1,345	KF265304-5
TLR7 ^f	avTLR7F2 ^a	PcaTLR7R ^b	50	960	KF265316-7
TLR15	finchTLR15Fb	avTLR15R ^a	50	1,281	KF265326-7
TLR21	finchTLR21 Fc	finchTLR21R ^c	57	702	KF265335
Passeriformes: Mohoua ochrocephala					
TLRILA	avTLR1LAF ^a	avTLR1LAR ^a	58	1,267	KF265259
TLR1LB	PcaTLR1LBFb	PcaTLR1LBR ^b	56	971	KF265269-70
$TLR3$	PcaTLR3F ^b	PcaTLR3R ^b	55	1,080	KF265285-6
TLR4	PauTLR4F ^c	PauTLR4R ^c	58	722	KF265293-4
TLR5 ^g	avTLR5F ^a	avTLR5R ^a	50	1,345	KF265308-9
TLR7 ^f	PcaTLR7F ^b	PcaTLR7R ^b	50	891	KF265319
TLR15	avTLR15F ^a	avTLR15R ^a	54	1,337	KF265328-9
TLR21	finchTLR21F ^c	finchTLR21R ^c	57	702	KF265336

Table 2 continued

^a Alcaide and Edwards ([2011\)](#page-4-0); ^b developed in the current study (Table [1](#page-1-0)); ^c Grueber et al. (2012)

^d For species in which $N = 2$ (all except X. *gilviventris* where $N = 1$); only one accession is provided when both individuals carried identical sequence

^e Thermocycling protocol repeated $40\times$ (not $35\times$ as for all other loci)

 f Note that TLR7 may be duplicated in Passerines [see Grueber et al. [\(2012](#page-4-0)) and references therein]

^g Amplifies two clear bands, of which the smaller is the target product

[2011;](#page-4-0) Grueber et al. [2012](#page-4-0); Table [2\)](#page-2-0) for 40 s, and extension at 72 °C for 80 s, with a final extension step of 72 °C for 10 min. Products were purified by excision from 1 % agarose, cleaned up using the MEGAquick-spin total fragment DNA purification kit (iNtRON Biotechnology Inc.), and sequenced in both directions on an ABI 3730xl Genetic Analyser (service provided by Genetic Analysis Services at Otago). Sequences were edited using Sequencher v5.0 (Gene Codes Corporation), using IUPAC ambiguity codes where double-peaks were observed. Correct amplification of the target sequence was confirmed using BLAST (Altschul et al. [1997](#page-4-0)) search.

We developed a total of 30 new primers (Table [1\)](#page-1-0) which, along with cross-species amplification of previously-published primers, enabled us to successfully obtain on average 1,087 bp fragments (range 677–1,345 bp) for between five and eight TLR genes in nine bird species across four families (amplification conditions and Genbank accession numbers provided in Table [2](#page-2-0)). Although we have not amplified the full sequence of each gene, our primers target their extracellular domains: the variable region responsible for pathogen binding (as opposed to the intracellular domain, which is highly conserved to maintain the integrity of intracellular signalling cascades; Areal et al. [2011\)](#page-4-0). Many of these primers will likely work well in related species. These primers will be used to survey TLR diversity in threatened populations, and for addressing more general questions regarding avian TLR evolution and the role of immunogenetic diversity after population bottlenecks.

Acknowledgments We are grateful to those who generously provided samples for this study: Hugh Robertson, Oliver Overdyck, Tertia Thurley (New Zealand Department of Conservation); Kerry Weston, Bruce Robertson (University of Otago), Kevin Parker (Massey University), Patricia Brekke (Zoological Society of London)

and Bethany Jackson (Auckland Zoo). We thank Stefanie Großer, Gabrielle Knafler, Tania King and Chris Harris for laboratory assistance. Our research into the consequences of genetic diversity loss in threated species receives funding from the Allan Wilson Centre for Molecular Ecology and Evolution, the Marsden Fund (Contract no. UOO1009), Landcare Research (Contract no. C09X0503) and University of Otago.

References

- Acevedo-Whitehouse K, Cunningham AA (2006) Is MHC enough for understanding wildlife immunogenetics? Trends Ecol Evol 21:433–438
- Alcaide M, Edwards SV (2011) Molecular evolution of the toll-like receptor multigene family in birds. Mol Biol Evol 28:1703–1715
- Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
- Areal H, Abrantes J, Esteves P (2011) Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol Biol 11:368
- Casquet J, Thebaud C, Gillespie RG (2012) Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol Ecol Resour 12:136–141
- Grueber CE, King TM, Waters JM, Jamieson IG (2008) Isolation and characterization of microsatellite loci from the endangered New Zealand takahe (Gruiformes; Rallidae; Porphyrio hochstetteri). Mol Ecol Resour 8:884–886
- Grueber CE, Wallis GP, King T, Jamieson IG (2012) Variation at innate immunity Toll-like receptor genes in a bottlenecked population of a New Zealand robin. PLoS ONE 7:e45011
- Grueber CE, Wallis GP, Jamieson IG (in press) Genetic drift outweighs natural selection at innate immunity loci in a reintroduced population of a threatened species. Mol Ecol
- Hedrick PW (1998) Balancing selection and MHC. Genetica 104: 207–214
- Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21
- Rozen S, Skaletsky HJ (1998) Primer3. Code available at [http://](http://www-genome.wi.mit.edu/genome_software/other/primer3.html) www-genome.wi.mit.edu/genome_software/other/primer3.html
- Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90
- Taylor SS, Jamieson IG (2008) No evidence for loss of genetic variation following sequential translocations in extant populations of a genetically depauperate species. Mol Ecol 17:545–556
- Tracy L, Jamieson I (2011) Historic DNA reveals contemporary population structure results from anthropogenic effects, not prefragmentation patterns. Conserv Genet 12:517–526
- Turner AK, Begon M, Jackson JA, Paterson S (2012) Evidence for selection at cytokine loci in a natural population of field voles (Microtus agrestis). Mol Ecol 21:1632–1646
- Uematsu S, Akira S (2008) Toll-like receptors (TLRs) and their ligands. Handb Exp Pharmacol 183:1–20
- Villaseñor-Cardoso MI, Ortega E (2011) Polymorphisms of innate immunity receptors in infection by parasites. Parasite Immunol 33:643–653
- Vinkler M, Albrecht T (2009) The question waiting to be asked: innate immunity receptors in the perspective of zoological research. Folia Zool 58:15–28
- Walsh PS, Metzger DA, Higuchi R (1991) Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513