TECHNICAL NOTE

Development and characterization of EST-derived microsatellite makers for Manila clam (*Ruditapes philippinarum*)

Hong-Tao Nie · De-Peng Zhu · Feng Yang · Li-Qiang Zhao · Xi-Wu Yan

Received: 20 August 2013/Accepted: 23 September 2013/Published online: 4 October 2013 © Springer Science+Business Media Dordrecht 2013

Abstract Twenty-five polymorphic microsatellite makers were developed and characterized from expressed sequence tag sequence of the Manila clam, *Ruditapes philippinarum*. The number of alleles at each locus ranged from 3 to 20 with an average of seven alleles per locus. The observed and expected heterozygosity varied from 0.081 to 0.730 and from 0.127 to 0.926, respectively. Thirteen loci were found deviate significantly from Hardy–Weinberg equilibrium. These microsatellite loci will be useful for further studies on the population structure and genetic variation of this species.

Keywords *Ruditapes philippinarum* · Manila clam · Microsatellite · Polymorphism

The Manila clam, *Ruditapes philippinarum*, which is widely distributed on tidal flats in the West Pacific coasts from Russia to the Philippines, is one of the important commercial resources for the coastal fisheries. However, the wild stocks of *R. philippinarum* have been declining dramatically for last decades due to over-exploitation and the deterioration of environmental conditions in China. In recent years, recovery efforts such as artificial breeding program and stock enhancement are in progress (Zhang

H.-T. Nie

and Yan 2009). But, the genetic effects of hatchery individuals on wild populations of R. *philippinarum* have not yet been fully evaluated. Therefore, reasonable stock management and genetic improvement are required for sustainable development of R. *philippinarum* aquaculture industry.

Microsatellites or simple sequence repeats (SSRs) have become one of most commonly used DNA markers in population genetics and evolutionary biology research, and they have been widely applied in studies of biological breeding, and genetic linkage maps. Although some microsatellite markers have been developed in *R. philippinarum* (Yasuda et al. 2007; An et al. 2009), more polymorphic microsatellites are still required in *R. philippinarum* to enable parentage, population genetics and genome mapping studies. In this study, we report 25 novel polymorphic microsatellite markers developed from expressed sequence tags (ESTs) of the *R. philippinarum* that will be useful for genetic research of this species.

A total of 5,844 *R. philippinarum* ESTs obtained from GenBank (Sep 20, 2012) were scanned and assembled using SeqMan II sequence assembly software (DNASTAR Inc., Madison, WI) and 4,549 potential unigenes that contain contigs and singletons were generated. SSRHUNTER program (http://www.biosoft.net/dna/SSRHunter.htm) was used to find regions containing microsatellites. Parameters were set for the detection of di-, tri-, tetra-, penta-, and hexanucleotide motifs with a minimum of five repeats. Primers flanking microsatellites were designed using the PRIMER 5.0 program (http://www.premierbiosoft.com/).

Polymorphism evaluation was tested by 38 wild individuals of *R. philippinarum* collected from Dalian, Liaoning province, China. Genomic DNA of each specimen was extracted from adductor muscle tissue by standard proteinase K digestion, phenol–chloroform extraction, and

H.-T. Nie · D.-P. Zhu · F. Yang · L.-Q. Zhao · X.-W. Yan (⊠) Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China e-mail: yanxiwu@dlou.edu.cn

Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China

Locus	Accession Number	Repeat motif	Primer sequence $(5'-3')$	<i>T</i> _a (°C)	Na	Size range (bp)	H _o	$H_{\rm E}$	P value
RpN03	AM875256	(TGTA)5	F: TCTCCTGCCTTAACCACA	57	6	330-356	0.500	0.482	0.0996
			R: GGCTCCCACATTCTCATT						
RpN04	AM873802	(ACT) ₅	F: AATACTAACGCTGTGGAT	58	15	292-402	0.167	0.853	0.0000*
			R: CTAATGACTTAATGAGCAAA						
RpN07	AM875824	$(AT)_5$	F: TACCAACGCTCCTACAACTG	58	3	177-213	0.132	0.127	1.0000
			R: CCATTCACTTTCCAGCAATA						
RpN10	AM872973	$(AT)_5$	F: GGCTCGTGTCTTATTGTCT	58	20	380-530	0.200	0.926	0.0000*
			R: TAAACATACTTCTGAAATGCA						
RpN12	AM877175	(ATG) ₅	F: CCAACGTATAGTACCCGTAAC	63	3	360-364	0.263	0.406	0.0193
			R: CCATGTAGACAAGTTTGAACCC						
RpN13	AM873183	$(TA)_5$	F: ATTTTGCCAGTAATGTACAGTA	53	16	360-490	0.486	0.782	0.0000*
1			R: ACACATGGTCGATAATACGC						
RpN14	AM872742	(TG) ₅	F: AATTTTACATCACGCATTTACAG	58	3	380-384	0.189	0.496	0.0000*
		()5	R: TCACACAAACGACATTTCAATAC						
RpN15	AM875337	(TA) ₅	F: AGTGTTTCATAGGATTGGTTTA	61	4	525-610	0.639	0.591	0.0745
		()5	R: TACACAGTAGTCAGATACACAGCA						
RpN21	AM876481	$(AT)_6$	F: AAGAAACACGCCAACCTC	57	4	130-170	0.263	0.383	0.1017
		()0	R: TTGCACGCATAAACCTTA						
RnN25	AM877179	(AT)∉	F. GTTATCGACTTGATACGTGGTC	61	3	257-261	0.297	0.472	0.0046
		()0	R: TGAAAGGTTAAGACATCAACAG						
RpN27	AM877536	(TA)	F: TGAGAATGACGACCTGAC	60	8	300-410	0.316	0.575	0.0000*
	111077000	(11)6	R: CTAGAAATACAAAGCAAACA	00	Ű	000 110	0.010	01070	0.0000
RnN30	AM875354	(TTA)	F. CTCAAGAAATAGTGGGATTT	47	5	225-290	0 189	0.640	0.0000*
reprise	101075551	(111)6	R· TTACATGGTTTCGGTTCA	.,	5	223 270	0.109	0.010	0.0000
RnN35	AM876061	$(TA)_{c}$		58	6	226-290	0.083	0 574	0.0000*
Rp1100	1111070001	(111)6	\mathbf{R} · ATTGTGCAATAACTGTCTCAT	50	0	220 290	0.005	0.574	0.0000
RnN36	AM873978	(TGT)	E TGGATATGGTGCCTGTTG	61	6	330-358	0 162	0 596	0.0000*
Kp130	AW1075770	(101)6		01	0	550-550	0.102	0.570	0.0000
PpN37	AM875202	(TA).	E: TGAACAGCCATGTCCAAT	61	10	240, 200	0.684	0 772	0.0216
Kpi (37	AW075292	$(\mathbf{IA})_{6}$		01	10	240-290	0.084	0.772	0.0210
DpN28	AM874605	(ΛTC)		58	6	166 102	0.371	0.201	0.0264
кризо	AW074095	(A10) ₆		50	0	100-192	0.571	0.391	0.0204
DpN/1	AM872208	(\mathbf{TTC})		40	14	280 360	0.730	0 726	0.0127
RpN41	AW1073390	$(110)_{6}$		49	14	280-300	0.750	0.720	0.0127
Dr.NI44	11075200	(TA)		61	6	280 210	0 227	0.645	0.0000*
KpiN44	AM8/3208	$(1A)_6$		01	0	280-310	0.237	0.045	0.0000*
DN46	AM075106	(AT)		52	2	100 106	0.109	0 220	0.0001*
кріч40	AM8/3120	$(A1)_6$		33	3	180-180	0.108	0.320	0.0001*
D	A . A . A . A . A . A . A . A . A . A .			<i>E E</i>	10	190, 252	0.514	0.000	0.0957
KpiN47	AM8/3834	$(ACA)_{13}$		33	10	180-232	0.314	0.000	0.0857
D 11/0	A . A . A . A . A . A . A . A . A . A .			50	0	210 400	0.279	0 (71	0.0000*
KpIN48	AM8/2844	$(GAAT)_7$		55	9	310-400	0.278	0.671	0.0000*
D 1150	11072247			50	10	251 500	0.605	0.000	0.0000*
RpN50	AM8/334/	(AC)9	F: CTTGGACGGATTTACTTT	50	13	351-500	0.605	0.889	0.0000*
D 1154	11000010		K: CGTTCAATTCTTTTGCTT	50	10	000 500	0.45.1	0.727	0.00.1.1
RpN51	AM873318	(GT) ₆	F: AGACGITATGCTGTTAGC	53	12	230-520	0.474	0.635	0.0044
D		(1 T)	R: TTGTTCTTGTTGCGATAT	50	_	070 001	0.155	0.505	0.0000
RpN53	AM874854	$(AT)_6$	F: AGAGGCTTAATAATACGGTTTA	50	5	370–386	0.139	0.595	0.0000*
			R: CATACAAAACATCTGAGGGA						

Table 1 Characterization of 25 EST-SSR markers in R. philippinarum

Table 1 continued

Locus	Accession Number	Repeat motif	Primer sequence $(5'-3')$	$T_{\rm a}$ (°C)	N _a	Size range (bp)	H _o	$H_{\rm E}$	P value
RpN56	AM872995	(GT) ₅	F: TTATGACGCCTGGGTTAC	48	4	210-230	0.081	0.130	0.1245
			R: GCCAATCAGATGGGAATT						

 $T_{\rm a}$ annealing temperature of each primer pair, $N_{\rm a}$ observed number of alleles, $H_{\rm O}$ observed heterozygosity, $H_{\rm E}$ expected heterozygosity

* Indicates significant departure from Hardy–Weinberg equilibrium after sequential Bonferroni correction (P < 0.05/25)

DNA precipitation. Polymerase chain reaction (PCR) was performed in 10-µl volumes containing 0.5 U easy *Taq* DNA polymerase (TransGen, Beijing), $1 \times$ PCR buffer, 0.2 mM dNTP, 0.4 µM of each primer set, 1.5 mM MgCl₂, and about 25 ng template DNA. The reactions were performed using the following parameters: 3 min at 94 °C, followed by 35 cycles of 45 s at 94 °C, 45 s at the annealing temperature listed in Table 1 and 45 s at 72 °C, then a final extension of 5 min at 72 °C. Amplification products were resolved on a 8 % polyacrylamide gel and visualized by silver staining.

A total of 228 microsatellite-containing EST sequences were identified from 5,844 ESTs in the *R. philippinarum* EST database. Of the 228 sequences, 57 were selected for microsatellite marker optimization because of repetition times and flaking sequence priority. Of the 57 potential microsatellite markers, 18 were not easily amplified, 14 were monomorphic, and 25 were found to be polymorphic among 38 individuals of *R. philippinarum*. Of the 57 primer pairs developed, 25 microsatellite loci (43.9 %) showed polymorphism in the population of *R. philippinarum* (Table 1).

The number of alleles, and observed ($H_{\rm O}$) and expected ($H_{\rm E}$) heterozygosities were estimated by MICROSATEL-LITE ANALYSER software (Dieringer and Schlötterer 2003). Tests for linkage disequilibrium (LD) and deviations from Hardy–Weinberg equilibrium (HWE) were performed by GENEPOP 4.0 (Rousset 2008). Sequential Bonferroni corrections (Rice 1989) were applied for all multiple tests (P < 0.05).

The number of alleles per locus ranged from 3 to 20 with an average of 7.76, and the observed and expected heterozygosities ranged from 0.081 to 0.730 and from 0.127 to 0.926, with an average of 0.324 and 0.571, respectively (Table 1). Tests for linkage disequilibrium

showed a nonrandom association (P < 0.01) between four pairs of loci (RpN13/RpN14, RpN10/RpN13, RpN37/ RpN38, RpN36/RpN56). Thirteen loci (RpN04, RpN10, RpN13, RpN14, RpN27, RpN30, RpN35, RpN36, RpN44, RpN46, RpN48, RpN50 and RpN53) deviated significantly from HWE after correction for multiple tests, which may be due to the presence of null alleles and sampling effect. The results obtained in this study indicated that these SSRs developed from EST in the Manila clam will be a useful tool for the genetic research such as population variation, parentage analysis, stock enhancement evaluation, and the establishment of effective conservation strategy of *R. philippinarum*.

Acknowledgments This study was supported by grants from the National Natural Science Foundation of China (31302183), the Modern Agro-industry Technology Research System (CARS-48), and the National High Technology Research and Development Program (2012AA10A410-2).

References

- An HS, Kim EM, Park JY (2009) Isolation and characterization of microsatellite markers for the clam *Ruditapes philippinarum* and cross-species amplification with the clam *Ruditapes variegate*. Conserv Genet 10:1821–1823
- Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169
- Rice RW (1989) Analyzing tables of statistical tests. Evolution 43:223–225
- Rousset F (2008) GENEPOP'O007: a complete reimplementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106
- Yasuda N, Nagai S, Yamaguchi S, Lian CL, Hamaguchi M (2007) Development of microsatellite markers for the Manila clam *Ruditapes philippinarum*. Mol Ecol Notes 7:43–45
- Zhang GF, Yan XW (2009) Clam aquaculture. Science Press, Beijing